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Understanding the discrete spectrum of light emitting atoms had been the primary
motivation for developing a theory beyond classical mechanics and electrodynam-
ics. It was far from being likely that Planck’s constant h which he introduced
to explain the continuous spectrum of light emitting incandescent “black bodies”
could have anything to do with those discrete spectra. For this reason it came
much as a surprise when Niels Bohr [1] could explain the well studied spectrum of
the hydrogen atom by requiring the associated electron to orbit around the nucleus
on concentric circles where its angular momentum L equals integer multiples of
Planck’s constant h: L = nh and n = 1, 2, . . .. In each of the orbitals the electron
was considered to be in a stable state, but it was allowed to jump spontaneously to
another orbital of lower energy and convert the energy difference into light. Those
“quantum jumps” still belong to the vocabulary of present-day quantum mechanics
(see e. g.[2]) although their existence lacks any foundation as we shall demonstrate.
In Bohr’s theory the electron always possesses a non-vanishing angular momentum
so that the centrifugal force keeps it well separated from the nucleus and thereby
ensures a well defined size of the hydrogen atom for n = 1, its state of lowest energy.
In reality, i. e. according to our approach, the particle under study, the electron,
is driven by the combined action of the static classical Coulomb force exercised
by the nucleus and by the stochastic forces of the vacuum. As a consequence, its
probability amplitude obeys the Schrödinger equation, the time-independent so-
lutions of which, ψ̂nlm(r), are characterized by integer quantum numbers n, l,m
where r is referenced to the position of the nucleus. The latter is considered to be
a clamped point charge for simplicity. The state ψ̂100(r) refers to the groundstate
where 〈L〉 = 0, distinctly different from Bohr’s theory. Only excited states (n >1)
for which l equals |m| display a toroidal probability density and resemble diffuse
circular Bohr orbitals.
The energies that are associated with the eigensolutions ψ̂nlm(r) are given by

Enlm = −R

n2
where n > l + |m| l = 0, 1, 2, . . . , m = −l, . . . 0 . . .+ l (1)

and

R = 1
2
α2m0 c

2 =Rydberg constant ; R = 13.6059 eV .

Here m0 denotes the electron’s rest mass, c the velocity of light in vacuo and α the
fine structure constant:

α =
e2

4πε0 h̄c
=

1

137.036
; h̄ =

h

2π
.

The quantity ε0 represents the permittivity of the vacuum and e is the elementary
charge.
It is one of the fundamental credos of conventional quantum mechanics that eigen-
values of the energy as in (1) constitute results of appropriate measurements, more
precisely, as Mermin [7] states in a widely recognized article:
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“...quantum mechanics requires that the result of measuring an observable be an
eigenvalue of the corresponding Hermitian operator.....”

Although this statement belongs to the seemingly ineredicable rituals in teaching
quantum mechanics, it is not even wrong but rather void of meaning. Of course,
there has always been the discrete hydrogen spectrum in the back of the minds
of the founding fathers, and that spectrum seemed to be clearly some map of the
eigenvalues (1). But in actual fact one commonly measures the wave length of
the emitted light by a spectrometer about 1010 atomic diameters away from the
emitter. When the packet of the light wave enters the “measurement process”,
i e. the spectrometer, the atom has long left its original state. The phraseology
“measuring eigenvalues” invites the impression as if one were dealing with some-
thing like measuring somebody’s collar size. Moreover, as we shall show, in the
emission process the energy of the atom attains all values between the eigenvalues
that are involved in the transition, but the frequency and the measured associated
wavelength of the emitted light remain constant.

Before I go into the details of my approach to spontaneous light emission, I want
to emphasize that its basic idea is almost identical with what has been popular-
ized by E. T. Jaynes already in 1963 [3] and the following years [4], [5] under the
name “neoclasical theory (NCT)”. This name is incorrect and therefore completely
misleading. In my theory (and in Jaynes’ theory as well) the electromagnetic field
is generated by an oscillating electronic current density which sets up a vector po-
tential and this, in turn, appears in the kinetic energy operator of the electronic
Hamiltonian. What - in the world - should be considered “neoclassical” in using
this interrelation?
The preseent theory of spontaneous light emission is developed within the frame-
work that we have elaborated in our article on “Stochastic Foundation of Quantum
Mechanics and the Origin of Particle Spin” [6].

Our point of departure from the standard approach consists in questioning the
assumption that eigenstates “can be prepared”. A thoughtless assumption! How
should such a “preparation” be achieved? By definition, an eigenstate is associated
with zero variance of its energy. Hence, because of

∆E∆t ≈ h̄ where ∆E =

√
(E − Enlm)2 (2)

the preparation time ∆t is infinite for an eigenstate.1 That is, in reality, an excited
state can only be a solution to the time-dependent Schrödinger equation and
hence may be cast as

ψ(r, t) =
∑

n, l,m

cnlm ψ̂nlm(r) e
−i

Enlm
h̄

t (3)

where
∫
ψ̂∗
n′l′m′(r) ψ̂nlm(r) d

3r = δn′n δl′l δm′m (4)

1A similar situation occurs if one wants to excite a superconducting cavity in one of its modes.

If the cavity can lose energy to the outside at a small rate it behaves as if it were slightly

attenuated. The time it takes to arrive at a stationary state grows longer and longer the weaker

the energy loss becomes. The excitation time tends to infinity as the loss rate tends to zero.
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and because of
∫

|ψ(r, t)|2 d3r = 1 one has
∑

n, l,m

|cnlm|2 = 1 . (5)

Each term under the sum in Eq.(3) satiesfies individually the time-dependent
Schrödinger equation of the hydrogen electron since by definition

Ĥψ̂nlm(r) = Enlm ψ̂nlm(r) where Ĥ =
p̂ 2

2m0

− e2

4πε0 r
and p̂ = −ih̄∇ . (6)

A realistic “eigenstate” is characterized by the property that the square modulus of
one the coefficients cnlm in Eq.(3) is close to unity, that of the others correspondingly
small.
In the following we consider the situation in which the hydrogen atom has been
excited from the ground state 1s to the state 2p where m = 0. The excitation may
have been caused by absorbing linearly polarized light. As stated above, it is, as
a matter of fact, impossible that the atom in the excitation process really ends up
in the eigenstate 2p. Its state will rather have the form

ψ(r, t) = c0 ψ̂1s(r) e
−i

E1s
h̄

t + c1 ψ̂2p(r) e
−i

E2p

h̄
t where 0 < |c0| ≪ |c1| < 1 . (7)

Using Eq.(7) we obtain
∫
ψ∗(r, t) Ĥ ψ(r, t) d3r = |c1|2︸︷︷︸

=1−|c0|2

E2p + |c0|2E1s that is E = E2p − Ẽ |c0|2 (8)

where

Ẽ = E2p − E1s . (9)

The expression Ẽ |c0|2 represents obviously the uncertainty ∆E with which the
2p-state has been “prepared”.
From Eq.(7) we may form the electronic charge density ρ(r, t) = e |ψ(r, t)|2 which
we cast as

ρ(r, t) = ρ0(r) + ρ̃(r, t) (10)

where

ρ0(r) = e
[
|c0|2 ψ̂2

1s(r) + |c1|2 ψ̂2
2p(r)

]
(11)

and

ρ̃(r, t) = |c∗0 c1| e ψ̂1s(r) ψ̂2p(r)

[
e
i
[

E2p−E1s

h̄
t+ϕ

]

+ e
−i

[

E2p−E1s

h̄
+ϕ

]

]
. (12)

where ϕ is defined through

c∗0c1 = |c∗0c1| eiϕ . (13)

Here we have exploited the fact that ψ̂1s(r) and ψ̂2p(r) are real-valued functions.
Eq.(10) may hence be rewritten

ρ(r, t) = ρ0(r) + 2 |c∗0 c1| ρ̃0(r) cos(ωt+ ϕ) (14)
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Figure 1: Four snapshots of the color coded density of a H-atom in the transition
2p→1s

where

ρ̃0(r) = e ψ̂1s(r) ψ̂2p(r) and ω =
E2p − E1s

h̄
i. e. h̄ ω = E2p − E1s (15)

The figure above shows four snapshots of the time evolution of ρ(r, t)
As one can see from Eq.(8):

E = |c0|2E1s + |c1|2E2p and 0 ≤ |c0| ; 0 ≤ |c1| |c0|2 + |c1|2 = 1

the energy of the electron can have any value between E2p and E1s. Irrespective
of the value of E its charge density oscillates sharply at ω ! In the following
calculation we shall derive a transition time which the electron takes to change its
state from (7) with 0 < |c0| ≪ |c1| < 1 to a form of ψ(r, t) where |c0| ≈ 1 and
|c1| ≈ 0. This transition time turns out to be of the order of 10−9 s, that is, there
are no quantum jumps!

The function ψ(r, t) defined by Eq.(7) is a solution to the time-dependent Schrödinger
equation

Ĥψ(r, t) = i h̄
∂

∂t
ψ(r, t) (16)

only as long as the coefficients c0, c1 are constant. However, even when c0 is very
small compared to unity, ρ(r, t) oscillates at the frequency ω and thus gives rise to
the emission of an electromagnetic wave. The latter is polarized in the direction of
the quantization axis of ψ̂2p(r) which also defines the symmetry axis of ψ̂1s(r) ψ̂2p(r)
in Eq.(15). As the atom loses energy in building up the electromagnetic wave, E
in Eq.(8) decreases, and hence c0 must now increase as a function of time. This
is a consequence of the fact that the radiation field acts back on the atom, and
therefore the Hamiltonion in Eq.(16) is now modified:

Ĥ ′ψ(r, t) = i h̄
∂

∂t
ψ(r, t) where Ĥ ′ =

(p̂− eA(r, t))2

2m0

− e2

4πε0 r
(17)

with A(r, t) denoting the vector potential of the radiation field. We mention here
only in passing that a quantization of the radiation field does not change the line
of argument we shall pursue in the following. This will be outlined at the end of
this section.
To obtain A(r, t) we first determine the current density

j(r, t) =
e h̄

2im0

[ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)] . (18)

On inserting ψ(r, t) from Eq.(7) the current density takes the form

j(r, t) =
e h̄

m0

|c∗0 c1| [ψ̂1s(r)∇ ψ̂2p(r)− ψ̂2p(r)∇ ψ̂1s(r)] sin(ω t+ ϕ) . (19)
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The vector potential A(r, t) and j(r, t) are interconnected by

A(r, t) =
µ0

4π

∫
j(r′, t− |r′−r|

c
)

|r′ − r| d3r′ where µ0 =
1

ε0 c2
. (20)

Because of Eq.(18) A(r, t) is a functional of ψ(r, t). It follows then from inspection
of Eq.(17) that the modified Schrödinger equation (17) constitutes now a non-

linear partial differential equation since the Hamiltonian Ĥ ′ depends on ψ(r, t).
Below we shall derive a detailed solution to this equation. If one is not interested
in the details of the time dependence one can take a short-cut:
First we give the expressions

ψ̂1s(r)∇ ψ̂2p(r) and ψ̂2p(r)∇ ψ̂1s(r)

a different form by using the identity (which is just an application of the chain
rule):

[Ĥ r − r Ĥ] ψ̂(r) = −i h̄
m0

p̂ ψ̂(r) = − h̄2

m0

∇ ψ̂(r) . (21)

This yields

ψ̂1s(r)∇ ψ̂2p(r) =
m0

h̄2
[ψ̂1s(r) r Ĥ ψ̂2p(r)− ψ̂1s(r) Ĥ r ψ̂2p(r)]

and
ψ̂2p(r)∇ ψ̂1s(r) =

m0

h̄2
[ψ̂2p(r) r Ĥ ψ̂1s(r)− ψ̂2p(r) Ĥ r ψ̂1s(r)] .

Forming the integral of Eq.(19), exploiting the hermitecity of Ĥ, using Eq.(6) and
h̄ ω = E2p − E1s we thus obtain

I(t) ez = 2 |c∗0 c1| e ω
∫
ψ̂1s(r) r ψ̂2p(r) d

3r sin(ω t+ ϕ) where ez||z − axis . (22)

The quantity I(t) denotes the alternating current that is set up in the atom as
a result of c0 not being zero. The quantization axis of ψ̂2p(r) is taken along the
z-axis. We may rewrite the above integral

∫
ψ̂1s(r) r ψ̂2p(r) d

3r =

∫
ρdipole(r) r d

3r = r

where we have expressed the fact that ψ̂1s(r) ψ̂2p(r) represents a dipole-type prob-
ability density. Hence, Eq.(22) can be cast as

I(t) ez = − d

dt
p(t) where p(t) = g(t) |e| r cosω t and g(t) = 2 |c∗0(t) c1(t)| .

As the emission of the electromagnetic wave proceeds, the coefficient c0 becomes
larger and will finally attain its largest value 1 at the end of the transition. Accord-
ing to Eq.(3) it will be equal to 1√

2
in the middle of the transition. The coefficient

c1 changes in reverse since the sum of the square of the coefficients must be unity
at any time. Hence, in the middle of the transition the function g(t) defined above
attains its maximum value 1 and drops asymptotically to zero on either side. To
serve the purpose of the present short-cut, we approximate the actually bell-shape
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time-dependence of g(t) by a rectangle of width τ̂ and height unity.
We now invoke Hertz’s result on the density S(r, t) of the energy flow from an
oscillating dipole:

S(r, θ, t) =
1

16π2 ε0 c3
sin2 θ

r2

[
d2

dt2
p(t)

]2

where θ is the angle that r encloses with the dipole axis.
Forming a surface integral with S(r, θ, t) over a concentric sphere of radius r and
averaging over one oscillation period one arrives at

S(t) = [g(t)]2
e2 ω4

6π ε0 c3
|pn′n|2 where n′ = 1s ;n = 2p

and

pn′n =

∫
ψ̂n′(r) r ψ̂n(r) d

3r ; [g(t)]2 =

{
1 for |t| ≤ τ̂ /2
0 for |t| > τ̂/2

. (23)

Integration of S(t) over the transition time τ̂ must yield E2p − E1s = h̄ ω :

∫ + τ̂
2

− τ̂
2

S(t) dt = h̄ ω =
e2 ω4

6π ε0 c3
|pn′n|2τ̂ .

From this we obtain an expression for the inverse of the transition time

1
τ̂
=

e2 ω3

6π ε0 c3 h̄
|pn′n|2 or 1

τ̂
= α

2ω3

3 c2
|pn′n|2 where α =

e2

4πε0 h̄
(24)

in agreement with the result of the standard calculation (s. e. g. [9]) which is based
on a remarkably different concept. It should be observed, however, that this cal-
culation yields an expression for the transition rate 1

τ ′
which is identified with

d
dt
|c0|2(t)|t=0 =

2
τ̂
. Hence

1
τ ′
=

e2 ω3

3π ε0 c3 h̄
|pn′n|2 .

It is worth noting that the problem of spontaneous light emission has for the first
time been treated by Fermi [8] in 1927. He chose an approach very similar to ours,
but used the classical expression for the radiation back action ∝ d3

dt3
p which led to

a frequency shift of the emitted light depending on the transition time. However,
this is at variance with the observation.

We now turn back to the problem of calculating the detailed time-dependence of
|c0(t)|2, |c1(t)|2. To this end we first observe that

Ĥ ′ = Ĥ + Ĥint =
(p̂− eA(r, t))2

2m0

− e2

4πε0 r
= Ĥ − e

m0

A(r, t) · p̂+ . . . (25)

where the dots stand for (eA(r,t))2

2m0

which will be neglected for the term linear in
A(r, t). Inserting (25) and ψ(r, t) from (7) into the time-dependent Schrödinger

equation Eq.(17), multiplying this equation by ψ̂2p(r) e
i
E2p

h̄
t or alternatively by

ψ̂1s(r) e
i
E1s
h̄

t and performing a real-space integration one arrives at

ih̄ ċ1 = c0M10 e
iω t + c1M11 (26)

where M10 =

∫
ψ̂2p(r) Ĥint ψ̂1s(r) d

3r and M11 =

∫
ψ̂2p(r) Ĥint ψ̂2p(r) d

3r
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and

Ĥint = i
eh̄

m0

A(r, t) · ∇ . (27)

Analogously we have, in obvious notation

ih̄ ċ0 = c1M01 e
−iω t + c0M00 . (28)

According to Eqs.(19) and (20) one has

A(r, t) = (29)

|c∗0c1|
eh̄

4πε0m0c2

∫
[ψ̂1s(r

′)∇′ψ̂2p(r
′)− ψ̂2p(r

′)∇′ ψ̂1s(r
′)] sin[ω (t− |r−r′|

c
) + ϕ]

|r − r′| d3r′ .

For light frequencies ν = ω
2π

≈ 1015s−1 and |r − r′| <≈ 4 · 10−8cm for points within

the atomic volume we have ω
c
|r − r′| <≈ 10−2, and hence we may approximate:

sin[ω (t− |r−r′|
c

) + ϕ] ≈ sin(ω t+ ϕ)− ω |r−r′|
c

cos(ω t+ ϕ)

Inserting this into Eq.(29) one obtains

A(r, t) = A1(r, t) +A2(r, t) = Â1(r) sin(ω t+ ϕ) + Â2(r) cos(ω t+ ϕ) (30)

where

Â1(r) = |c∗0c1|
eh̄

4πε0m0c2

∫
[ψ̂1s(r

′)∇′ψ̂2p(r
′)− ψ̂2p(r

′)∇′ ψ̂1s(r
′)]

|r − r′| d3r′ (31)

and

Â2(r) = −|c∗0c1|
e h̄ ω

4πε0m0c3

∫
[ψ̂1s(r

′)∇′ψ̂2p(r
′)− ψ̂2p(r

′)∇′ ψ̂1s(r
′)] d3r′ (32)

The integral in Eq.(32) can be rewritten by using the identity (21):

A2(r, t) = A2 cos(ω t+ ϕ) =

−2|c∗0c1|
e ω2

4πε0 c3

∫
ψ̂1s(r

′)r′ ψ̂2p(r
′) d3r′

︸ ︷︷ ︸
=pn′n

cos(ωt+ ϕ) . (33)

We now form the matrix element of Ĥint = i eh̄
m0

A(r, t) · ∇ according to Eq.(26)
using again the identity (21).

M10 =
ih̄

m0

2|c∗0 c1|
e2 ω2

4π ε0 c2
pn′n ·

∫
ψ̂2p∇ ψ̂1s d

3r
︸ ︷︷ ︸

=−ω
m0

h̄
pn′n

cos(ωt+ ϕ) (34)

+
ih̄

m0

∫
ψ̂2p(r)

e

m0

Â1(r) · ∇ ψ̂1s(r) d
3r sin(ω t+ ϕ)
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We multiply Eq.(26) by c∗1 and form the sum with its complex conjugate. The
result may be written:

∂

∂t
|c1(t)|2 = −4γ |c∗0(t)c1(t)|2 cos2(ω t+ ϕ) (35)

+2|c∗0(t)c1(t)|
∫
ψ̂2p(r)

e

m0

Â1(r) · ∇ψ̂1s(r) d
3r cos(ω t+ ϕ) sin(ω t+ ϕ)

+2|c1(t)|2
∫
ψ̂2p(r)

e

m0

Â1(r) · ∇ψ̂2p(r) d
3r sin(ω t+ ϕ)

+2|c1(t)|2
∫
ψ̂2p(r)

e

m0

Â2(r) · ∇ψ̂2p(r) d
3r cos(ω t+ ϕ) .

The quantity γ in the first line of this equation stands for

γ =
e2 ω3

4π ε0 c3 h̄
|pn′n|2 . (36)

We now perform a time average on the right-hand side of Eq.(35) over successive
oscillation periods T = 2π

ω
of the emitted light. Since the emission time τ̂ is many

orders of magnitude larger than T , one may approximate |c0/1(t)| by |c0/1(t̄ν)| where
ν = 1, 2, . . . counts successive oscillation intervals and t̄ν denotes an appropiately
chosen time in the respective interval. On performing the time average all terms
on the right-hand side of Eq.(35) now drop out except for the first one. Hence we
arrive at

∂

∂t
|c1(t)|2 = −2γ |c0(t)|2|c1(t)|2 (37)

where we have used cos2(ω t+ ϕ) = 1
2
with the bar denoting time averaging. We

have, furthermore, replaced the histogram-type functions of time |c0/1(t̄ν)|2 on the
right-hand side by their smooth least mean-square fits.
In complete analogy we obtain

∂

∂t
|c0(t)|2 = 2γ |c0(t)|2|c1(t)|2 . (38)

Since |c0(t)|2 + |c1(t)|2 = 1, the time derivative of this sum must vanish. This is
obviously ensured by the above two coupled equations (37) and (38). It can readily
be verified that their two solutions are

|c0(t)|2 = 1
2
(1 + tanh 2t

τ
) and |c1(t)|2 = 1

2
(1− tanh 2t

τ
) . (39)

On multiplying these two functions one gets

|c0(t)|2|c1(t)|2 = 1
4

1

cosh2 2t
τ

.

From Eq.(37) we have

∂

∂t
|c1(t)|2 = −2γ |c0(t)|2|c1(t)|2 = −1

2
γ

1

cosh2 2t
τ

.
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Figure 2: Optical transition: time-dependence of the “driving force” ∝ A2
2

On the other hand it follows from Eq.(39) on differentiating |c1(t)|2

∂

∂t
|c1(t)|2 = −1

τ

1

cosh2 2t
τ

.

That means, the functions |c1(t)|2 and |c0(t)|2 fulfill Eqs.(37) and (38) if

1
τ
= 1

2
γ =

e2 ω3

8π ε0 c3 h̄
|pn′n|2 .

Comparing this result with our “short-cut calculation” (24) we see that it is 25%
smaller than the latter:

1

τ
= 0.75

1

τ̂
.

This difference originates in the simplification of the time dependence of |c1(t)|2
and |c0(t)|2 in taking the short-cut.
The following figure illustrates the time dependences according to Eq.(39).
We have marked two points A and B on the left-hand side of the curve for |c1(t)|2.
As explained in connection with Eq.(8), the quantity [E2p − E1s] |c0|2 represents

the energy uncertainty with which the state ψ̂2p(r) has been “prepared” as a result
of the finite preparation time ∆t. With the aid of Eq.(2) and |c1(t)|2 = 1− |c0(t)|2
this can be recast

1− |c1(t)|2 =
h̄

[E2p − E1s] ∆t
.

The shorter the excitation time, the more |c1(t)|2 departs from unity. Hence, point
A refers to a longer excitation time than point B. Corresondingly, if the system
has landed in A after the excitation process, it takes a longer time to reach the
transition interval (marked by two vertical dashed lines) than it would take if it
would start at B. One may refer to these residence times prior to emission as “dead
times”. It should be noticed, however, that the “emission time”, limited by the
two vertical dashed lines, remains largely unaffected by the different lengths of the
dead times. That is to say, largely independent of the form of the excitation one
observes a spectral line of a natural width that is only determined by the two states
of the atom under study.
The result obtained above contrasts remarkably with that of Weisskopf and Wigner
[9]. Their article is still considered groundlaying for the theory of spontaneous
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Figure 3: Optical transition between two states: Time dependence of the modulus
square of the two-state related coefficients

light emission. However, these authors arrive at |c1(t)|2 = e−
t

τ ′ which appears to
be plausible, but is inconsistent with a solution to the time-dependent Schrödinger
equation as follows from our derivation.
Another point of misunderstanding concerns “the measurement” of that exponen-
tial decay law e−

t

τ ′ . Clearly, neither |c1(t)|2 nor any related quantity, for example
E = |c0(t)|2E1s + |c1(t)|2E2p, is experimentally accessible in any ways since one
can only detect the light when it has been fully emitted. What is actually done
in the experiments is measuring the time-dependence of the photon-capture rate
at which a photon detector fires after a large number of identical atoms has been
excited by a flash. In the ensuing process the atoms reemit the light spontaneously.
The moment at which the flash is released serves as a reference point with respect
to which the detector records the flow of the incoming photons, and this flow is
exponentially decaying in time. But each atom contributes only one single photon.
Obviously, the photons are emitted at different times from different atoms. What
has the time-dependence of their flow to do with Weisskopf-Wigner’s decay law
which refers to the time evolution of a single atom?
To simplify the following considerations we assume that the spectrum of the flash
is rectangular around the frequency ω0 for which the atom under study would be
completely transferred from its ground state 1s to the excited state 2p if the atom
would be exposed to the associated electromagnetic wave for an infinitely long time.
Hence

h̄ ω0 = E2p − E1s = ∆E and |c1(t)|2 = 1 .

If the atom absorbs a photon of lower frequency from the flash (ω < ω0) it ends up
in a state where |c1(t)|2 is now smaller than unity and we have because of Eq.(8)

h̄∆ω = ∆E [1− |c1(t)|2] which can be recast h̄∆ω = ∆E |c0(t)|2 (40)

with ∆ω denoting ω0 − ω. We temporarily abbreviate 2t
τ
into x and observe

tanh x =
ex − e−x

ex + e−x
≈ −1 + e2x if x≪ −1 and hence 1

2
(1 + tanh x) ≈ 1

2
e2x .

Eq.(40) may therefore be rewritten

h̄∆ω = ∆E
2
e

4t
τ . (41)

10



Here t≪ −τ is referenced to the middle of the transition interval. If one wants to
find the position of some point like A or B in the above figure for some atom that
has absorbed a photon of energy h̄(ω0−∆ω), one has to insert the particular ∆ω in
Eq.(41) and one obtains the associated t that gives the distance of that point from
the middle of the transition interval. If the spectrum of the flash is rectangular
the probability that an atom absorbs such a photon is equal for all frequencies of
the spectrum. That means that the length of the dead times t associated with the
various values of ∆ω are ordered in an exponential fashion. As follows from Eq.(41)
the decay constant in that exponential function is given by the transition time τ .
Deviations from that exponential form are connected with a departure from the
rectangular form of the flash spectrum.
As for the validity of the above assumption x ≪ −1, that is −t ≫ τ , one has to
keep in mind that there are experimental limitations which allow monitoring the
incoming photons only many transition times after the flash.

In concluding this section we pick up on a statement made in the beginning that
the above considerations are not affected by a quantization of the emitted electro-
magnetic wave.
We recall from classical electrodynamics that the energy E of an electromagnetic
field in empty space is given by

E = 1
2

∫

V

[
ε0E

2(r, t) + µ0H
2(r, t)

]
d3r (42)

where V stands for the volume under study and E and H denote the electric and
magnetic field, respectively. Using

E(r, t) = −Ȧ(r, t) (43)

and
B(r, t) = µ0 H(r, t) = ∇×A(r, t)

one may express

E(r, t) = i
∑

k,σ

ωk ~ǫk,σ
[
Ak,σ e

i(k·r−ωkt) − A∗
k,σ e

−i(k·r−ωkt)
]

and
B(r, t) = i

∑

k,σ

k × ~ǫk,σ
[
Ak,σ e

i(k·r−ωkt) − A∗
k,σ e

−i(k·r−ωkt)
]

where we have used an expansion of A(r, t) in terms of plane waves that satisfy
the wave equation for the empty space under study

∆A(r, t)− 1
c2

∂2

∂t2
A(r, t) = 0 ,

and hence

A(r, t) =
∑

k,σ

~ǫk,σ
[
Ak,σ e

i(k·r−ωkt) + A∗
k,σ e

−i(k·r−ωkt)
]

where ωk = c|k| . (44)

Here σ can attain two values σ = ±1 and correspondingly ~ǫk,σ denotes two or-
thogonal unit vectors defining the polarization of the associated plane waves. On
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inserting E(r, t) and B(r, t) into Eq.(42) and performing the real-space integral
one may cast the result as

E = V
∑

k,σ

2ε0 ω
2
kAk,σ A

∗
k,σ . (45)

The following consideration is aimed at clarifying whether the formalism of “quan-
tization” really explains the occurrence of photons or merely describes the experi-
mental findings.
There are three striking experimental facts that make the existence of photons as
particles of the electromagnetic field undeniable

• Planck’s radiation law for a black body

• the observable recoil that a free atom experiences on emitting radiation of a
certain frequency

• the observation that the energy emitted from an atom (or nucleus) is quan-
titatively transferred to an absorber atom (or nucleus) irrespective of the
distance between emitter and absorber

The photoelectric effect cannot be taken as another example of proving the exis-
tence of photons though it is usually quoted to the contrary. The photoelectric
effect merely proves that a charged massive particle exposed to light of a frequency
ω obeys quantum mechanics:
Under the influence of the light acting as a time-dependent perturbation the parti-
cle can only make a transition from its quantum mechanical ground state of energy
E0 to an excited state of energy E1 = E0 + h̄ ω. The transition rate according to
Fermi’s Golden Rule is

P10 =
2π
h̄
|M10|2 δ(E1 − E0 − h̄ω)

where M10 is the Matrixelement of the perturbation. Any perturbation of classical
origin which oscillates at a frequency ω would lead to the same result. Hence,
the energy reservoir from which the perturbation is fed, may contain a continuous
amount of energy, but it can lose energy to the electron only in portions h̄ω.

Planck considered a box that consisted of ideally reflecting walls and was filled
with standing electromagnetic waves which are in heat contact with a small grain
of carbon inside the box. That grain serves as a heat bath, which means it possesses
a certain temperature. It is assumed to absorb and reemit electromagnetic waves
such that its own temperature doesn’t change and the system of electromagnetic
waves attains this temperature when equilibrium is established, that is when there
is no net flux of energy between the two systems any more.
The basic idea on which Planck’s law of black body radiation rests is that the
observed freqency dependence of the intensity of the emitted light, its striking
departure from the classical law of Rayleigh and Jeans at high frequencies, can only
be explained if one makes a single, but very fundamental assumption: the energy of
each of the electromagnetic waves consists of an integer number of photons whose
energy is h̄ω if the frequency of the associated wave is ω.
The energy contribution to E in Eq.(45) of a wave

Ak,σ e
i(k·r−ωkt) + A∗

k,σ e
−i(k·r−ωkt) (46)
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is therefore at its n th
k,σ “excitation step” (i. e. when the wave consists of nk,σ pho-

tons)

Ek,σ = nk,σ h̄ωk = 2 ε0 V ω2
kAk,σ A

∗
k,σ where nk,σ = 0, 1, 2 . . . . (47)

In contact with a heat bath (=carbon grain of temperature T) one obtains for the
thermal average energy Ek,σ

Ek,σ =
1

σk,σ

∑

Ek,σ

Ek,σ e−β Ek,σ

where

σk,σ =
∑

Ek,σ

e−β Ek,σ denotes the partition sum and β
def
= 1

kB T
.

Using Eq.(47) one can rewrite the right-hand side

Ek,σ =
h̄ωk

σkσ

∑

nk,σ

nk,σ

[
e−β h̄ωk

]nk . (48)

The sum on the right-hand side has the form

∞∑

n=1

nQn =
d

dQ

∞∑

n=0

Qn =
d

dQ

1

1−Q
=

Q

(1−Q)2
where Q = e−β h̄ωk .

Correspondingly we have

σk =
∑

nk

[
e−β h̄ωk

]nk =
1

1−Q
. Hence Ek,σ = h̄ωk

Q

(1−Q)
,

One can therefore cast the average energy Ek,σ as

Ek,σ ≡ Ek = h̄ωk nk , (49)

where

nk =
1

e
h̄ωk

kB T − 1
. (50)

The total radiation energy in a hollow rectangular box with linear dimensions
L1, L2, L3 and volume V = L1L2L3 is therefore

E =
∑

k,σ

Ek = 2
∑

k

Ek (51)

Each plane wave (46) is subject to boundary conditions at the interior plane surfaces
of the box. As a result, the components kj = kj ej ; j = 1, 2, 3 of the wave vector
k are quantized

kj =

{
(2nj − 1) π

Lj
; nj = 1, 2, 3, . . .

nj
2π
Lj

; nj = 1, 2, 3, . . .
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In any case one has

kj,nj+1 − kj,nj

def
= ∆kj =

2π

Lj

and hence

∆3k
def
= ∆k1 ∆k2 ∆k3 =

2π

L1

2π

L2

2π

L3

=
(2π)3

V , that is
V

(2π)3
∆3k = 1 .

Eq.(51) may therefore be rewritten

E = 2
V

(2π)3

∑

k

Ek ∆
3k ≈ 2

V
(2π)3

∫
Ek d

3k =
V
π2

∫ ∞

0

Ek k
2dk

where it has been exploited that ωk depends only on k = |k|.
Substituting k with ω

c
and inserting Ek from Eq.(49) one arrives at

E
V

def
= u =

∫ ∞

0

h̄

π2 c3
ω3 1

e
h̄ωk

kB T − 1︸ ︷︷ ︸
def
= ûω

dω .

The quantity u denotes the energy density, and ûω stands for the spectral energy
density. The latter expression represents Planck’s radiation law.

We now return to Eq.(47) which may be recast

|Ak,σ|2 =
nk,σ h̄

2 ε0Vωk

. (52)

This serves as a crucial input in going through the formal procedure of “quantiza-
tion”. In so doing one should keep in mind that the decisive step of quantization has
already been taken by introducing nk,σ h̄ωk in Eq.(47). The ensuing formalization
does not bring about any more substance. It should be observed that nk,σ h̄ωk has
been introduced to fit the experiments and not been derived from some theory.

Inserting |Ak,σ|2 from above Eq.(44) one obtains

A(r, t) =
∑

k,σ

~ǫk,σ

√
h̄

2 ε0Vωk

[
ak,σ e

i(k·r−ωkt) + a∗k,σ e
−i(k·r−ωkt)

]
︸ ︷︷ ︸

def
= Ãk,σ(r,t)

. (53)

where

a∗k,σ ak,σ = nk,σ . (54)

The step into “quantum electrodynamics” consists in the following assumption:
One introduces the notion of a “state” |0, 0, . . . nk,σ, 0, . . .〉 which describes a situ-
ation where nk,σ photons of energy h̄ωk = h̄c|k| are present. The zeros stand for
photons of different k and/or different σ which are absent in the situation under
study. We abbreviate the notation of this state into |nk,σ〉 and imagine to span a
Hilbert space with these states by requiring them to be orthonormal:

〈n′
k′,σ′ |nk,σ〉 = δn′

k′,σ′
nk,σ

. (55)
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One now replaces the “occupation number amplitudes” a∗k,σ, ak,σ in Eq.(53) by
creation- and annihilation operators:

a∗k,σ → â†k,σ ; ak,σ → âk,σ (56)

with the following properties:

â†k,σ |nk,σ〉 =
√
nk,σ + 1 |nk,σ + 1〉

âk,σ|nk,σ〉 = √
nk,σ |nk,σ − 1〉 . (57)

The two operators hence obey the commutation relation (“minus commutation”)

âk,σ â
†
k,σ − â†k,σ âk,σ

def
= [âk,σ, â

†
k,σ] = 1 . (58)

As a consequence of the substitution (56) and because of Eq.(53) A(r, t) becomes
a field operator:

Â(r, t) =
∑

k,σ

~ǫk,σ

√
h̄

2 ε0Vωk

[
âk,σ e

i(k·r−ωkt) − â†k,σ e
−i(k·r−ωkt)

]
(59)

and analogously

Ê(r, t) = i
∑

k,σ

~ǫk,σ

√
h̄ ωk

2 ε0V

[
âk,σ e

i(k·r−ωkt) − â†k,σ e
−i(k·r−ωkt)

]
. (60)

From Eq.(57) we have
â†k,σ âk,σ|nk,σ〉 = nk,σ |nk,σ〉

which means
〈nk,σ|â†k,σ âk,σ|nk,σ〉 = nk,σ .

This is equivalent to Eq.(54).
The quantization procedure defined through Eqs.(56) to (59) is standard but not
entirely consistent: An implausible consequence of this procedure is that it does
not exactly reproduce Eq.(47) which contains the input information

Ek,σ = nk,σ h̄ωk →֒ E =
∑

k,σ

Ek,σ =
∑

k,σ

nk,σ h̄ωk . (61)

The functions
ei(k·r−ωkt)

are orthogonal for different wave vectors k within the normalization volume V . As
the two contributions to E in Eq.(42) are equal, E can be calculated by taking twice
the contribution of the electric field. From Eqs.(42), (55), (57) and (60) we obtain
then

E =
∑

k,σ

∫

V
〈nk,σ|ε0Ê† · Ê|nk,σ〉 d3r =

∑

k,σ

〈nk,σ|
∑

k′,σ′

h̄ω
k′

2
(a†k′,σ′ak′,σ′ + ak′,σ′ a†k′,σ′)|nk,σ〉︸ ︷︷ ︸

=δn′σ′,n σ (2nk,σ+1)|nk,σ〉

=
∑

k,σ

nk,σh̄ωk +
1
2

∑

k,σ

h̄ωk

︸ ︷︷ ︸
“zero-point energy”

(62)

15



This is identical with the input information (61) except for the extra term “zero-
point energy” whose appearence is all the more puzzling as it is infinite since there
is no physical reason for a cut-off frequency in the summation over contributions
h̄ωk.
Despite the vexing occurrence of this infinite term, there is an overwhelming major-
ity of theorists who regard it as an indisputable piece of quantum electrodynamics
and even take the phenomenon of Casimir forces as proving the existence of zero
point energy. There is a widely held belief that the Casimir forces with which two
metal plates attract each other within a submicron distance is caused by a lowering
of the zero point energy in the space between the plates. By contrast, we advance
the opinion that the above extra term does actually not exist and that the Casimir
forces can be explained without drawing on the existence of zero point energy.

The formal occurrence of this term is caused by introducing â†k,σ , âk,σ one step too
soon. At the pre-quantization step the electric field has still the form

E(r, t) = i
∑

k,σ

~ǫk,σ

√
h̄ ωk

2 ε0V
[
ak,σ e

i(k·r−ωkt) − a∗k,σ e
−i(k·r−ωkt)

]
.

If this expression is used in determining the total energy, one obtains

E =

∫

V
ε0E

∗(r, t) ·E(r, t) d3r =
∑

k,σ

h̄ ωk a
∗
k,σ ak,σ

Substituting a∗k,σ , ak,σ according to Eq.(56)

a∗k,σ → â†k,σ ; ak,σ → âk,σ

one arrives at

Ê =
∑

k,σ

h̄ ωk â
†
k,σ âk,σ and hence E =

∑

k,σ

h̄ ωk 〈nk,σ| â†k,σ âk,σ |nk,σ〉 =
∑

k,σ

nk,σ h̄ ωk(63)

without an additional zero point energy.

We now turn to the question: what is the meaning of A(r, t) in the perturbed
Hamiltonian (25)?
On forming the expectation value of Ê(r, t), that is

〈nk,σ|Ê(r, t)|nk,σ〉 =

i
∑

k′,σ′

~ǫk′,σ′

√
h̄ ω

k′

2 ε0V 〈nk,σ|
[
âk′,σ′ ei(k

′·r−ω
k′
t) − â†k′,σ′ e

−i(k′·r−ω
k′
t)
]
|nk,σ〉 (64)

one recognizes that 〈nk,σ|Ê(r, t)|nk,σ〉 ≡ 0 because the states â†k′,σ′ |nk,σ〉 and
âk′,σ′ |nk,σ〉 are all orthogonal to |nk,σ〉. However, this result does not have any
physical relevance since it cannot be checked experimentally. If one wants to de-
tect the existence of an electric field at a point r, any measurement of a force
F = eE involves somehow a displacement of a charge e, and hence leads to the
absorption of energy from the electromagnetic wave. For example, if one would
place a charged, point-like harmonic oscillator with frequency ωk in the electric
field, one could verify that it is driven by the electric field only when it is damped.
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Otherwise it would - in general - also oscillate without any driving force. To cor-
relate Ê(r, t) with a measurable quantity, one must therefore consider a photon
state

|φ(t)〉 = c1(t) |nk,σ〉+ c0(t) |nk,σ − 1〉 . (65)

The state |nk,σ〉 refers to an electromagnetic wave of wave vector k and polarization
σ which contains n photons. Correspondingly, the state |nk,σ − 1〉 represents the
same electromagnetic wave with one photon less. If |c0(t)|2 and |c1(t)|2 are functions
of time similar to those shown in Fig.3, then (65) describes a transition in which
the electromagnetic wave loses a photon to some charged quantum mechanical
object. For this transition state |φ(t)〉 the expectation value of Ê(r, t) yields two
non-vanishing portions

〈φ(t)|Ê(r, t)|φ(t)〉 = −i~ǫk,σ
√

h̄ ωk

2 ε0V e
−i(k·r−ωkt) c1(t) c0(t)〈nk,σ |â†k,σ |nk,σ − 1〉

︸ ︷︷ ︸
=nk,σ |nk,σ〉

+

i~ǫk,σ

√
h̄ ωk

2 ε0V e
i(k·r−ωkt) c0(t) c1(t)〈nk,σ − 1| âk,σ |nk,σ〉︸ ︷︷ ︸

=nk,σ |nk,σ−1〉

. (66)

This may be cast

Ẽk,σ(r, t)
def
= 〈Ê(r, t)〉 = −2~ǫk,σ |c0(t) c1(t)|

√
nk,σ h̄ ωk

2 ε0V sin(k · r − ωk t+ ϕ) . (67)

Here ϕ is defined as in Eq.(13). Analogously one obtains

Ãk,σ(r, t) = 2~ǫk,σ |c0(t) c1(t)|
√

nk,σ h̄

2 ε0Vωk

cos(k · r − ωk t+ ϕ) . (68)

One is hence led to conclude that A(r, t) in the perturbed Hamiltonian (25) is
just the expectation value of Â(r, t) in the course of energy exchange between the
charged quantum mechanical object and the electromagnetic field. Within this
time interval, which is the only one of physical significance, the expectation values
Ãk,σ(r, t) and Ẽk,σ(r, t) display a completely classical behavior, and the product
|c1(t) c0(t)| can roughly be approximated by a constant as indicated in Fig.2 by the
red dashed line.

So far it seems to be clear that “quantum electrodynamics”, that is the formal
apparatus of “quantization” only describes Planck’s hypothesis, which means, the
energy quantization of free electromagnetic waves. The latter explains in detail the
experimental findings and, in particular, the high-frequency behavior of black body
radiation. Beyond that, does quantum electrodynamics also explain the occurrence
of a momentum carrying particle associated with each individual plane wave? We
believe, it does not. Its existence is simply implied. And it neither explains the
photon’s point-like character which one is forced to assume. Otherwise it could
hardly be understood that an atom which absorbs the photon receives the full en-
ergy amount of the photon irrespective of the distance between the emitter and
the absorber. Moreover, it does not explain the recoil that the emitter experiences
in the reverse direction of the photon’s propagation towards the absorber. The
occurrence of a photon’s momentum h̄k associated with a plane wave of wave vec-
tor k derives from the classical expression for the light pressure. But the photon
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that is emitted from a hydrogen atom in a 2p→1s-transition is associated with a
Hertzian-type wave field. Outside the atom the latter can be expanded in terms of
plane waves, but the energy of the photon relates to the entire field and not to one
of its plane wave components. Still, it carries the momentum h̄ ω

c
eγ as if it were in

a plane wave state with k = ω
c
eγ where eγ denotes the direction of its propagation.

This is evidenced by the experiment, but remains unexplained within our approach
and in quantum electrodynamics as well.

Besides, our treatment invites an interesting experiment: One could use the ex-
perimental setup by Dehmelt and associates [2] in which a single Ba+-ion is kept
in a Paul-trap. The ion contains one outer electron which behaves very similar
to a hyrogen electron considered so far. One can transfer this electron from its
6s-groundstate to a 6p-state by the absorption of linearly polarized light of the
appropiate energy. According to our theory the ion will spontaneously emit light
then which is polarized in the same plane as the light that was previously absorbed.
A detector monitors the emitted photon at some fixed distance d. It can be moved
on a sphere of radius d. If the excitation has been repeated sufficiently often, the
lateral distribution of detection events should display the characteristic feature of
the Hertzian dipole radiation.
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