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A bs tra ct 

We propose for the graphical representation of fields, not to limit to field lines but also to draw the or- 
thogonal surfaces. Just as the ends of the electric or magnetic field lines tell us where the sources of the 
flux of a field are located, the borders of the orthogonal surfaces indicate us the sources of the field's circu- 
lation. 

I. In tro du ct io n 

It is common practice to represent fields graphically. On a field diagram one often sees at a single glance 
what otherwise would take a greater effort to recognize. Even a qualitative picture can be an important 
teaching aid. 

There are several possibilities of realizing a picture of the invisible system “field” [1]. First, one has the 
choice between the various physical quantities which might be represented. In the case of the electroma- 
gnetic field we can choose between the field vector quantities E ( x,!y,!z ), D ( x,!y,!z ), H ( x,!y,!z )  and B ( x,!y,!z ) , 
the electric and the magnetic scalar potentials, the magnetic vector potential, the distribution of 
div! D ( x,!y,!z ) and div! B ( x,!y,!z ) , the distribution of curl! E ( x,!y,!z ) and curl! H ( x,!y,!z ) , the energy density, 
the energy flow density (which is similar to the momentum density) and the momentum flow. 

Next, one can choose between several ways of representing the selected quantity. Scalar fields like the sca- 
lar potentials, the energy density or the divergence can be illustrated by contour lines, or by a color code. 
Vector fields like the field strengths, the curl of the field or the energy flow can be visualized by arrows 
placed at the vertices of a square grid or by field lines or stream lines, respectively. Tensor fields like the 
momentum flow density can be represented by three field line pictures [2], or in some cases by a field of 
ellipsoids. Although the various pictures of one and the same field are not independent of one another, 
each of them has its specific advantages. 

Among the various representation modes of fields there is one which is by far more popular than the 
others: the representation of the field strengths by means of a field line diagram. 

Field line diagrams have considerable advantages: 

– With a single glance one gets an idea about the direction of the field vector in every point.



– They clearly indicate where div! E ( x,!y,!z ), div! B ( x,!y,!z )  etc are non-zero. Thus they tell us the distribution 
of what we shall call the “flux sources” of the field. Therefore, they are a very immediate expression of 
the third and the fourth Maxwell equations, i. e. the fact that the flux sources of an electric field are lo- 
cated at the electric charges and that the magnetic B  field has no such sources, respectively. 

In the present article we argue that field line pictures become substantially more useful when completed by 
the corresponding orthogonal surfaces. Our proposal is to represent these surfaces not only in the case of 
electrostatic or magnetostatic potential fields, but also for electric and magnetic fields with non-zero circu- 
lation. Thus, in a two-dimensional representation, an electric or magnetic field appears as a grid of field li- 
nes and their orthogonal trajectories. Maxwell already used in all his graphical representations of fields  – 
with and without circulation – “lines of force” and “level surfaces”, Fig. 1 [3]. The additional effort for 
this extension is not high. If colors are available, it is appropriate to represent the field lines in one color 
and the orthogonal surfaces in another.  

Since our arguments are equally valid for electric and magnetic fields, for the sake of simplicity we shall 
mostly refer in the following to electric fields. Moreover, we limit our considerations to fields in the vacu- 
um. Therefore, the shape of the B  and H  lines, as well as the shape of the D  and E  lines are the same. 

As has already been mentioned, in a conventional electric field line plot one easily recognizes the distribu- 
tion of div! E , i. e. of the “flux sources” of the field. The distribution of curl! E , on the contrary, can be re- 
cognized only with difficulty. When drawing the orthogonal surfaces –in addition to the field lines–, the 
“circulation sources” of the field, i. e. the places where curl! E  is non-zero, are just as clearly visible as the 
flux sources. In section III we shall discuss this subject by means of an example.  An application which is 
particularly interesting is treated in section IV: the “rectangular electric field”. 

In section II we shall begin with the discussion of a serious objection to the value of field line diagrams 
which was recently published in the American Journal of Physics [4]. 

Fig . 1. Dia gram  of the sup erpo siti- 
on of the mag neti c fiel d of a line ar 
curr ent and a hom ogen eous  ma- 
gnet ic fiel d, in “Ele ctri city  and 
Ma gnet ism ”, by Ma xwe ll. All of 
Ma xwe ll's  figu res  disp lay “lin es of 
for ce” and “lev el sur face s”. 
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II.  D o fie ld  lin e di ag ra m s no t w or k at  al l? 

It is common practice to suggest or explicitly claim that the line density of field lines is a measure for the 
magnitude of the local field strength. Problems concerning this claim have been discussed recently in 
some articles in the American Journal of Physics [4, 5]. Wolf, Hook and Weeks [4] show that, for se- 
veral independent reasons, the field line density does not represent the correct magnitude of the field 
strength. “Electric field line diagrams don't work”, states the title of their article.  

Wolf et al limit their analysis to electrostatic fields. We want to back-up their argument by displaying 
one more “mechanism” which entails that the field line density does not correspond to the field strength. 
It can be observed whenever at any place of a field we have 

div E   ≠ 0 

and at the same place or another place of the same field we have 

curl E  ≠ 0. 

A very simple realization of this case is shown in Fig. 2. Fig. 2a displays the electric field of a line char- 
ge which is perpendicular to the drawing plane. Here, the field line density is proportional to the magni- 
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Fig . 2. (a) Elec tric  fiel d of a line  char ge. (b)  Elec tric  fiel d of a thin 

sole noid  with  a mag neti c flux  chan ging  at a cons tant  rate . (c) Su- 

perp osit ion of the fiel ds of (a) and (b) . (d)  Fiel d of a line char ge 

with  sma ller  char ge dens ity. (e) the sam e as (b) . (f)  Sup erpo sitio n 

of the fiel ds of (d)  and (e).  The  fiel d line  dens ity sug ges ts a high er 

mag nitu de of the fiel d stre ngth  than  the fiel d actu ally has . 
a 

b 

c 

d 

e 

f 



tude of the field strength. Fig. 2b shows another simple situation: a thin solenoid of infinite extension per- 
pendicular to the drawing plane. The electric current in the wire of the solenoid, and thus the magnetic flux 
within the solenoid is supposed to increase linearly with time. As a consequence, the solenoid is surroun- 
ded by an electric field which has circular field lines and which is constant in time. The field is similar to 
the magnetic field of an infinitely long current-carrying wire. Again the field lines can be drawn in such a 
way that their density is proportional to the magnitude of the field strength. Fig. 2c displays a superpositi- 
on of the systems of figures 2a and 2b. Now, in the center of the figure we have both, a line charge and a 
magnetic flux which varies at a constant rate. The resulting field lines have the form of spirals. For the 
moment, this field line diagram seems not to be suspicious in any way. Let us now introduce a slight mo- 
dification. 

We replace the line charge of Fig. 2a by another one which is much weaker. Its field line diagram is Fig. 
2d. We superpose the corresponding field with that of Fig. 2e, which is the same as that of Fig. 2b. The re- 
sult is shown in Fig. 2f. The four field lines starting from the line charge at the center are spiraling very 
tightly around the central “source”. The smaller we choose the line charge the denser the field lines. By di- 
minishing the line charge, the line density can be made as high as one desires. Apparently, in no place of 
Fig. 2f the field line density represents the field strength – even not approximately. 

The reason for this incongruity is easily seen. In order to determine the field line density we choose a 
small reference surface perpendicular to the field lines. Now, the same field line passes several times 
through this surface and makes believe that many different field lines are crossing the area. 

Two alternative conclusions could be drawn from these statements. 

Wolf et al suggest to refrain from continuous line representations of fields altogether. In our view this 
would mean to empty the baby with the bath. Our proposal is: Take advantage of the virtues of conventio- 
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Fig . 3. The  sam e fiel d as that  of Fig . 2c. In addi tion  to the 

fiel d line s the orth ogon al line s are repr esen ted. Both  ens em- 

bles  of line s end with in the sma ll circ le in the cent er of the 

figu re. Thu s, this  circ le mus t cont ain the flux  sou rces  as 

wel l as the circ ulati on sou rces  of the field .  



nal field line diagrams but don't pretend they represent something what they do not represent. In other 
words: Don't claim that the line density measures the field strength. 

III . Th e bo rd er s of  th e or th og on al  su rfa ce s 

A vector field E ( x,!y,!z ), vanishing sufficiently rapidly at spacial infinity,  is completely specified if the scalar 
field div! E ( x,!y,!z )  and the vector field curl !E ( x,!y,!z )  are given [6]. If the field E ( x,!y,!z )  is plotted in a conve- 
nient manner, div! E ( x,!y,!z )  and curl! E ( x,!y,!z )  can be read directly from the diagram. However, it depends 
on the type of representation one has chosen, how easy this task is. If the representation is by field lines, it 
is most easy to recognize div! E ( x,!y,!z ) , i. e. the field's flux sources: The flux sources are located where 
field lines end. This is one of the basic rules we apply when drawing qualitative electric field line pictures, 
since in a typical problem the electric charges, i. e. the sources are given. 

The circulation sources of the field, i.!e. the function curl! E ( x,!y,!z ) , can be recognized in a field line picture 
only vaguely. Often, a field with curl! E !≠ 0!  can be distiguished from a field with curl! E != 0  only on tho- 
rough inspection. The fact that field lines are closed is rather eye-catching, but it only tells us that there are 
circulation sources somewhere inside the closed lines. It does not tell us exactly where they are. Moreover, 
there are fields which have circulation sources but no closed field lines at all. An example is the field of 
Fig. 2c. Another example will be considered in section IV.  

The reason why it is so much easier to recognize the flux sources than the circulation sources is in the arbi- 
trariness of our plot. Among the two mutually orthogonal series of lines, we have chosen the field lines 
and not the orthogonal trajectories. If we had chosen the orthogonal lines, we would have been able to read 
the circulation sources more easily than the flux sources. Indeed, the circulation sources are located at tho- 
se places where the orthogonal surfaces end.  

Before we show, why this is so, let us formulate our main conclusion: When making a sketch of a field, 
draw both field lines and orthogonal surfaces   [7]. 

In a potential field – an electrostatic or a magnetostatic field – the orthogonal surfaces are called equipo- 
tential surfaces. An equipotential surface is a closed surface which is perpendicular to the field strength 
vector in every point. In a two-dimensional plot, the equipotential surfaces appear as closed lines. 

As a matter of fact, orthogonal surfaces, or in two dimensions, orthogonal lines, can also be drawn when 
the field is not a potential field. The construction rule is the same as in the case of the potential field: the 
orthogonal surfaces are perpendicular to the field lines. However, now the orthogonal surfaces (or or- 
thogonal lines in two dimensions) are not closed anymore. Just as electric field lines end where div! E  is 
non-zero (if they end anywhere), the orthogonal surfaces end where curl! E  is non-zero (if they end any- 
where). 

The proof is most easily done in the two-dimensional case. To be concrete let us consider a detail of an 
electric field whose z  component is zero: 
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E ( x, y, z ) = ( E x , E y , 0) 

Then 

S ( x, y, z ) = ( S x , S y , 0) = ( E y , – E x , 0) 

is an orthogonal field. We calculate the magnitude of curl E : 

It is seen that the flux sources of the orthogonal field S ( x, y, z ) are identical with the circulation sources of 
the original field E ( x, y, z ). 

As an example, let us consider the field of Fig. 2c: a superposition of the field of a line charge and a thin 
solenoid with a changing magnetic flux. In Fig. 3 we not only have represented the field lines but also the 
orthogonal lines. It is now clearly seen from the figure that at the central spot there is the flux source as 
well as the circulation source of the field. 

Our second example is more intricate and we shall dedicate a separate section to it. 

IV . A  re ct an gu la r el ec tri c fie ld 
Let us begin by considering a long rectangular current-carrying solenoid. The magnetic induction B  is par- 
allel to the axis of the solenoid. To simplify the situation, let us replace the windings of the solenoid by a 
folded current carrying sheet. Moreover, imagine that the sheet is superconducting. So there is no need for 
an energy source in order to get a persistent electric current. Next, imagine that the “solenoid” is moving 
with a velocity v  in a direction perpendicular to its axis, Fig. 4. This is equivalent to considering it in a re- 
ference frame which is moving with the velocity –! v . Let us call S the reference frame in which the so- 

curl E = 
∂ E y 

∂ x 
- 

∂ E x 

∂ y 
= 

∂ S x 

∂ x 
+ 

∂ S y 

∂ y 
= div S 
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Fig . 4. A “sol enoi d” cons istin g of a curr ent carr ying  shee t mov es in a dire ction  perp endi cula r to its axis . 

An elec tric curr ent of curr ent dens ity j  is flow ing in the she et. 



lenoid is at rest and S' the frame in which it  is moving. In the new reference frame, in addition to the ma- 
gnetic field we have a homogeneous electric field. If the magnitude of v  is small compared to the speed of 
the light, the field strength of this electric field is 

E !=!– v  ¥ B 

Outside of the solenoid, the electric field strength is zero. 

Fig. 5 shows the diagram of the electric field with its field lines and orthogonal surfaces. The figure de- 
picts the location of the flux and the circulation sources of the electric field. The flux sources are on those 
sides of the solenoid, which are parallel to the direction of its movement, the circulation sources are on the 
faces which are perpendicular to the direction of the movement. Thus, we have a piece of homogeneous 
electric field with a rectangular cross section and with sharp boundaries. 

By admitting the current-carrying sheet to be infinitely thin we skillfully have been sweeping under the 
carpet the problem of the distribution of the flux and the circulation sources of the electric field in a real 
conductor. Therefore, let us now consider the current-carrying sheet to have a finite thickness. Since the 
electric current density is homogeneous over the conductor, the magnitude of the magnetic induction and 
thus, that of the electric field strength, decreases linearly from its inner to its outer surface. As a conse- 
quence, the distributions of the flux sources and that of the circulation sources over the conductor are also 
homogeneous. The enlargements in Fig. 5 show how the electric field lines and the orthogonal lines are fa- 
ding away within the conductor when going from the inner to the outer surface. 

The explanation of the genesis of the circulation sources of the electric field in the transverse parts of the 
solenoid is simple: the circulation sources are where the magnetic induction is changing in time. The me- 
chanism of the origination of the flux sources in the lateral parts is due to a relativistic effect [8]: Electric 
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Fig . 5. Fiel d line s and orth ogo nal sur - 
face s of the rect angu lar fiel d. It is 
seen  that  the flux  sou rces  are loca ted 
on the later al part s of the she et (par al- 
lel to the dire ctio n of the mov eme nt) 
and the circ ulat ion sou rces  on the 
tran sve rse  part s (per pend icul ar to the 
mov eme nt).   The  enla rgem ents  of a 
sect ion of the tran sve rse  part  and of a 
sect ion of the para llel part  of the con- 
duct or sho w that  the fiel d line s end 
with in the bulk  of the para llel part s 
and the orth ogo nal line s end with in 
the bulk  of the tran sver se part s. 



charge density and electric current density are the components of the current four-vector. In reference fra- 
me S the charge density is zero but the current density is non-zero. When changing to reference frame S' 
the transformation results in a non-zero contribution to the charge density. 

V I. C on cl us io n 

In order to represent fields graphically, we propose to draw the orthogonal surfaces in addition to the field 
lines. The expense is low and the profit high. In such a field diagram one not only distinguishes clearly the 
distribution of the flux sources but also that of the circulation sources. 
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