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The stability of the nuclear fusion reaction in a star is due to the negative specific heat of the system. 
Examining the literature one gets the impression that this phenomenon results from a complicated 
interplay of thc various pertinent field variables. We introduce a simple model system, which 
displays the samc behavior as a star and which can be treated quantitatively without solving any 
differential equation. © 1997 American A~sociation of Physics Teachers. 

1. INTRODUCTION 

The development of life on the earth was possible because 
the sun has been shining steadily and regularly for billions of 
years. From the viewpoint of physics, this behavior of the 
sun is rather strange. All nuclear fuel, i.e., hydrogen, is 
stockpiled within the sun. When comparing the reaction in 
the sun with a terrestrial combustion, it would correspond to 

\.._...- a stove that has been fed with the fuel and oxygen reserve for 
its whole lifetime-indecd an explosive rnix. One equally 
rnight compare the sun with the reactor of a nuclear power 
plant. As a matter of fact, the nuclear fuel for several years is 
charged into the reactor all at once. However, the reactor is 
equipped with control rods which are part of an active feed
back system that guarantees a constant reaction rate. 

But who takes care that the reactions in the sun or in any 
other sunlike star are running so steadily? What feedback 
mechanisms prevent the sun from exploding like a gigantic 
hydrogen bomb? lt is due to what sometimes is referred to as 
a "negative specific heat." 1

-
4 This term means !hat a sys

tem's temperature decreases when heal, i.e., energy and en
tropy, is supplied to it. At the same time, the volume of the 
system increases. Now, if the energy production rate makes 
an excursion toward higher values, the temperature will de
crease and thus the reaction will slow down. lf the energy 
production rate deviates toward lower values, the tempera
ture will increase and thc reaction rate will again be cor
rected. 

When consulting a typical textbook about astrophysics, 
one gets the impression that it is not easy to understand this 

292 Am. J. Phys. 65 (4), April 1997 

behavior. To describe the star, several variables are choscn: 
temperature, pressure, density, energy production rate, lurni
nosity ( =energy ftow ), opacity and mass. The following 
Jaws are needed, which relate these variables to one another: 
the perfect gas law, the law of gravitation, conservation laws 
of mass and energy, the condition for hydrostatic equilibrium 
and the law of Stefan and Boltzmann.1- 6 Moreover, some 
approximations are needed and some adaptable parameters 
are introduced. All this is put into the mathematical mill. The 
result is a comprehensive descriplion of thc mechanics and 
thermodynamics of the star. 

According to these derivations, the stability of a star 
seems to be the result of a complicated interplay of many 
variables, and related to the particular distribution of the val
ues of these variables as a function of r, the distance from 
the center of the star. Such a calculation, which takes into 
account the actual constitutive relations, is indispensable 
when numerical results, or at least orders of magnitude, are 
needed. But when trying to understand the underlying phys
ics, this may be inappropriate. 1 n order to understand a phe
nomenon it is best to consider the simplest conditions under 
which it can occur. Tn this way one doesn't only Jeam what a 
phenomenon depends on, but also-just as important-what 
it does not depend on. 

The complexity of the textbook derivations has frequently 
been deplored. Celnikier writes in the introduction to his 
article:7 " ... analytical analyses are often obscure with little 
obvious relevance to real stars, while numerical models of 
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1 
energy and entropy 

Fig. 1. Model of a \tar. Thc cquilibrium position of the piston depcnd~ on 
thc energy content of thc gas. \\'hen supplying cncrgy (and entropy) to the 
ga~ lhc piston movcs to the right, i.e., lhc volume 1ncreases. and the tem
pcrature or the gas dccrea,es. 

realistic objects are so complicated and so full of parametcrs 
that the physical basis on which thcy are built oftcn disap
pears from sight.'' 

ln Refs. 7-11 several valuable altcmattves are suggestcd. 
But since the authors are primarily intcrested in stellar struc
ture, the question of stellar stability appears to bc linked to 
several other problcms. The derivations proposed in Refs. 
7- 1 1 are still too complicated for somebody who wants no 
morc than a simple answer to thc simple question of why a 
star is so stable. 

That is why wc asked the follov„ mg questions: lsn' t lt 

possible to understand the negative spec1fic heat of the sun 
without considcring field variables? lsn' t it possible to ob
serve the same bchavior in a homogencous system? lsn't it 
possible to understand the behavior of a star without solving 
a system of four differential equations? Thc answer we found 
is: Yes, it is. 

In Sec. IT a simple laboratory model of the sun will be 
introduced. This model system can be trcated quantitatively 
with only some simple algebra. Just as the sun, the modcl 
system's temperature <lecreases when energy and entropy arc 
supplied to it. In Sec. TIT the energy and entropy balanccs of 
our model star are discussed. 

II. OUR LA BORA TORY SUN 

A. Description of the model 

Figure 1 shows our model star. Naturally, we did not try to 
build it in reality. lt would be difficult to get it to work 
because of the friction of the piston and bccause of heat 
losses of the gas in the cylinder. We will a-;sume the gas to 
be ideal and will invoke standard ideal-gas results. 

How does the model work? Whereas in a real star the gas 
is held together by the gravitational field, the gas in our 
model star is held together by a cylindrical container with a 
piston. 

We a<;Sume that we can control the heat ftow, i.e., the flow 
of energy and entropy. into or out of the gas. When the gas i„ 
heated. the energy ftow P entering the gas is related to the 
entropy ftow /, entcring it by12

•
13 

P=T/5 • 
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As long as energy is ftowing into the gas in the form of heat, 
another energy current is leaving it via the piston. The in
coming entropy. on the contrary, remains stockpiled within 
the gas. 

Two forces act on the piston: the force F 1 (x) of the gas 
and the force F2(x) of the weight-and-pulley arrangemcnt on 
the right of Fig. l, where x is thc length of the column of gas. 

By appropriately shaping the groove on which the string is 
winding or unwinding, a particular force law F2(x) can be 
realized. 1

.t We choose the force law to be 

C2 
F2(x) = - <>· 

X 

where C2 is a poi.itive constant and 

l <a< 'Y· ( 1) 

Here. 'Y is the adiabatic exponcnt of the gas. 

B. The mcchanical equilibrium of the system 

We be_gin by discussing the mcchanical stability of the 
system. thcrefore, for the momcnt. wc prevent any hcat ex
change of thc gas. Thus, the entropy of the gas is held con
stant and thc p - V relationship for thc gas is 

pVY=const. 

With F 1 ocp and V:xx we get thc forcc law of the gas 

c, 
F 1(x)= -:y. 

X 

where C 1 1s a positive constant depending on the entropy 
content of the gas. 

The condition for mechanical equilibrium of the p1ston 

. C 1 C2 
F(xo) = /< 1(xo) + F2(xo) = -:y- « = 0 

Xo i:o 
(2) 

can be fultilled, whatever the values of C , C 2 • a and y. 
To show that this is a stable equ1hbnum. we calculate the 

derivative of F( t) at x = x0 , 

dF(x)1 C 1 C2 C 1 
-d- =- - 'Y -:y:t + a ~ = Y=T ( - y+ er). 

x ·'o Xo xo Xo 

In the second step, Eq. (2) has bcen used. 
Since a< y, lt follows that 

dF<x>I -- < 0 dx · 
•o 

i.e., for a small deviation from the equilibrium position the 
system will be driven back to .\ 0 . 

C. The behavior of the system undcr heat exchangc 

When supplymg heal to, or extractmg it from our gas. the 
piston will move but always remain in states of mechanical 
equilibrium. Let us calculate the p - V rclationship of thc gas 
for these states. With 

we get 
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states of the model system 

V 

Fig. 2. The bold curve represents the stahle states of the model system. 
When following this curve from smaller to grcater volumes, the curve in
tcrsects adiabats ( =isentrops) belonging to increasing entropy. 

and with F 1cxp and Vixx, it follows that 

c 
p(V}= V'" 

where C is a constant. The exponent a lies between that of 
an adiabat and an isotherm. Such a relationship is called a 
polytrope. Let us remember that it represents states of me
chanical equilibrium that are distinguished by different en
tropy contents of the gas. The system is running through 
these states when heat is supplied to or extracted from the 
gas. These states are shown as bold lines in the p-V dia
grams of Figs. 2 and 3. 

Figure 2 shows these states together with a series of adia
bats. lt is seen that, when following the p- V curve of our 
model sun from smaller to greater volumes, the lines of con
stant entropy, which it intersects, belong to increasing en
tropy. Thus, when supplying entropy to the gas, the volume 
increases. Since the entropy supply is related to a heat sup
ply, we can conclude: When heat is supplied to the gas its 
volume increases. 

Figure 3 shows the p- V curve of our gas together with a 
series of isotherms. When moving on this curve toward 

p 

V 

Fig. 3. The hold curvc rcpresents the stahle statcs of the mo<lel System. 
When following this curve from smaller to greater volumes, the curve in
tcrsects isotherms belonging to decreasing temperatures. 
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higher volumes, we intersect isotherms of dccreasing tem
perature. In other words: When heat is supplied to the gas its 
temperature decreases. 

Thus our model system qualitatively behaves li.ke a star. 
Notice that in the experiments we are doing with our model 
system, all of the processes are reversible. In a real star there 
are highly irreversible proccsses going on: in particular, the 
fusion reaction itself and the heat transfer from the reaction 
zone outwards. As our modeling shows, however, these irre
versibilities are not related to the stability of the star. 

In the following section we will discuss the energy and the 
entropy balance of the model and compare it with that of a 
real star. 

III. THE ENERGY AND THE ENTROPY BALANCE 

A. The energy balance 

Our system consists of two interacting subsystems, both of 
which can store energy: (1) the ga'i,. lts energy is called in
temal e~rgy; and (2) the weight-and-pulley arrangement on 
the right. 

Now, when energy is supplied to the gas in the form of 
heat, we cannot conclude that this energy rcmains in the gas, 
since the subsystem "gas" is interacting with the subsystem 
"weight-and-pulley." Indeed, we have seen that when sup
plying heat to the gas, its temperature decreases. Since for an 
ideal gas the intemal energy depends only on the tempera
ture, supplying heat to the gas causes its internal energy to 
decrease. In other words, we supply energy to the gas, but its 
energy content decreases. Although it sounds strange, this is 
not paradoxical, since the gas is connected to our second 
subsystem. We thus conclude that when supplying a certain 
amount of energy to the gas, more than this amount is passed 
over to the weight-and-pulley subsystem. 

A similar process is going on in a star. A star also can be 
decomposed into two interacting subsystems. One is the 
star's matter, or the "gas," the other is its gravitational 
"field." Now imagine, for a while, that we are able to con
trol the energy input of the star from the fusion reaction and 
the energy output via the radiation. Let us suppress the en
ergy output and consider what happcns with the energy sup
plied by the nuclear fusion reaction. 

The energy of fusion is first supplied to the gas, and one 
might expect that the energy of the gas will increase. How
ever, this is not what actually happens. When supplying a 
certain amount of energy to the gas, more than this amount is 
passed over to the other subsystem, the gravitational field, 
leading to an expansion of the star. In fact, the amount for
warded to the gravitational field is just twice that supplied to 
the gas in the first place, as follows from the virial theorem. 

We are accustomed to observing that the amount of any 
conserved quantity increases when we add a certain amount 
of it. In order to show our students that this is not necessarily 
so, we perform an experiment which is as simple as it is nice 
(see Fig. 4). Two containers of about 1 liter are connected 
via a flexible tube. 15 One of them is suspended by a soft 
spring. The water level is the same in both containers. We 
hide from the eyes of the students the right container and the 
spring by means of a piece of cardboard. The demonstration 
consists in pouring water into the container which is visible 
to the students. Surprisingly, the water level will go down 
instead of up. We then take the cardboard away and discuss 
how the device works. 
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Fig. 4. The container on thc right is hiddcn from the students. When pouring 
watcr into the container at the left, the water level will decrease. 

B. The entropy balance 

The entropy balance is simpler since we have to consider 
only one of the two subsystems. Neither thc weight-and
pulley subsystem in our model nor the gravitational field in 
the real star can store entropy. 

When discussing the entropy balance of a gas, we have to 
take into account that the entropy depends on two variables: 
the volume and the temperature of the gas. Tue greater the 
volume and the higher the temperature of a gas, the more 
entropy it contains. (Both dependencies are logarithmic. 16 

From statistical physics it is easily understood that the en
tropy increases with both the volume and the temperature: 
An increase of the volume as weil as an increase of the 
temperature cause the occupied phase space to become 
!arger.) Thus, when asking for the entropy of a gas one has to 
consider both its volume and its temperature. In the preced
ing section we have seen, that, when supplying entropy to 
the gas; its volume increases; and its temperature decreases. 

Under "normal" conditions, i.e„ when the volume is kept 
constant, an entropy supply causes the temperature to rise. 
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The fact that the temperature decreases when entropy is sup-' 
plied to the system shows that the volume increase is great 
enough to overcompensate the influence of the entropy sup
ply on the temperature. This holds for the gas in our model 
system as weil as for the gas of a star. In both cases, it is 
made possible by the fact that the volume increase becomes 
easier the greater the volume already is. In our model system 
this is obtained by means of the decreasing diameter of the 
pulley. ln the case of a star, it is due to the l/r2 dependence 
of the gravitational force. 

IV. CONCLUSION 

The stability of the nuclear burning in a star is due to a 
feedback mechanism based on the negative specific heat of 
the star. This negative specific heat can be realized by means 
of a simple model system. With such a model, the mechanics 
and thermodynamics of a star can be understood qualita
ti vcly without any recourse to field differential equations. 
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