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Newton's Second Law is equivalent to the continuity equation for momentum in integral form. 
This insight leads to an alternative picture of forces as momentum currents. The purpose of the 
present paper is to introduce a new approach to statics problems and their solutions in terms of 
momentum currents. In particular, the relation between the distribution of momentum currents 
and the elastic stresses within a medium will be considered and a simple way to pictorially 
represent those stresses with the help of momentum flow diagrams will be discussed. Handling 
statics problems in the momentum current picture immediately displays their relationship to 
analogous problems in electrical network theory. This uncovers a structural relationship between 
the role of electric charge in the theory of electricity and the role of momentum in mechanics. For 
example, it will be shown that the familiar method for the solution of statics problems in terms of 
free-body diagrams is equivalent to the use of a junction rule for momentum currents. 

I. INTRODUCTION 

Every force can be visualized as a momentum current, 
i.e., "force" is just another name for a momentum cur
rent.1·2 To see this clearly, imagine two wagons accelerat
ing toward one another with the help of a motor which 
winds up the rope connecting them together (Fig. 1 ). The 
momentum of the left wagon increases, that of the right 
wagon decreases. Instead of saying the wagons are exerting 
forces upon each other by way of the rope, one can say that 
a momentum current is flowing from the wagon at the right 
through the rope to the wagon at the left. 

of space changes, a net momentum current must flow 
through the boundary surface of the body or the region of 
space. Accordingly, in this picture, momentum conserva
tion is understood locally. The result is what could be 

This is more than just a figure of speech. The concept of 
momentum current underlies an entirely different ap
proach to mechanics than the concept of force allows: If the 
amount of momentum contained within a body or a region 

146 Am. J. Phys. 52 (2), February 1984 

mo~ 

~ 
©© 

Fig. I. Two wagons accelerating toward one another with the help of a 
motor which winds up a rope connecting them together. The momentum 
of the left wagon increases, that of the right wagon decreases showing that 
momentum p is flowing from the wagon at the right through the rope to 
the wagon at the left. 
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called a local-causes approach to mechanics, i.e., a mechan
ics without action-at-a-distance. Furthermore, from the 
point of view of momentum currents, new kinds of ques
tions come up which seem awkward in the force picture. 
For example, when one says: "A momentum current flows 
from body 1 to body 2," the question immediately comes 
up "By which path does this current flow?" The analogous 
question in the force picture: "What is the distribution of 
stresses around and between the bodies?" sounds compli
cated especially, for example, ifthe two bodies are interact
ing via a field. 

The purpose of this paper is to present an alternative 
approach to the statics of structures in terms of momentum 
currents. In particular, the relation between the distribu
tion of momentum currents and the elastic stresses within a 
medium will be discussed and a simple way to pictorially 
represent these stresses with the help of momentum flow 
diagrams will be presented. 

Statics problems are traditionally solved in terms of 
forces with the help of free-body diagrams which show all 
the forces acting at each junction or knot in the structure. 
We will show that the rules for constructing such free-body 
diagrams are identical with a "Kirchhoff's First Law" for 
momentum currents. 

The general problem of the statics of structures will be 
treated by way of two typical examples. The first and easier 
example is a lantern suspended by several cables. The sec
ond, somewhat more complicated example, is the beam of a 
crane. 

II. MOMENTUM CURRENTS IN STATIC 
STRUCTURES 

Newton's Second Law is traditionally written as 

d N . 
-p=IF(1), (1) 
dt ;~I 

where pis the momentum of, say, a body and F(i) is the ith 
of N forces acting on the body. In the momentum current 
picture, Newton's Second Law is seen to be equivalent to 
the integral form of the continuity equation for momentum 

d N 
-p + I I(i) = 0 . (2) 
dt i~ I 

Here, I(i) is the net momentum current flowing out of, say, 
a body through the ith channel. Expressed verbally, (2) 
reads: 

"The value of the momentum p contained within an 
arbitrary region of space R can change in time only if a 
net momentum current}',~~ 1 I(i) flows through the N 
channels penetrating the (closed) boundary surface of 
R." 

A comparison of (2) with (1) shows that every force 
acting on an object is equivalent to a momentum current 
flowing through a channel, say, a rope, a bar, or even a field 
into the object, i.e., F(i) = - l(i). 

A static structure is characterized by the fact that the 
first term in (2) is zero for every region R within the struc
ture. Accordingly, (2) becomes 

N 

I I(i) = o. (3) 
i= l 

Whenever a momentum current is flowing through a mate
rial medium, the medium is being deformed. This deforma-
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Fig. 2. A static arrangement consisting of a rubber band stretched across a 
solid frame. The distortion in the rubber band shows that momentum is 
flowing throughout the structure. No dissipation of energy accompanies 
this flow of momentum showing that the flow of momentum is a "super 
current." 

tion can be used to measure such a current. Indeed, this is 
just what a spring balance does. 

The flow of a momentum current has nothing neces
sarily to do with the motion of the channel through which it 
flows. For example, momentum is flowing through the 
rubber band stretched across the static arrangement shown 
in Fig. 2. Furthermore, since there is no dissipation of ener
gy accompanying the flow of momentum in such a static 
arrangement, e.g., since the rubber band does not heat up, 
the momentum currents flowing through a static structure 
are super currents, analogous to electric super currents. 

III. A JUNCTION THEOREM FOR MOMENTUM 
CURRENTS 

A standard statics problem is that of a lantern suspended 
by several cables (Fig.3). The weight of the lantern is given 
and the problem is to determine the magnitude and direc
tion of the forces acting in the cables 1and2. The solution is 
obtained by constructing a free-body diagram for the junc
tion where the cables are attached above the lantern. The 
weight F(3) of the lantern, i.e., the force of gravity acting on 
the lantern, must be compensated for by the forces F( 1) and 
F(2) acting in cables l and 2, respectively, at the junction: 

F(l) + F(2) = - F(3) 

or 
3 

I F(i)=O. (4) 
i= I 

One is able to use a free-body diagram as an aid to solving 
this problem because the force vectors F(l) and F(2) lie 
along the cables 1 and 2, respectively. 

The method of solution of this problem in the momen
tum current picture is identical to that above although the 
interpretation of the solution is quite different: The free
body diagram is a manifestation of a "Kirchhoff's First 
Law" for momentum currents. To see this more clearly, 
consider the analogous situation from the theory of elec-

2 

3 

Fig. 3. Classical statics problem of a lantern suspended by three cables. 
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tricity. If several, say, N wires converge at a single location 
ijunction) within an electrical network, the following state
ment is known to hold true: At any junction the algebraic 
sum of the electric currents is zero. This is Kirchhoff's First 
Law (sometimes called Kirchhoff's Junction Theorem). 
This law is usually written in the form 

N 

I IQ(i) = 0' (5) 
i= 1 

where IQ(i) is the electric current flowing through the ith 
channel (wire) of the circuit. 

Kirchhoff's First Law is a special case of the continuity 
equation for electric charge Q 

d N . 
-Q+ I IQ(l)=O. (6) 
dt i~ I 

This equation is a consequence of the conservation of 
charge. If there are no sources or sinks of electric charge in 
a region containing the junction, the value Q of the electric 
charge in this region remains constant in time and (6) tells 
us, that 

N 

I JQ(i)=O. 
i= l 

Equation (3) is valid for static arrangements and follows 
from the general continuity equation (2) for momentum in 
the same way that (5) follows from (6). It is therefore sugges
tive to call (3) the "Junction Theorem for Momentum Cur
rents." We understand a mechanical junction thereby to be 
a location at which several momentum currents converge, 
for example, the location above the lantern in Fig. 3 where 
the three cables converge. The junction theorem for elec
tric currents states that a sum of scalar quantities equals 
zero, whereas the same law for momentum currents makes 
a similar statement about a vector sum. 

For a cable or a beam under tension or compression 
along its length, the momentum current vector is parallel to 
the cable or beam. The following rule can be shown to hold 
for the orientation of the vector I: 

The vector I(i) points toward a junction for a momentum 
current through a cable or beam (i) under tension and away 
from a junction for a momentum current through a beam (i) 
under compression. 

Let us now return to the lantern problem in the momen
tum current picture. According to the above rule, each of 
the three vector currents I(i), i = 1,2,3, points toward the 
junction. Th; mass m of the lantern is supposed to be 
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'ig. 4. Application of Kirchhoff's Junction Theorem to the junction 
bove the lantern in Fig. 3. The figure shows the vector addition of the 
1ree momentum currents I (i), i = 1, 2, 3 converging at the junction. The 
alue of II (3)1 is taken to be 40 N. 
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known and, therefore, the magnitudeofl(3) (recall Fig. 3) is 
given by 

JI(3)J =mg, (7) 

whereg is the acceleration due to gravity (see the comment 
at the end of Sec. V). Thus, given the angles between cables 
I, 2, and 3, the momentum current vectors 1(1) and 1(2) can 
be determined with the help of the Junction Theorem for 
Momentum Currents (Fig. 4). 

IV. THE DIRECTION OF FLOW OF MOMENTUM 
CURRENTS 

Since momentum is a vector it follows from (2) that the 
momentum current I(i) is also a vector. The vector momen
tum current I(i) can be described in terms of a (symmetric) 
tensor, the momentum current density j(r): 

I(i) = i dO""j(r) . (8) 
s, 

The surface integral in (8) extends over the surface S; c·ut
ting the channel i. The quantity da appearing in (8) is a unit 
surface element lying along the channel and directed away 
from the junction under consideration. The momentum 
current density tensor j(r) is commonly known as the (nega-
tive) stress tensor. · 

Just as the electric current IQ of the electric charge Q is 
represented by a surface integral over the charge current 
density jQ(r), the vector momentum current I of the mo
mentum pis represented by a set of three "scalar" momen
tum currents Ix , IY , and lz of the three "scalar" quantities: 
thexcomponentpx, theycomponentpY ,and thezcompo
nentpz of the momentum p: 

(9) 

and similarly for IY and lz [where the channel label (i) has 
been dropped for simplicity]. We callpx ,pY, andp,, "x 
momentum," "y momentum," and "z momentum," for 
short. In the same way, we call jx , jY , and j, the "x-mo
mentum, y-momentum, and z-momentum current den
sity," respectively. 

The momentum density "vectors" jx , jY , and jz are ob
tained from j(r) by projecting it onto three independent di
rections, say, the x, y, and z directions of an arbitrarily 
chosen set of Cartesian coordinate axes: 

Ur) = j(r)·X0 (10) 

and similarly for jy(r) and j,(r) . Here x 0 represents a (con
stant) unit vector lying along thex axis. If the projections of 
the momentum current density tensor j(r) are known in 
three independent directions, then the stress tensor is com
pletely determined and, consequently, the stress state of the 
corresponding physical system is fully specified. 

The advantage of dealing with the three independent 
"vector" fields J, , jY , and jz is that these can be pictorially 
represented in the usual manner in terms of field lines. The 
field lines of, say, jx , show how x momentum flows 
through the object being considered. 

When speaking of the direction of flow of a physical 
quantity one generally means the sense of direction along 
the corresponding current density vector. Since there are 
three current density vectors associated with the flow of a 
vector quantity like momentum, it does not make sense to 
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Fig. 5. Examples used to illustrate the direction of momentum flow. (a) A 
body is being accelerated with the help ofa string by pulling it to the right. 
Positive x momentum is flowing into the body from right to left, i.e., in the 
negative x direction through the string. The string is under tension. (b) A 
body is being accelerated with the help of a rod by pushing it to the right. 
Positive x momentum is flowing into the body from left to right, i.e., in the 
positive x direction through the rod. The rod is under compression. 

speak about the direction of flow of momentum as such. 
Rather, one must refer to the direction offlow of each com
ponent px ,pY, andp, of the momentum. 

In static structures made up entirely of cables and 
beams, the direction offlowof each componentpx ,pY , and 
p, is necessarily parallel to the axis of each cable and beam, 
exactly in the same way that the direction of flow of electric 
charge is necessarily parallel to the axis of each wire in a 
network. However, it frequently occurs that the direction 
of flow of, say, the x momentum within a cable or beam is 
opposite to that of, say, they momentum. We will come 
back to this point below. 

The relationship between the sense of direction of the 
field lines of the momentum current density L , jY , and j, 
and the state of stress within an elastic medium can be 
stated in terms of a single rule. The derivation of this rule is 
easy to illustrate with the help of a few simple examples. 
The body in Fig. 5(a) is being accelerated by pulling it to the 
right. Accordingly, its positive x momentum is increasing. 
Thus, positive x momentum is flowing into the body from 
right to left, i.e., in the negative x direction, through the 
channel (a string) under tension. In the same way, in Fig. 
5(b), (positive) x momentum is flowing into a body from left 
to right, i.e., in the positive x direction. Here the channel (a 
rod) used to accelerate the object to the right is under com
pression. Analogous statements hold for the acceleration of 
a body in they or z directions. Summing up: the field lines 
ofthex-momentum current density are oriented in the neg
ative (positive) x direction within a channel under tension 
(compression) lying along the x axis. The same is true when 
speaking about the field lines of y or z momentum. 

If the momentum conducting channel does not lie paral
lel to a coordinate axis, the field Jines of at least two compo
nents of the momentum are nonvanishing within the chan
nel (Fig. 6). In Fig. 6(a) and 6(b), both the x and the y 
momentum of the body increase. In Fig. 6(a), both x andy 
momentum flow into the body through an expanded string 
from the upper right to the lower left of the figure, i.e., both 
the x and y components of jx and jY are negative. In Fig. 
6(b) both x and y momentum flow into the body through a 
compressed rod from the lower left to the upper right of the 
figure, i.e., both the x and y components of jx and jY are 
positive. 

In Fig. 6(c) and 6(d), the x momentum of the body de
creases and they momentum of the body increases. In Fig. 
6(c), both x and y momentum flow through an expanded 
string: x momentum flows out of the body from the lower 
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Fig. 6. Further examples used to illustrate the direction of momentum flow 
(see text). 

right to the upper left of the figure andy momentum flows 
into the body from the upper left to the lower right, i.e., 
both the x component of jx and they component of jY are 
negative. In Fig. 6(d), both x and y momentum flow 
through a compressed rod: x momentum flows out of the 
body from the upper left to the lower right of the figure and 
y momentum flows into the body from the lower right to 
the upper left, i.e., both the x component of jx and they 
component of jY are positive. 

Figure 6(a) and 6(b) illustrates examples whereby both x 
and y momentum flow in the same direction. Figure 6(c) 
and 6(d) illustrates examples whereby x and y momentum 
flow in opposite directions. Nevertheless in all four cases, 
the following rule applies: 

Thex(y, or z) component ofjx , (jY or j,) is negative within 
a channel under pure tension and is positive within a chan
nel under pure compression. 

It is easy to see from the above examples how it can be 
that, even in a fully symmetric configuration like the one 
shown in Fig. 2, a particular direction is favored as the 
direction of flow along the field lines of the x-, y-, or z
momentum current density: The asymmetry is a conse
quence of having selected a particular direction as the posi
tive x, y, or z axis. 

V. MOMENTUM FLOW DIAGRAMS 

The Junction Theorem given in Sec. III actually solves 
the lantern problem as it was originally posed. However, 
the treatment of problems in the momentum current pic
ture brings up the additional question: "How does momen
tum flow in the structure?" This question can be answered 
in more or less detail as desired. 

A complete answer requires the specification of the mo
mentum current density j(r) throughout the structure. As 
explained in Sec. IV, the tensor field j(r) can be pictorially 
represented in terms ofthex-,y-, andz-momentum current 
densities jx (r) , jY (r) , and j, (r) . Thus, the specification of 
the field lines for the latter determines j(r) and, consequent
ly, leads to a complete answer to the above question. 

In many cases, however, one is satisfied with a less ex
haustive answer. Often, for example, momentum can flow 
only in supports, rods, cables, struts, beams, and the like 
throughout the structure. In such cases, one is only inter
ested in the specific channels, through which each of the 
three "kinds" of momentum flow and how much of each 
kind of momentum flows through any cross section along 
its way. The solution of this problem can be conveniently 
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Fig. 7. (a) An electrical network consisting of a battery and two light bulbs. 
(b) One possible and convenient way to illustrate the flow of charge 
through the network ofFig.7 (a). 

presented in a pictorial fashion similar to that illustrated in 
Fig. 7 for the example of an electric network. 

We will call diagrams of the type shown in Fig. 7(b), 
"flow diagrams." In such diagrams, the flow throughout a 
network is decomposed into several simple current loops 
which overlap one another. Each of these simple current 
loops is indicated by a single closed line which actually 
represents a bundle of current density field lines. The direc
tion of flow along these field lines is indicated by one or 
more arrow heads sketched on the single representative 
line. The magnitude of flow (or current strength) usually 
indicated by the density of the field line bundle times the 
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~· 8. Momentum flow diagram for the lantern problem of Fig. 3. (a) 
JW diagram for the flow of L throughout the structure. (b) Flow dia-
1m for the flow of j, throughout the structure. The flow of momentum 
·ough the gravitational field is suggested by the dotted line. Details of 
~flow of momentum through the gravitational field will be discussed in 
1ter publication. 
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area of the channel is now simply given numerically next to 
each representative line. 

In order to represent the flow of momentum throughout 
a "mechanical network," three such flow diagrams must be 
sketched, one for each of the three components ofmomen
tumpx ,pY , andpz . In the case of the lantern problem and 
taking all supports to lie in the xz plane, only the x and the z 
components of momentum are of interest, i.e., only the x
and z-momentum current densities are nonzero. Accord
ingly, two momentum flow diagrams can be sketched for 
this problem (Fig. 8). The current str.engths Ix or Iz asso
ciated with the flow of x and z momentum, respectively, 
can be obtained, for ex1,tmple, from J'.ig. 4: The strength of 
the x-momentum current in each of the three cables l, 2, or 
3 is equal to the magnitudeofthex componentix(ll, Ix (2), 
Ix(3) of the vector 1(1), 1(2), or 1(3), respectively. An analo
gous statement holds for the strength of the z-momentum 
current in each cable. The orientation offlow in each case is 
obtained from the rule in Sec. IV. 

It is obvious from Fig. 8(b) that z momentum continues 
to flow from the lantern through the grav~tational field to: 
the earth. This has been suggested by the two do.tte'd lines in 
the figure. The exact distribution of stresses within the gra
vitational field follows directly from a metric theory3 of 
gravity and can be shown in the weak-field limit to have the 
same form (with opposite overall sign) as the familiar M~x~ 
well's Stress Tensor for a pure electric or magnetic field. 4 

Details of the flow of momentum through the gravitational 
field will be discussed in a later publication dealing with 
momentum currents in fields. 

VI. MOMENTUM CURRENTS IN THE BEAM OF A 
CRANE 

A somewhat more complicated example of a static struc
ture is the beam of a crane [Fig. 9(a)). In the usual presenta
tion of this problem, the mass m hanging from the end of 
the beam is given and one is asked to calculate the forces in 
the various supports under the assumption that there is no 

F 
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11 
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a 
m 

Fig. 9. (a) Illustration of the beam of a crane with an object of mass m 
suspended from the beam by a cable labeled I. The individual supports of 
the beam are labeled 2-11 and the junctions are labeled A-F. (b) Momen
tum current polygons sketched at each junction of the beam in Fig. 9 (a). 
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bending, i.e., each beam member is under compression or 
tension only. The solution to this problem is arrived at by 
repeated applications of a free-body diagram at each junc
tion. 

In the momentum current picture, the solution is again 
formally identical with the traditional one. Only the inter
pretation is different. The solution, i.e., the magnitude of 
the momentum currents I(i) in each of the supports 
i = 1,2,. . ., 11, is obtained by successive application of the 
Junction Theorem for Momentum Currents. A momen
tum current triangle or quadrangle is constructed at each 
junction beginning at junction A and proceeding from 
right to left from one junction to the next. 

The construction is illustrated in Fig. 9(b). The number 
(i) on each momentum current vector I(i) labels the support 
in which the current flows. Each number (except 11) par
ticipates in two momentum current polygons since each 
support has two junctions. The two momentum current 
vectors of each pair have opposite directions since the junc
tion to which each member of the pair are referred are at 
opposite ends of the corresponding support. 

Let us now consider the momentum flow diagrams. We 
begin with the z-momentum current. We know that the z 
component of each j, field line is oriented in the ( - ) z 
direction in every support under tension and in the ( + ) z 
direction in every support under compression. This means 
that the j, field lines point vertically downward from junc
tion A in Fig. 9(a) through the cable labeled 1 and into the 
suspended mass. These field lines must flow into the junc
tion along one or both of the supports 2 or 3. Since I, and, 
thus, j, vanish in all the horizontal supports, the j, field 
lines can only be sketched in the diagonal support 2. Con
tinuing this line ofreasoning successively at junctions B, C, 
D, E, and F, we arrive at the flow diagram shown in Fig. 
lO(a). Since there are no forks in the j, field lines, the z
momentum current must have the same magnitude in all 
the diagonal supports. 

b 

I 
I 
I 

l_j_l 
I I 
I I 
L __ J 

Fig. IO. Flow diagrams for the How of momentum throughout the beam of 
Fig. 9. Because of the angles involved, namely 45', the same current values 
are associated with all How lines. (a) Flow of z momentum. (b) Flow of x 

momentum. 
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Referring back to Fig. 9(b) and applying the rule from 
Sec. III above, the state of stress (tension or compression) 
can be read from the direction of the current vectors I(i) at 
each junction (i). In particular, one sees that the upper hori
zontal supports are all under tension whereas the lower 
horizontal supports are all under compression. According
ly the field lines of the x-momentum current density are 
oriented in the ( - ) x direction in the upper supports and in 
the ( + ) x direction in the lower supports. Still remaining 
to be determined for a full description of the momentum 
flow throughout the beam is the specification of the x-mo
mentum current in the diagonal supports. The direction of 
flow can be inferred from the rule of Sec. IV, the magnitude 
ofthex component of the momentum current vector can be 
read from the momentum current polygons in Fig. 9(b). 
The complete result for the flow of x momentum through
out the beam is given by the flow diagram in Fig. lO(b). 

The x momentum flows throughout the beam in a series 
of current loops, each of which is closed in the overall sup
port of the crane at the left of the beam. The x-momentum 
currents are "induced" throughout the beam so that the z
momentum currents caused by the hanging object can flow 
in the x direction from the support at the left to the weight 
hanging at the right end of the beam. 

VII. EXTENSION TO PROBLEMS WITH TORQUE 

Although only a certain class of static problems have 
been treated here, the extension of these ideas to general 
problems is straightforward. In such cases, an additional 
set of conditions analogous to (3) and of the form 

N 

IIL (i) =0 ( 11) 
i= 1 

must be considered. In ( 11 ), the symbol IL (i) refers to the 
flow of angular momentum through channel (i). Equation 
( 11) is actually a "Junction Theorem for Angular Momen
tum Currents." Traditionally, an angular momentum cur
rent is referred to as a torque. The conceptual treatment of 
angular momentum currents is given in detail elsewhere. 5 

VIII. BENDING BEAMS 

The beam of a crane represents a simplified model of a 
solid, homogeneous beam. Accordingly, the stresses within 
a solid beam supporting a heavy object can be understood 
in a way similar to that by which the stresses within the 
beam of a crane were understood above. Once again, z mo-

Fig. 11. Illustration of the x-momentum current density within a solid, 
homogeneous beam supporting a weight at one end. 

F. Herrmann and G. B. Schmid 151 



Fig. 12. Example to illustrate the direction of the momentum flow 
through a bending rod: A wagon is being accelerated to the right by sweep
ing it along with a rod from the side. 

mentum must flow horizontally from the support at the left 
of the beam suspended weight and, as before, this is only 
possible if x-momentum current loops are induced 
throughout the beam (Fig. 11 ). The result is that the upper 
side of the beam is under tension and the lower side of the 
beam is under compression. These stresses increase in mag
nitude proceeding from right to left within the beam. The 
jx field lines running perpendicular to the x axis corre
spond to torque in the beam. This is easy to understand 
from the example in Fig. 12. There, a wagon is being accel
erated to the right by sweeping it along with a rod from the 
side. The x-momentum flows perpendicular to the x axis in 
the positivey direction through the rod and into the wagon. 
This flow of momentum is evidenced by bending in the rod. 

IX. CONCLUSIONS 

The purpose of this paper is to present an alternative 
1pproach to statics problems and their solutions with the 
lielp of momentum currents. 

2 Am. J. Phys. 52 (2), February 1984 

Handling statics problems in the momentum current 
picture immediately displays their relationship to analo
gous problems in electrical network theory. This uncovers 
a structural relationship between the role of electric charge 
in the theory of electricity and the role of momentum in a 
local-causes approach to mechanics. For example, it has 
been shown that the familiar method for the solution of 
statics problems in terms of free-body diagrams is equiva
lent to the use of a junction rule for momentum currents. 

Another advantage of the momentum current picture is 
that it immediately leads to the question of the paths along 
which momentum is flowing, i.e., to the question of the 
momentum current density distribution, within the consid
ered object. This question opens up the way to a complete 
solution of the elastic properties of the considered object in 
terms of the momentum current density tensor. However, 
the momentum current picture also allows for a less ex
haustive solution in terms of momentum flow diagrams. 

An approach to statics with the help of momentum cur
rents provides a simple, pictorial representation of the qis
tribution of stresses within a continuous medium, for ex
ample, within a macroscopic body or even the 
electromagnetic field, 4 an insight which is otherwise very 
difficult to gain from the usual (highly mathematical) ap
proaches to the theory of elasticity. 
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