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“... to skeptics, heretics and näıve realists everywhere.
Keep doubting; let others keep the faith.”

David Wick in: The Infamous Boundary [1]

“I have never been able to discover any well-founded reasons as to why there
exists so high a degree of confidence in the .....current form of quantum
theory.”

David Bohm in: Wholeness and the Implicate Order [2]

“Many physicists pay lip service to the Copenhagen interpretation, and in
particular to the notion that quantum mechanics is about observation or
results of measurement. But hardly anybody truly believes this any more -
and it is hard for me to believe that anyone really ever did.”

Sheldon Goldstein in: Physics Today [3]

1 Synopsis

The present article is aimed at removing most of the obstacles in understand-
ing the quantum mechanics of massive particles. We advance the opinion
that the probabilistic character of quantum mechanics does not originate
from uncertainties caused by the process of measurement or observation,
but rather reflects objectively existing vacuum fluctuations whose action on
massive particles is calibrated by Planck’s constant and effects an irregular
motion of each particle in addition to its Newtonian motion. It appears
to be likely that these energy fluctuations are just a manifestation of dark
energy. Hence, we fundamentally disagree with the standpoint taken in the
so-called Copenhagen interpretation of quantum mechanics as expressed, for
example, by Heisenberg. (Two statements illustrating this standpoint are
given below.)
As in the theory of diffusion the behavior of a single particle will be de-
scribed by an ensemble of identically prepared but statistically indepen-
dent one-particle systems. Energy conservation despite the occurrence of a
Brownian-type additional motion is achieved by subdividing the ensemble
into two equally large sub-ensembles for each of which one obtains an equa-
tion of motion that has the form of a Navier-Stokes- or “anti”-Navier-Stokes-
type equation, respectively, the latter involving an anti-Brownian motion
enhancing process. By averaging over the total ensemble one obtains a new
equation of motion which describes classical motion modified by reversible
scattering processes which appear as conservative diffusion. This equation
of motion can be converted into the time-dependent Schrödinger equation.
Stimulated by de Broglie’s particle/wave concept [4] Schrödinger [5] set up
this equation invoking certain analogies, but actually he could not derive it
from Newtonian mechanics by allowing for an additional mechanism. To-

4



day the prevailing opinion continues to insist on its non-derivability. We
clarify the problem of the uniqueness of the wave function and the quan-
tization of orbital momentum. The concept allows the inclusion of elec-
tromagnetic fields and can be extended to interacting N-particle systems.
Spontaneous light emission proves to be treatable without requiring electro-
magnetic field quantization. We analyze the problem of how an experimental
setup can consistently be decomposed into the quantum system under study
and the residual quantum system “apparatus”. The irregular extra motion
of the particle under study allows a decomposition of the associated en-
semble into two subensembles the members of which perform, respectively,
a right-handed or left-handed irregular circular motion about a given axis
which becomes physically relevant in the presence of a magnetic field. We
demonstrate that this orientation-decomposed “Zitterbewegung” behaves -
in accordance with Schrödinger’s original idea - as a spin-type angular mo-
mentum which appears in addition to a possible orbital angular moment of
the particle. We derive the non-relativistic time-dependent Pauli equation
and propose a theory of the Stern-Gerlach experiment. The Dirac equation
proves to be derivable by drawing on similar arguments used in obtaining
the Pauli equation.
Based on the concept of our derivation one is led to conclude that every
conceivable situation of a physical system is exhaustively described by the
respective solution to the time-dependent Schrödinger equation, and that
there can be no independent measurement problem. As for this point we
side with J. Bell [6] who argues that the attempt to base the interpretation of
quantum mechanics on some notion of “measurement” has raised more prob-
lems than it has solved. As we shall outline in Section 25 “measurements”
relate outcomes, e. g. detector readings, to characteristic properties of a
quantum system by using solutions to the Schrödinger (or Pauli) equation
as primordial information. Without this equation and its solutions “mea-
surements”, i. e. in general, detector or “pointer” readings, constitute a set
of worthless data. This is in keeping with Einstein’s view which he stated
in a conservation with Heisenberg in 1926 [7]: “From a principal point of
view it is completely wrong to build a theory solely on observable quantities.
Because in reality it is just the other way around: It is the theory which
decides what can be observed.” 1

The fact that our approach yields essentially the entire framework of quan-
tum mechanics proves that a foundation of quantum mechanics without
involving observers or “measurers” is possible as opposed to fundamental
statements of Heisenberg:
....the idea of an objective real world whose smallest parts exist in the same

1“Aber vom prinzipiellen Standpunkt aus ist es ganz falsch, eine Theorie nur auf
beobachtbare Größen gründen zu wollen. Denn es ist ja in Wirklichkeit umgekehrt. Die
Theorie entscheidet darüber, was man beobachten kann..”
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sense as stones and trees exist, independently whether or not we observe
them.....is impossible”[8] and
“We can no longer speak of the behavior of the particle independently of
the process of observation” [9].

2 Origin of quantum mechanical randomness

We interpret the fact that microscopic particles move and behave differently
from macroscopic objects as reflecting the active role of the vacuum provid-
ing the space for energy fluctuations. The latter will henceforth be referred
to as vacuum fluctuations. The consequences of their existence have already
been discussed quite some time ago, s. e. g. Bess [10], Puthoff [11], [12],
Boyer [13], Calogero [14], Carati and Calgani [15]. From this point of view
it appears to be likely that vacuum fluctuations originate in the dark energy
frequently discussed by cosmologists in the recent past.
Present day quantum mechanics is strongly shaped by historical contingen-
cies in its development, and it has become almost impossible to tell fiction
from facts. Crucial constituents as, for example, the Schrödinger equation
fall essentially out of the blue and associating Hermitian operators with
”observables” is regarded as “scientific guessing”. Statements on “the mea-
surement of positions at different times” and “there is no momentum of a
particle in advance of its measurement” are typical of this school of thought
(s. e. g. Streater [16]), yet they are definitely void of meaning. What kind
of experimental setup should allow a perfectly accurate position measure-
ment at a perfectly accurate time point? And how does the setup look
like that allows the measurement of a particle’s momentum in the spirit
of orthodox quantum mechanics; i. e. with zero dispersion? It is totally
impossible to perform non-fictional measurements on quantities that would
conform to their quantum mechanical definition, e. g. measuring commut-
ing observables like energy and angular momentum at the same time. The
“observables” around which a substantial portion of quantum mechanical
literature revolves are in reality non-observables. Further, there is simply
no evidence of a causal interrelation between the probabilistic character of
quantum mechanics and indeterminacies introduced by “the observer”.
By contrast, there is every reason to believe that vacuum fluctuations are
real and constitute an objective property of nature. Zero point motion of
particles constitutes the most obvious evidence of their existence. It is this
zero point motion which, for example, keeps liquid 4He “molten” down to
the very lowest temperatures and explains this extraordinary material prop-
erty.
One could view vacuum fluctuations as caused by an exchange of energy
between the mechanical system in question and the embedding vacuum that
serves as an energy reservoir in terms of virtual particles: if that reservoir
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reduces its content of virtual particles, the energy of the system under study
increases so that the energy of the entire system comprising this “vacuum
reservoir” is conserved. Considerations of Calogero [14] point in a similar
direction. In that sense quantum mechanical systems may be viewed as open
systems like classical point mass systems in contact with a heat bath. This
analogy will become particularly visible in our treatment. We shall use the
terms “point mass” and “point charge” with the reservation that the actual
size of the particles in question might well be finite of the order 10−13 cm,
but very small compared to atomic diameters of the order 10−8 cm. Oc-
casionally “point mass” will stand for the center of gravity of an atom or
some composite system. Even molecules that contain several hunderts of
atoms display well defined interference patterns after diffraction at lattices
of standing optical waves [17]

In the following we shall focus on the description of the subsystem “point
mass in real-space” which is open to an active vacuum and whose energy is
therefore conserved only on average.
An implication of this concept is that charged point masses, despite their
irregular motion, do not emit or absorb radiation on the average. In station-
ary situations a charged point mass will exchange photons with the vacuum
in a way that does not change its average energy and momentum.

Radiation only occurs when the particle’s probability density of being at its
various positions in space, or the associated current density becomes time-
dependent.

This is analogous to a system kept by non-heat conducting fibers in a vacuum
chamber whose walls serve as a heat bath. In a stationary state situation the
system exchanges constantly photons with the heat bath without changing
its average energy. However, if its temperature is, for example, higher than
that of the wall, the system starts radiating, that is, there is now a net flow
of photons leaving the system.

If one disregards the details of the energy transfer between the two systems,
vacuum fluctuations appear as an irregular temporary departure of the par-
ticle in question from its energy conserving trajectory in that it changes its
energy by an average amount ∆E for an average time interval ∆t so that

∆E∆ t = f ~ where f ranges from ≈ 1

2
to ≈ 2 . (1)

Here h = 2π~ denotes Planck’s constant. It is this departure from classical
energy conservation which explains, as already alluded to, why a harmonic
oscillator in its state of lowest energy is irregularly driven out of the position
where it would be classically at rest. Furthermore, it explains the stability
of a hydrogen atom in its groundstate (which applies quite generally to all
atoms and their compounds), the zero-point motion of atoms in molecules
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and solids and the “tunneling” of particles through a potential wall which
actually amounts to overcoming that wall.
Zero-point motion is commonly associated with Heisenberg’s uncertainty
relation which, however, merely shifts the problem of understanding a non-
classical phenomenon to understanding the origin of a non-classical rela-
tion. Moreover, it amounts to keeping a blind eye on the fact that one is
dealing here with a groundstate phenomenon which is certainly not observer-
induced. Only if the contrary would apply, one would be justified in referring
to the uncertainty relation.
The uncertainty range of the factor f in Eq.(1) might look suspicious. But
this uncertainty disappears once the Schrödinger equation has been derived.

A Boltzmann distribution over the energy levels of some system is completely
independent of the details and the kind of the energy exchange between the
heat bath and the system. The distribution contains -apart from the temper-
ature - only one universal parameter, viz. Boltzmann’s constant. Similarly,
a system’s stationary zero-temperature states that emerge from exchanging
energy with the vacuum do not depend on the details of this exchange and
on the kind of particles involved, but only depend on another universal con-
stant, viz. Planck’s constant.
The envisaged derivation implies that particle trajectories persist under the
influence of the stochastic vacuum forces. Their existence becomes partic-
ularly obvious with tracks of α-particles in a track chamber, but also with
the trajectories of electrons in a field electron microscope. Their property of
forming straight lines from the field-emission tip (assumed semi-spherical)
to the monitoring screen is actually presupposed in calculating the magnifi-
cation of the microscope. Conversely, purely quantum mechanical behavior
occurs at lowest energies when the trajectories do no longer possess a clas-
sical reference in the limit ~→ 0. Trajectories still persist in that case, but
the respective particle now performs a purely irregular motion.
The existence of particle trajectories is denied by the Copenhagen school of
thought because “things that cannot be observed do not exist”. Supporter
of this view have to live with the conflict that a complex-valued wavefunc-
tion or its associated state vector, which constitutes the center of quantum
mechanics, cannot be observed as well. By contrast, we believe that the va-
lidity of assumptions can only be scrutinized by checking the consistency of
the resulting theory against experimentally accessible quantities and laws.
We are here accord with Ballentine who states in his seminal article [18]:

“...quantum theory is not inconsistent with the supposition that a particle
has at any instant both a definite position and a definite momentum, al-
though there is a widespread folklore to the contrary.”

One might compare the properties of this “active vacuum” with a realistic
model, viz. superfluid 4He which is known to consist of 4He-atoms that are
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not completely close-packed and move irregularly due to zero-point motion.
Hence, if one would inject a particle into the fluid, it would hit various atoms
on its way and be scattered off its trajectory along which it would move if
the 4He-atoms were absent. However, if its average velocity remains below
the critical velocity it cannot lose linear momentum to the fluid on average.
This defines superfluidity. If one were to place a two-slit diaphragm across
the direction of its motion it can, of course, continue its motion only by mov-
ing through one of the slits, but its trajectory evolves differently depending
on whether or not the other slit is open.
In the Section 3 we analyze some fundamental phenomena which are a direct
consequence of vacuum fluctuations, each reflecting a key feature of quan-
tum mechanics.

In Section 4 we briefly discuss the construction of ensemble averages of
quantities that appear in the Navier-Stokes equation given in Section 5. We
regard this equation as a mathematical object that derives entirely from
classical concepts. Details of its derivation, which goes essentially back to
Gebelein [19], will be relegated to the Appendix, Section 39. We discuss the
construction of a “Brownian” and an “anti-Brownian” sub-ensemble. The
motional behavior of the latter is governed by an “anti-Navier-Stokes” equa-
tion. We explain why a system of statistically independent particles moves
according to the arithmetic mean of these two equations when their motion
is governed by classical mechanics plus “conservative” stochastic forces. On
forming this arithmetic mean we arrive at an equation that can be con-
verted into the time-dependent Schrödinger equation. We demonstrate that
Wallstrom’s objection [20] against the legitimacy of this conversion and his
arguments in favor of the standard approach to the quantization of orbital
momentum are based on a misunderstanding and ignores fundamental con-
siderations of Pauli [21] and Born and Jordan [22] in the early days of “con-
ventional” quantum mechanics. In Section 15 we show how the derivation of
the time-dependent Schrödinger equation can be extended to comprise elec-
tromagnetic fields. The derivation can be extended further to interacting
many-particle systems. A considerable portion of our elaboration is devoted
to the phenomenon of particle spin and the associated equations of motion,
i. e. the Pauli- and the Dirac-equation.

3 Fundamental phenomena of quantum mechanics

As already alluded to above, there are several fundamental phenomena
whose existence is directly connected with vacuum fluctuations:

• Stability of atoms

• Zero-point motion of harmonic oscillators

• Heisenberg’s uncertainty relation

9



• Tunneling, e. g. from a pointed metal cathode

• Occurrence of the de Broglie-wavelength

• Spreading width of a particle’s trajectory

• Interference at a double-slit diaphragm

• Short-range forces mediated by massive messenger particles

1. Stability of atoms

Rutherford’s model of the hydrogen atom offered a plausible explanation
of his scattering experiments, but it remained unclear why the hydrogen
electron does not constantly loose energy by light emission and eventually
stops at the atomic nucleus. Bohr’s model did not resolve this fundamen-
tal problem but rather removed it by postulating the non-radiative stabil-
ity of electronic orbitals whose angular momenta were integer multiples of
Planck’s reduced constant ~ = h

2π . Schrödinger [5] could later demonstrate
that these states of stability correspond to eigenfunctions of his partial dif-
ferential equation. But again, it remained enigmatic what an electron in
the lowest eigenstate (which does not possess angular momentum) prevents
from being swallowed by the nucleus or being as close as possible to it. In
extending Schrödinger’s theory to many-electron atoms, it became clear that
the solutions to this N -electron equation wouldn’t either give a hint of the
mechanism behind atomic stability. As this fundamental question of stabil-
ity is not raised any more in present-day quantum mechanics, there seems
to be a tacit agreement that one should no longer look for an answer.
As already indicated, one of the central messages of the present exposition
will be that vacuum fluctuations are responsible for the stability of atoms
and thus explain also the existence of atomic and condensed matter in the
universe. We confine ourselves to the hydrogen atom and give a rough es-
timate of its linear dimension which results from those fluctuations. The
considerations apply similarly to any other atom of the Periodic Table.
We assume that the electron is kicked off its position near the nucleus by
receiving n successive and equal portions of kinetic energy ∆Ekin so that
it moves up the nuclear Coulomb potential in small time-steps ∆tν toward
the atomic periphery. These time-steps are implicitly defined through

∆Ekin ∆tν =

∫ tν+∆tν

tν

m0

2
ṙ2(t) dt ; m0 = mass of electron .

Here ṙ(t) denotes the radial velocity of the electron in a spherical coordinate
system centered at the atomic nucleus.
We thus have for the total action ∆E ∆t

2 that has been transferred to the
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electron within a time interval ∆t
2

∆Ekin
∆t
2 =

n∑
ν=1

∆Ekin ∆tν =

∫ ∆t
2

0

m0

2
ṙ2(t) dt .

At the end of this time span the electron has used up its last portion of
kinetic energy and comes to a stop at a distance R from the nucleus. One
could just as well say that the electron possessed during the time intervall
∆t
2 the average kinetic energy

∆Ekin = 1
∆t
2

∫ ∆t
2

0

m0

2
ṙ2(t) dt . (2)

While moving upwards in the nuclear potential this average energy, provided
by the vacuum, is finally used up when the electron reaches the distance R
from the nucleus. In the ensuing equally large time interval the electron falls
back toward the nucleus where it delivers the gained kinetic energy back to
the vacuum. Hence, the duration of the full fluctuation process is ∆t.
When the electron comes to a stop at r = R, its kinetic energy at a smaller
distance r < R from the nucleus is given by

m0

2
ṙ2 =

e2

4πε0r
− e2

4πε0R
(3)

e = elementary charge ; ε0 = permittivity of the vacuum .

This can be rewritten

ṙ =
1

β

√
1

r
− 1

R

or alternatively

dt

dr
= βR

1
2

r
1
2

√
R− r

(4)

where

β =
1

e

√
2πm0 ε0 . (5)

Insertion of Eq.(3) into Eq.(2) yields

∆Ekin
∆t
2 =

e2

4πε0

∫ R

0

(
1

r
− 1

R

)
dt

dr
dr .

Here the lower integration limit has approximately been equated to r = 0.
If one now uses Eq.(4) and evaluates the integral one obtains

∆Ekin ∆t =
e2

4πε0
π β
√
R . (6)
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According to Eq.(1) the left-hand side is equal to f~. Hence, inserting this
and β from Eq.(5) into Eq.(6) and solving for R one obtains

R =
~2

m0 e2
4π ε0 (7)

where we have set f = 2.2 as one of the f -values which are considered
admissable. This “stop-value” of R is the Bohr radius which represents
quite generally a fundamental length in atomic, molecular and solid state
physics.

2. Zero-point oscillations and localization energy

The preceding considerations apply similarly to a harmonic oscillator whose
potential energy in a spherical coordinate system is given by

V (r) =
m0

2
ω2 r2

where m0 is the oscillating point mass and ω stands for the angular fre-
quency. One starts again from Eq.(2) and obeserves

m0

2
ṙ2 =

m0

2
ω2
(
R2 − r2

)
where R denotes the point at which the mass comes to a stop and reverses
its motion. All parts of the previous line of thought carry over and one
obtains

R =

√
~

m0 ω
. (8)

Here we have set f = π
4 = 0.78 which is at the lower limit of the admiss-

able range. The classical energy of a harmonic oscillator for an oscillation
amplitude R is given by

∆E =
m0

2
ω2R2 .

Insertion of R from Eq.(8) yields the well known expression for the zero-point
energy

∆E =
~ω
2
. (9)

The average potential energy is one third of this energy

V =
m0

2
ω2 ∆r2 =

1

3

~ω
2

; r2 =
1

R

∫ R

0
r2 dr . (10)

One can define an effective diameter of the oscillator by setting

d0 =
√

3∆r2 =

√
~

m0 ω
. (11)
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By employing Eq.(9) this relation can be recast

∆E =
~2

2m0

1

d2
0

.

This expression is occasionally referred to as “localisation energy”. It obvi-
ously increases as d0 decreases.
Eq.(11) illustrates an interesting feature of oscillating atoms as constituents
of some matter. Consider, for example, liquid Ne: the atoms keep a certain
average distance at a given temperature T . This distance shrinks as one
lowers the temperature, and the atoms form eventually a solid lattice where
they end up merely performing a zero-point motion about a (more or less)
regular array of rest positions at T = 0. However, the latter situation is only
possible if the width d0 of their zero-point motion is considerably smaller
than the distance between neighboring rest positions. Liquids of all rare
gases meet this requirement except for liquid He. Since the atomic mass of
He is smallest, the width is largest. It turns out that a stable lattice cannot
be formed any more. Liquid He melts in its own zero-point motion so to
speak. Nevertheless, it can be solidified by applying pressure which reduces
the interatomic distance and thereby narrows the potential well in which the
atoms oscillate. The oscillation frequency ω in this narrower potential well
is higher than before, and hence, because of Eq.(11), d0 decreases thereby
making a stable lattice now possible.
The existence of zero-point motion of atoms in molecules has first been
demonstrated by Mullikan[23] in 1924.
A more spectacular experiment was carried out by Clusius[24] in 1942. He
adsorbed light hydrogen molecules on a solid surface where they do not
desintegrate and where they are thus bound by a weaker (negative) adsorp-
tion potential in which they can perform (almost harmonic) oscillations. The
associated zero-point energy ∆E is by the amount ~ω

2 above the lowest point
V0 of the adsorption potential. The absolute value of the latter would be
the sublimation energy of the hydrogen in the absence of zero-point motion.
Due to its presence one measures a smaller amount |V0 +∆E| instead. If one
replaces the light hydrogen with heavy hydrogen, the adsorption potential
remains unaffected because it is only controlled by the interaction between
the hydrogen- and the substrate-electrons. However, because of the greater
mass of heavy hydrogen and because of

ω =

√
κ

m0
; κ = effective spring constant

∆E becomes smaller, and the sublimation energy goes up. Clusius obtained
two sublimation energies 184 cal/mol and 274 cal/mol for light and heavy
hydrogen, respectively. This large difference is entirely due to the presence
of zero-point motion.
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3. Heisenberg’s uncertainty relation

One of the most popular effects caused by vacuum fluctuations is the seeem-
ingly fundamental interconnection between the dispersion ∆x2

i of a parti-

cle’s position r = (x1, x2, x3) and the dispersion ∆p2
i of its linear momentum

p = (p1, p2, p3). Again, the harmonic oscillator is particularly well suited to
demonstrate this interrelation. We limit ourselves to the one-dimensional
case. The mean square displacement ∆x2 which is caused by vacuum fluc-
tuations is linked to the average kinetic energy through

Ekin =
∆p2

2m0
=

1

2

~ω
2

; ∆p
def
= p .

Solving for ∆p2 one obtains

∆p2 =
~
2
m0 ω .

From Eq.(10) one gets

∆x2 =
~
2

1

m0ω
.

Hence we have

∆p2 ∆x2 =
~2

4
,

or cast differently

∆p∆x =
~
2

(12)

where ∆x
def
=
√

∆x2 ; ∆p
def
=

√
∆p2 .

Eq.(12) constitutes a special case of Heisenberg’s [25] famous uncertainty
relation which he put forward in 1927. Since its inception it has gained the
recognition of a corner stone of quantum mechanics in particular in connec-
tion with the “process of measurement”. It falls essentially out of the blue
as many other important items of quantum mechanics, and it seems that
the idea it might have it roots in vacuum fluctuations has never dawned on
the opinion leaders in this field.

4. Tunnelling

To explain another quantum mechanical phenomenon which doesn’t have a
classical counterpart we refer to the following figure. It depicts a situation
where a particle moves parallel to the x-axis in the potential of a harmonic
oscillator and is, in addition, exposed to an external force field F (x) . The
potential associated with the latter is given by −F x and appears in the
figure superposed with the parabolic potential of the oscillator. The su-
perposition lowers the parabola slightly and shifts the vertex to the right.
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Figure 1: Harmonic oscillator in a uniform electric field

The energy of the particle is indicated by a horizontal line.The points x1

and x2 mark turning points where the particle reverses its classical motion.
Classically, the point x3 cannot be reached. However, under the influence of
vacuum fluctuations it can overcome the potential barrier at the high point
U ′m if its energy is temporarily lifted by the amount ∆E = U ′m−E = ~/∆t.
(Here we have set f = 1.) Hence we have:

∆t =
~

U ′m − E
. (13)

Within this time span the particle must finally return to point x2 or reach
the point x3 where - in either case - the extra energy must be returned to the
vacuum. Only the second option is of interest for the envisaged explanation
of the tunnelling phenomenon. The particle’s acceleration is right of xm.
i. e. within the range of the uniform force field, given by F/m0. Hence, the
particle takes ∆t′ seconds to cover the distance x3 − xm where ∆t′ results
from

x3 − xm =
F

2m0
(∆t

′
)2 . (14)

If that time is shorter than the fluctuation time ∆t

∆t
′ ≤ ∆t

the particle can, nevertheless, reach the region right of x3, and hence one
can cast Eq.(14) as

x3 − xm ≤
F

2M0

(
~

∆E

)2

, (15)

where Eq.(13) has been used. As one notices from Fig.1 the external force
can be expressed

F =
∆E

x3 − xm
.
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If one eliminates x3 − xm from Eq.(15) by using this relation one obtains

√
2m0

F ~
φ3/2 ≤ 1 . (16)

The quantity φ = U ′m − E represents the workfunction, i. e. the minimum
energy required to extract an electron from its potential well. Expression
(16) combines the various constituents exactly the same way as they appear
in the Fowler-Nordheim equation [26] which describes the electron emission
from a cold cathode under the influence of an external electric field.
If one inserts ~ = 6.5822 · 10−16 eV s and φ ≈ 5 eV into Eq.(13) one obtains
an extremely short tunnelling time of ≈ 10−16s.
The expression

√
2m0 φ

3/2/(~F ) becomes equal to unity for an electric field
strength Ê ≈ 5 · 108 V cm−1 and for φ = 4.6 eV which is the workfunction
of tungsten, one of the favorite metals for cathodes. These are the work-
ing conditions for “field emission” which stands for electron tunneling from
sharply pointed metal tips. In a typical field electron microscope - which
attracted much attention about 60 years ago before it was superseded by
the field ion microscope - the tungsten tip was etched down to a semisphere
with a radius R of about 0.5 · 10−5cm. Under these conditions the electric
field at the tip is given by V/R where V denotes the Voltage between the
tip and some anode within the evacuated apparatus. According to Eq.(16)
the tip yields field emission when V ≈ 2.5 kV , largely in agreement with the
experiment.
From our discussion it is obvious that tunnelling actually means overcoming
a potential barrier which is only possible with the aid of energy fluctuations.
If one adheres to the classical perception of an “inert vacuum” one is forced
to assume that the particle can reach the point x3 only when it digs itself a
horizontal tunnel from x2 and x3. It is this idea which explains the actually
unphysical term “tunnelling”.

5. Occurrence of a “de Broglie-wavelength”

As we shall see later when our concept of energy fluctuation has been cast
into a more precise form, these fluctuations give rise to a non-undulatory
probability of the particle’s appearance in space when it is bound in some
potential at lowest energy. This situation is referred to as “groundstate”.
The first two cases discussed above represent examples of it. By contrast,
excited states display an undulatory probability distribution. Conventional
quantum mechanics considers this property as a proof of “particle/wave-
duality”. In our approach, which deals exclusively with point-like particles,
the undulatory behavior of their motion emerges naturally from vacuum
fluctuations.
In classical mechanics a bound particle is at rest at the point of lowest po-
tential energy. If one allows energy fluctuations ∆E to occur as a result
of which the particle leaves its position of lowest energy, ∆E can only be
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positive. However, if one considers a particle that moves classically already
at a velocity v̄ and possesses, therefore, a kinetic energy m0

2 v̄2 at the outset,
it can temporarily transfer this energy to the vacuum. That means that for
a duration time ∆t of this fluctuation the exchanged energy ∆E is negative.
In a subsequent time interval of the same length ∆t the original energy m0

2 v̄2

is not only restored but also increased by m0 v̄2

π of fluctuative energy. Here
π appears in place of 2 after one has averaged over an assumed sinusoidal
time-dependence. All quantities that come into play are displayed in Fig.2
where the factor f in Eq.(1) has been set f = 1.
The little algebra shown in the figure may be summarized as follows:

Figure 2: Connection between energy fluctuation ∆E and de Broglie
wavelength λ

After the particle has slowed down it must pick up speed again to establish

the original state. Thus, λ
def
= 2v̄∆t presents an interval of periodicity in

real-space, where the velocity of the particle drops and increases again. For
that interval of periodicity one obtains

λ =
2π ~
m0v̄

. (17)

This constitutes de Broglie’s famous result of 1924 for the “wavelength of a
matter wave” [4] which he obtained by “educated guessing” from Einstein’s
article on “light quanta” [27] of 1905.
If a particle moves freely, there are no specific points in space that would
offer themselves as a marking for the beginning and the end of a spatial
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oscillation period. However, when the particle moves, for example, in a har-
monic oscillator potential or in a potential well, the classical turning points
represent special points of this kind. In this case the sections of larger (or
smaller) kinetic energy density for the forward and backward motion coin-
cide, and thus the waviness of its energy density along the direction of its
motion becomes visible. According to Eq.(17) there are longer periodicity
intervals (wavelengths) where v̄ is small, viz. toward the turning points, and
shorter intervals around the potential minimum where v̄ is large. Beyond the
turning points where classical motion is not possible any more, the kinetic
energy density drops smoothly similar to its behavior in the groundstate of
the particle. This behavior is illustrated in Fig.3 which refers to a parti-
cle that oscillates along the x-direction in a harmonic oscillator potential.
Clearly, given the energy of the particle, stationary states can only occur if

Figure 3: Stationary states of a harmonic oscillator

an integer multiple of fluctuation intervals can develop between the classical
turning points. The respective energies have been denoted E0 to E7 in the
above figure.
In the following we imagine the x-axis subdivided into sufficiently small equal
portions ∆x. As the particle moves back and forth along the x-direction in a
varying potential, its velocity - averaged over a fluctuation interval - changes
as v̄(x), which means, it spends different “residence times” ∆t(x) = ∆x

v̄(x) per

oscillation period T in those intervals. The quantity ∆t(x)
T may therefore be

interpreted as a probability of the particle being in the respective interval
∆x. The figure below refers to a stationary state that would correspond
to E11 in the numbering of Fig.3. We have depicted the associated oscilla-
tory probability density (in grey) that results from the fluctuating energy
exchange with the vacuum compared to the probability distribution in case
the particle moves classically at the same energy. The classical turning
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Figure 4: Classical (.....) vs. oscillatory probability density of a particle in
the potential of a harmonic oscillator

points are marked by vertical broken lines. The solid oscillatory curve refers
to a thought experiment where it has been assumed that the magnitude of ~
is reduced, but the lengths of the oscillations and v̄(x) have been kept fixed.
From the equations employed in Fig.2 we have

v̄∆t =
λ

2
↪→ ∆t fixed .

It follows then from ∆E∆t = ~ that ∆E shrinks as ~ is continuously low-
ered. That means that the portions of energy exchanged with the vacuum
become smaller and smaller so that the oscillatory solid curve in Fig.4 grad-
ually approaches the classical curve.

6. Spreading width of a particle’s trajectory

If a free particle traverses the vacuum with a momentum p its energy
p2/2m0 undergoes temporary changes ∆E = (2 p · ∆p + ∆p2)/2m0 that
cause changes of its momentum in all directions. Those with components
perpendicular to p lead to shifts ∆r⊥ sideways to its previous trajectory.
After ∆t seconds the original momentum (and energy) is restored so that
one can regard the whole process as a phenomenon of reversible scatter-
ing, which, however, leads to a shift ∆r⊥. Since the subsequent shifts can
have both signs, only their square remains non-zero on averaging over suf-
ficiently many reversible scattering processes of this kind. The average can
be obtained by invoking ∆E∆ t ≈ ~/2 and setting ∆E = ∆p2

⊥/2m0 =
1
2m0(∆v⊥)2 which yields ~∆t/2 ≈ 1

2m0(∆v⊥∆t)2 . We observe that ∆v⊥∆t
= ∆r⊥, and hence

∆r2
⊥ ≈

~
m0

∆t . (18)

To keep the notation simple we have used the overline only in the last line
to indicate averaging. The above equation has the form of Einstein’s law
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on the mean square displacement of a particle that performs a Brownian
motion. This is not a coincidence and will prove to be of crucial importance
in the derivation of the Schrödinger equation.
One may now define a cone which is rotational symmetric around the parti-

cle’s classical trajectory and has a cross section of
√

4 ~ t
m0

in diameter when

the particle has moved for t seconds. It comprises essentially all irregular
portions of the perturbed trajectory and its cross section widens in time
as the particle moves further. If the particle is very fast or heavy or both,
and if the length of its trajectory as a free particle is limited for practical
reasons, the diameter of this cone remains small everywhere and can well
prove undetectable in practice. It is often sufficient that the particle is fast.
The traces of α-particle trajectories in a track chamber constitute a well
known example. If an α-particle is emitted from some radioactive nucleus
it possesses a kinetic energy of ≈ 5 MeV. After it has covered a distance of
10 cm the apparent width of its trajectory has only grown to ≈ 1·10−6 cm.
In the case of a macroscopic particle, a steel ball, for example, which drops
in a vacuum chamber, it appears to be clear at first sight that there will be
no aberration from its classical trajectory. However, on a microscopic scale
the trajectory of its center of gravity is irregular as well, but the diameter of
the cone remains tiny everywhere because m0 is large. All these examples
sum up to the conclusion: The laws of quantum mechanics remain valid in
the world of macroscopic physics, contrary to a widely held conviction.

7. Interference behind a double-slit diaphragm

Given the fact that vacuum fluctuations are real and cause an irregular mo-
tion of particles, how can one understand the phenomenon of what seems
to be an “interference of matter waves”? The latter relates to a hardcore
experiment of quantum mechanics, i. e. to a setup that consists essentially of
a cathode which emits electrons toward a two-slit diaphragm and a detector
plane behind it where the electrons are monitored. The overall impression
is that one observes in the distribution of the electrons hitting the monitor
a Fraunhofer-type interference pattern. Feynman regarded this apparently
inexplicable phenomenon as the key problem of quantum mechanics. To
demonstrate that one is dealing here with a single-particle phenomenon,
one lowers the particle current in the experiment to the extent that there is
only one particle at a time in the experimental setup. Once the particle has
been detected in the monitor plane by some channel of an extremely fine-
meshed channeltron, for example, the next particle starts from the cathode,
and so on. It is instructive to use a plotting paper with a quadratic line
network as a one-to-one map of the array of the channels. Every time a
channel detects a particle, the respective square in the line-network is black-
ened. The following figure shows the result one obtains after 11, 200, 6000,
40.000 and 140.000 particles have passed the setup and hit the channeltron.
The pattern has been inverted from white to black so that the detected par-
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ticles appear as white spots. (The mentioned number of particles refer to
the panels a, b, c, d and e in the figure.) If one closes one of the slits, the

Figure 5: Effective interference pattern

typical diffraction pattern disappears.

To make the message of the above diffraction experiment even more dra-
matic, one could, in principle, use 140.000 identical setups distributed over
140.000 different laboratories of the world. If each laboratory would obtain
only one spot on its associated plotting paper - after the setup has been
switched on - and if one would afterwards collect the 140.000 different plot-
ting papers and project them on top of each other, the result would look
like panel e in the above figure.

Our entire exposition rests crucially on the assumption that each particle
moves along a trajectory which - though being irregular - is elongate without
loops. Hence, each particle can only move through one of the slits. How can
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it feel whether or not the other slit is open? The following figure depicts
some details that refer to this question. As for the electrons coming from

Figure 6: Origin of interference

the left the situation has been simplified in the following figure. The two
straight trajectories running toward their respective slit are obtained from
averaging over a very large ensemble of identical setups in each of which
only one electron is emitted from the cathode. One imagines the wiggly
trajectory of each electron plotted along its way from the cathode to the
monitor. These trajactories are thought to be projected on top of each
other to form an average v(r) of their velocities vi(r) ; i = 1, 2, ... and the
density ρ(r) of their position at each point r. This averaging yields a set of
parallel trajectories, and the ones that are shown represent just two which
hit the respective slit in the middle. The occurrence of the other parallel
trajectories will not modify the conclusions drawn from the behavior of the
two particular ones.
No averaging has been performed on the right-hand side of the diaphragm.
However, we show only twelf irregular trajectories from twelf separate equiv-
alent setups picked at random. It appears to be an enduring problem in
understanding quantum mechanics that it deals with statements on ρ(r)
and v(r) referring to one particle in a specifically chosen setup, but these
two quantities are determined by averaging over the respective positions and
velocities of a infinitely large number of particles in separate equivalent se-
tups. This will be explained in more detail in Section 4. The construction
of these setups is guided by the idea that each of the particles in its setup-
referenced coordinate system would move exactly along the same trajectory
if the embedding vacuum were inactive. Hence, when the activity of the
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latter is turned on, the trajectories, which are now all different, display the
range of possibilities as to how Newtonian trajectories can be deformed by
reconstructive stochastic forces. Since v(r) is the weighted sum of the veloc-
ities vi(r) within an elemental volume ∆3r about r, this velocity changes,
of course, when one closes one of the slits. Often one relies on ergodicity and
envisions the set of separate systems as equivalent to one system where the
trajectory evolves for some limited time and the whole process is repeated
then periodically. If one wants to know for some position r the average ve-
locity v(r) which the particle possesses in repeated experiments, one has to
form the weighted sum of the individual velocities in subsequent processes
as indicated in the above figure. Although in one of the experiments (pro-
cesses) only one of the trajectories is realized, the velocity v(r) at r depends
on the other trajectories that are realized at another time. The salient point
here is: The associated Schrödinger equation for the setup under study only
yields the wavefunction ψ(r) = |ψ(r)| ei ϕ(r) where ~

m0
∇ϕ(r) = v(r). (For

an explanation see Section 6.) In other words: the quantum mechanics of
the experiment does not provide information on any of the individual
trajectories that are actually occurring in reality.

8. Short-range forces mediated by massive messenger particles

This topic is an almost classical example of the fundamental Eq.(1) govern-
ing vacuum fluctuations. However, Eq.(1) is rarely adressed as such, i. e. as
a rule of great generality in microphysics.
The strong internuclear forces are believed to be mediated by pions which
possess a rest energy m0c

2 of ≈ 135 MeV. By allowing sufficiently large
energy fluctuatuations ∆E to occur these pions can spontaneously pop up
from the vacuum and live for some time while they are moving. We imagine
they move at a speed 0.6 c whereby their energy increaes up to ≈ 169 MeV.
Hence their lifetime is according to Eq.(1)

∆t =
2~

169 MeV
≈ 8 · 10−24s

where we have set f = 2. Because of their speed of 0.6 c they cover within
this time span a distance of 1.4·10−13 cm which is about the experimental
value of the range of internuclear forces.
We have chosen a speed of 0.6 c because a larger speed would increase the
effective energy of the pion and thereby lower ∆t and subsequently lower
the covered distance.

4 Defining ensembles and averages

As in the theory of diffusion we start with considering a point-like particle
that is driven by an external conservative force F (r) and moves in an envi-
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ronment where it is exposed to additional stochastic forces. To gain access to
quantities that are commonly discussed within this framework we construct
a sufficiently large set of N identical systems (an ensemble of systems) under
the supposition that there is no correlation between the stochastic forces of
different systems. As a fundamental consequence, one is led then, as in the
theory of diffusion, to a form of quantum mechanics that merely describes
ensemble behavior. But this, again, is in accord with Ballentine’s view [18]:
“..in general, quantum theory predicts nothing which is relevant to a single
measurement (excluding strict conservation laws like those of charge, energy
or momentum).”
To fully understand this approach, one should always have a clear picture
of the two key items defined in the following. In asking for the relative fre-
quency with which a particle appears in an elementary volume ∆3r about
a point r one imagines that the same elementary volume ∆3r is marked in
all the N systems of the ensemble each of which contains only one particle.
“Identical systems” in that context means that they are in every respect
identical except that the stochastic forces in them are independent so that
a stochastic force at a point r is not identical with the stochastic force in
any of the other systems at the same point. How could one check that these
stochastic forces are independent but physically equivalent? If one counts n
particles in those N elementary volumes about r and forms n(r)

N , this rela-
tive number must be independent of N if the latter is large enough. If one
speaks of “the number of particles in ∆3r” it always implies an imagined
projection of those N elementary volumes into one.

After these preliminaries we define as set out above: The relative freqency
with which the particle appears at the time t in an elementary volume ∆3r
about the point r is given by

n(r, t)

N
= ρ(r, t) ∆3r (19)

where n(r, t) is the number of particles in ∆3r, and ρ(r, t) denotes the prob-
ability density. We, furthermore, introduce Nr for the number of elementary
volumes into which the total volume V is thought to be subdivided. Since
the sum over all elementary cells yields N particles we have

Nr∑
r

n(r, t)

N
= 1 that is

∫
V
ρ(r, t) d3r = 1 . (20)

We refrain here from discussing the proper limiting case N →∞ and relat-
ing relative frequencies to probabilities, as this matter has extensively been
analyzed elsewhere (s. e. g. Streater [16]). We assume that there will always
be a smooth function ρ(r, t) for any finite N that provides a least mean

square fit to the actually histogram-type function
n(rj ,t)
N in real-space where
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j numbers the cubes into which the normalization volume V is thought to
be subdivided, and rj denotes the centroid of the particle positions in the
respective cube.

The relative frequency n(r,t)
N which we shall express below as the mod

squared of some wave function ψ(r, t), refers - when multiplied by ∆3r -
to the subset of identically prepared systems where the particle appears at
r and nowhere else simultaneously, otherwise the term “particle” would be
meaningless. We think that the commonly used phraseology “probability
of finding the particle at r” is inappropriate because it suggests that one
would have placed a detector at r monitoring the occurrence of that parti-
cle. However, a detector would - apart from causing various uncontrollable
perturbations - terminate the motion of the particle on impact, and hence
there would be a shadow area behind the detector where n(r,t)

N ≈ 0, differ-
ent from the original unperturbed situation. Wherever in the following the
quantity n(r,t)

N ∆3r or ρ(r, t) ∆3r will appear it is clearly to be understood
as the probability of the particle being in ∆3r about r.

We temporarily number the particles in ∆3r at time t by an index i:

i = 1, 2 . . . n(r, t) .

The particles move, in general, at different velocities vi(t). We define the
ensemble average of the latter as

v(r, t) =
1

n(r, t)

n(r,t)∑
i=1

vi(t) . (21)

As is familiar from the theory of diffusion, the individual velocities vi(t) in
∆3r will in general be quite different from v(r, t) which we shall come back to
later in Section 11. By contrast, in Bohm’s version of quantum mechanics
[28] the true particle trajectories are, for no obvious reason, regarded as
the flowlines of the velocity field v(r, t). This is one of the points where
our approach differs fundamentally from Bohm’s and reflects a concomitant
feature of our definition of v(r, t):
In performing the average according to Eq.(21) one sums over velocities vi(t)
of different trajectories that run through sometimes very different regions of
the available space of the one-particle system. Hence, they are influenced by
the classical field F (r) in those regions. This carries over to the ensemble
average v(r, t). That means: if one places a two-slit diaphragm somewhere
away from r and closes one of the slits, a continuous subset of trajectories
is blocked out, and hence v(r, t) changes. That kind of non-local sensitivity
explains why the flowlines of the field v(r, t) are affected by portions of the
space which may be far away. The unfamiliar feature of non-locality will be
illustrated by a particularly surprising example in Section 10.
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As a general property of the stochastic forces that act on the respective
particle in each system, we require them to ensure ergodicity in the following
sense:
If the system is not explicitly time-dependent, that is, when it is in a bound
stationary state and if one would follow the particle on its trajectory within
the range it is bound to, one would see it successively occur in all the cubes
∆3r over which - in the ensemble average - all particles of the ensemble
are distributed at a certain instant t. Thus, instead of forming the ensemble
average according to Eq.(19) it can for a single particle just as well be defined
as

lim
T→∞

∆t(r)

T
= ρ(r) ∆3r (22)

where ∆t(r) denotes the overall time which the particle has spent occurring
repeatedly in ∆3r about r within the total time span T .
The velocity v(r) can be defined analogously

v(r) =
1

n̂(r)

n̂(r)∑
i=1

v(ti) (23)

where n̂(r) = ρ(r) ∆3r is the number of times the particle has occurred in
∆3r about r, and ti denotes some point within the time span the particle has
spent there the ith time. In realistic cases in which the system under study
undergoes transitions between quasi-stationary states, one has to allow T to
be finite, and quasi-stationarity can only be ensured if the changes are suf-
ficiently slow on a time scale of unit length T . Practical experience shows,
that this applies to the majority of cases. However, in Section 24 we shall
give an example where T must be expected to be far too long to justify a
classification of the states in a photo emission transition as quasi-stationary.
Yet, the bulk of this article will deal with ensemble averages.

5 Navier-Stokes equations

If a particle of mass m0 moves in an environment of kinematic viscosity
ν the resulting ensemble average of its velocity v(r, t) is just the sum of
the so-called “convective velocity” vc(r, t) and a “diffusive velocity” u(r, t)
driven by the stochastic forces of the embedding medium:

v(r, t) = vc(r, t) + u(r, t) (24)

Employing the Smoluchowski equation (s. Section 39) for the probabil-
ity density ρ(r, t), similarly for the probability current density jc(r, t) =
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ρ(r, t)vc(r, t) and invoking Einstein’s law [29] for the mean square displace-
ment we obtain a Navier-Stokes-type equation of the form

∂

∂t
(v − u) + [(v + u) · ∇(v − u)]− ν∆(v − u) =

1

m0
F (r) . (25)

with F (r) = −∇V (r) denoting the external conservative force acting on the
particle. The “osmotic” or “diffusive” velocity u(r, t) is defined by

u(r, t) = −ν ∇ρ(r, t)

ρ(r, t)
, (26)

or equivalently in terms of the diffusive current density jD

jD(r, t) = −ν∇ρ(r, t) “Fick’s law” (27)

where

jD(r, t) = ρ(r, t)u(r, t) . (28)

In the special case when vc ≡ 0 the equation of continuity reduces to

∂

∂t
ρ+∇ · ρu = 0 , (29)

which on insertion of u(r, t) from Eq.(26) attains the form of the diffusion
equation

∂

∂t
ρ = ν∆ρ . (30)

On the other hand, when ν = 0 one has u(r, t) ≡ 0, and hence all particles
move now along smooth trajectories r(t) so that the various velocities vi(t)
under the sum in Eq.(21) become equal: vi(t) = v(r(t)). Thus

∂

∂xk
v(r(t)) ≡ 0 (k = 1, 2, 3) → v · ∇v ≡ 0 ,

and consequently Eq.(25) reduces to Newton’s second law.

The set of equations (25) to (27) will be derived in Section 39.
Eq.(26) may be rewritten

u(r, t) = −ν∇ρ(r, t)

ρ(r, t)
= −ν∇ ln[ρ(r, t)/ρ0] (31)

where ρ0 denotes a constant density that has merely been inserted for di-
mensional reasons. As u(r, t) can be expressed as a gradient of a function,
we have

∇× u(r, t) = 0 , (32)

27



and hence

(u · ∇)u = ∇ u2

2
. (33)

If we, further, make use of the identity

∇× (∇× a) = ∇(∇ · a)−∆a (34)

and observe Eq.(32) we obtain ∆u(r, t) = ∇(∇ · u(r, t)). Thus, Eq.(25) in
conjunction with Eq.(26) may be cast as

m0
d

dt
v(r, t) = F (r)−∇Vstoch(r, t) + ~Ω(r, t) , (35)

where Vstoch(r, t) and ~Ω(r, t) are abbreviations which stand for

Vstoch = ν2

[
1

2

(
∇ρ
ρ

)2

− ∇
2ρ

ρ

]
, (36)

and

~Ω =
∂u

∂t
+ (v · ∇)u− (u · ∇)v + ν∆v .

In deriving (36) we have observed that 1
ν ∇u = −∆ρ

ρ + (∇ρρ )2. Furthermore,

we have introduced dv
dt as the “convective (or hydrodynamic) acceleration”

which in the present context merely represents an abbreviation

dv(r, t)

dt
=
∂ v

∂t
+ v · ∇v . (37)

The “stochastic potential” Vstoch(r, t) depends on ν2 whereas ~Ω(r, t) is pro-
portional to ν.
The latter constant is associated with the occurrence of the stochastic forces
which - in the absence of an external force F (r) - would slow down the par-
ticle within a characteristic time τ .
Since the physical vacuum does not represent an embedding medium whose
stochastic forces can cause a particle to slow down completely, we modify
the character of the stochastic forces by assuming that they change peri-
odically after a time lapse of ≈ τ sec from down-slowing “Brownian” to
motion enhancing “anti-Brownian” and vice versa. The “anti-Brownian”
forces act as if the kinematic viscosity would have a negative sign. Hence,
the corresponding equation of motion has the form

m0
d

dt
v(r, t) = F (r)−∇Vstoch(r, t)− ~Ω(r, t) . (38)

In Section 16 we give an example of an embedding medium that acts on a
test particle by alternating Brownian/anti-Brownian forces.
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If we now additionally assume that the temporal changes that occur with
all quantities in Eqs.(35) and (38) are slow on a scale of unit length τ -
which is the standard requirement also in diffusion theory - the motion of
the ensemble will be governed by the arithmetic mean of these equations,
that is by

m0
d

dt
v(r, t) = F (r)−∇Vstoch(r, t) . (39)

A more detailed definition of the stochastic forces that ensure “conservative
diffusion” will be given in Section 13. Wavelike solutions to Eq.(39) show
now friction-less behavior.
One might suspect that our subdivision into a Brownian “B“-ensemble
and an anti-Brownian “A”-ensemble is unnecessarily clumsy and could be
avoided at the outset by assuming vacuum forces that neither possess down-
slowing components nor counterparts that effect motion enhancement, but
rather consist of random (Gaussian) forces whose components form a nor-
mal distribution. However, from Einstein’s theory of Brownian motion the
kinematic viscosity (or “diffusion constant”) emerges as

ν =
kB T τ

m0
(Einstein: ∆xi ∆xj = 2 δij ν∆t ; i, j = 1, 2, 3 ) (40)

where m0 is the mass of the particle under study, ∆xi ,∆xj are displace-
ments of its position and T is the effective temperature of the embedding
medium. This temperature enters into the derivation as the width of the
distribution of the random (Gaussian) forces that act on the particle apart
from the directional down-slowing force. Because of the latter there is a
down-slowing motion that we have already alluded to. The associated time
constant is denoted by τ . Equating the down-slowing forces to zero amounts
to τ →∞ which would yield infinite kinematic viscosity. Hence, there is no
alternative to our approach.
Obviously, the physical dimension of the numerator of the above fraction in
Eq.(40) is that of an action, i.e. energy×time. As ν appears via Vstoch(r, t) in
Eq.(39) which is constructed to describe dissipationless motion in a “stochas-
tic vacuum” whose effect on a particle can only be associated with a new con-
stant of nature, one is justified in equating kB T τ with 1

2 ~ where h = 2π ~
is Planck’s constant. Of course, instead of 1/2 there could be any other
dimensionless prefactor in front of ~, but it turns out that the numerical
results of all quantum mechanical calculations that follow from Eq.(39) are
only consistent with the above choice. Clearly, that choice can only be made
once and for all.
Having thus calibrated the “vacuum-ν”we rewrite Eq.(39) in the form

m0
d

dt
v(r, t) = F (r)−∇VQP (r, t) , (41)
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where we have substituted the subscript “QP” for“stoch”

VQP = ~2

4m0

[
1

2

(
∇ρ
ρ

)2

− ∇
2ρ

ρ

]
“quantum potential” , (42)

or even shorter

VQP =
~2

2m0

∇2R

R
, (43)

where we have set

~
2m0

= ν =
kB T τ

m0
and ρ = R2 . (44)

The “quantum potential” has first been introduced by de Broglie [30] and
later been taken up again by David Bohm [28]. Obviously Eq.(41) may be
viewed as a modification of Newton’s second law. If not stated differently,
we shall assume F (r) to be conservative:

F (r) = −∇V (r) . (45)

The assumption made above, viz. that all changes of the ensemble properties
have to be sufficiently slow on a time scale of unit length τ may raise ques-
tions about the validity of such a constraint. Eqs.(41) and (42) will prove
equivalent to the time-dependent Schrödinger equation whose validity is un-
questioned at the non-relativistic level. Hence, τ is obviously sufficiently
small within the experimentally tested range of the Schrödinger equation.
Conversely, as one may conclude then from Eq.(44) the “effective temper-
ature” of the vacuum must be very high compared to those temperatures
commonly considered in applied thermodynamics and astrophysics.

Fundamentally different from our approach Bohm [28] derives Eqs.(41) and
(42) by choosing the opposite direction starting from the time-dependent
Schrödinger equation which he just considers given. Hence, he does not of-
fer any new insight into what makes the motion of a microscopic particle
different from Newtonian mechanics. In the context of Bohm’s mechanics
Eq.(41) is frequently cast such that it resembles the Hamilton-Jacobi equa-
tion. To this end one sets

v(r, t) =
1

m0
∇S(r, t) .

This implies that v(r, t) is irrotational, which is at best plausible, but re-
mains unproven.
Eq.(41) in conjunction with (42) then attains the form

1

m0
∇
[
∂S

∂t
+

(∇S)2

2m0
+ V (r)− ~2

2m0

∆R

R

]
= 0 .
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This is equivalent to

∂S

∂t
+

(∇S)2

2m0
+ V (r)− ~2

2m0

∆R

R
= 0 ,

and becomes identical with the Hamilton-Jacobi equation in the limit ~→ 0.
However, the connection to classical mechanics is far more evident from
Eq.(41), which reduces to Newton’s second law

F = m0
d

dt
v

as ~ tends to zero. In addition, Eq.(41) lends itself to a thought-experiment
that is particularly illustrative of the quantum character of particle motion.
One starts with setting ~ = 0 and assumes that all particles of the ensemble
commence their motion under identical initial conditions. Their positions
and trajectories will coincide then at any later time. One now lets ~ take
on a finite value. As a consequence of the now occurring stochastic forces
whose action on some particle is statistically independent from that on any
other particle, the particle positions start diverging and form a cloud about
the formerly common position along the trajectory. The particles of the
ensemble now reach positions that are not accessible under energy conser-
vation. It is hence obvious that the vacuum provides an embedding medium
of a “universal noise” consisting of energy fluctuations which cause shifts of
the individual particle trajectories such that the classical momentum and
the energy are conserved on the average. This is reflected in the expectation
value of the “vacuum force” FQP = −∇VQP (r, t) which equals zero:∫

ρ(r, t)FQP (r, t) d3r = 0 . (46)

We shift the proof of this equation to Section 14. Eq.(46) may be inter-
preted in the sense that the particles undergo only reversible scatterings.
Figuratively speaking, the vacuum keeps track of the energy balance and
remembers at later positions of a particle departures from its classical mo-
mentum and energy that occurred at previous positions. The undulatory
properties of the probability density reside in this memory effect which
gives rise to an unfamiliar non-locality. Hence, from our point of view it
is illegitimate to correlate these properties with a wave-like character of
the particle. We definitely side with Nevill Mott (1964) who argues:

“Students should not be taught to doubt that electrons, protons and the like
are particles....The waves cannot be observed in any way than by observing
particles.”
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6 The time-independent Schrödinger equation

As a first application we discuss the stationary state of a particle that is
bound to a potential without symmetry elements. Hence, the real-space
dependence of the potential does not display any distinct direction. That
means, when a particle of the ensemble appears with a velocity vi(t) in the
elementary volume ∆3r about r there will always be another particle in that
volume with approximately the opposite velocity, so that

v(r, t) =
1

n(r, t)

n(r, t)∑
i

vi(t) ≡ 0 . (47)

Hence, if one recalls (45) Eq.(41) reduces to

∇

(
~2

4m0

[
−1

ρ
∇2ρ+

1

2

(
∇ρ
ρ

)2
]

+ V (r)

)
= 0 .

This is equivalent to:

~2

4m0

[
−1

ρ
∇2ρ+

1

2

(
∇ρ
ρ

)2
]

+ V (r) = E , (48)

where E denotes a constant. Eq.(48) represents a non-linear partial differ-
ential equation in ρ(r).
On replacing ρ(r) by a function ψ(r) defined through

ρ(r) = ψ2(r) (49)

one obtains because of

∇ρ = 2ψ∇ψ ;
1

2

(
∇ρ
ρ

)2

= 2

(
∇ψ
ψ

)2

and

∇2ρ = 2ψ∇2ψ + 2 (∇ψ)2

−1

ρ
∇2ρ = −2

∇2ψ

ψ
− 2

(
∇ψ
ψ

)2

a linear differential equation

~2

2m0

[
− 1

ψ
∇2ψ

]
+ V (r) = E that is

− ~2

2m0
∇2ψ + V (r)ψ = E ψ (50)

which constitutes the time-independent Schrödinger equation.
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7 Including currents

For the familiar problem of a particle in a box Eq.(50) reduces in the one-
dimensional case to [

d2

dx2
+ k2

]
ψ(x) = 0 (51)

where we have set
k2 = 2m0

~2 E ; E = m0
2 v2

and

V (x) =

{
0 for 0 ≤ x ≤ a
∞ else

The solutions

ψ(x) = 1√
a/2

sin knx where kn =
π

a
n ; n = 1, 2, 3.. (52)

may be recast as
ψ(x) = 1√

2
[ψ+(x) + ψ−(x)]

where
ψ±(x) = 1√

a
e± iϕ(x) ; ϕ(x) = knx+ π

2 .

In the spirit of our approach the two independent solutions to the differential
equation (51), ψ±(x), refer to the particle moving with a velocity vn = ~ kn

m0

either to the right or (after reflection at x = a) to the left where it is reflected
again at x = 0.
We are thus led to surmise that we have in the general case of a freely moving
particle

ψ(r) = |ψ(r)| eiϕ(r) and v(r) =
~
m0
∇ϕ(r) . (53)

The validity of this conjecture will be shown in Section 8.
In a stationary state of the one-particle system in which ∂

∂tv = 0 but v(r) 6=
0 we have according to Eq.(37) d

dtv = v·∇v = 1
2∇v

2 where we have exploited
in advance that, according to Eq.(53), v(r) is irrotational. Hence, in the
presence of a stationary current Eq.(48) contains the kinetic energy m0

2 v2

as an additional term, that is

~2

4m0

[
−1

ρ
∇2ρ+

1

2

(
∇ρ
ρ

)2
]

+ V (r) +
m0

2
v2 = E . (54)

If one now makes use of Eq.(53) instead of Eq.(49)

ρ(r) = |ψ(r)|2 =
(
ψ(r) e−iϕ(r)

)2
(55)
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and substitutes ~
m0
∇ϕ(r) for v(r) the bracketed term in Eq.(54) becomes

~2

4m0

[
−1

ρ
∇2ρ+

1

2

(
∇ρ
ρ

)2
]

= − ~2

2m0

1

ψ
∇2ψ +

~2

2m0
(∇ϕ)2︸ ︷︷ ︸

=
m0
2

v2

+ i

[
~2

2m0
∇2ϕ+

~2

2m0

(
2∇ϕ · ∇ψ

ψ

)]
︸ ︷︷ ︸

= i~
2

[
∇·v+2v·∇ψ

ψ

]
.

Invoking the equation of continuity in the form

∇ · j = ∇ · ρv = ρ∇ · v + v · ∇ρ = 0

it can readily be shown that the term i[...] on the right-hand side equals
−m0 v

2. Hence we have from Eq.(54)

− ~2

2m0

1

ψ
∇2ψ + V (r) = E ,

that is

− ~2

2m0
∇2ψ + V (r)ψ = E ψ (56)

as before without a current.
It should be noticed that ϕ may well be time-dependent even when ∇ϕ is
not, that is, we have in general

ϕ(r, t) = ϕ0(r) + f(t)

where f(t) is a real-valued function. In this case the wave function ψ(r, t)
attains the form

ψ(r, t) = ψ̂(r) ei f(t) where ψ̂(r) = |ψ̂(r)| ei ϕ0(r) (57)

and hence, its time-derivative may be cast as

i~
∂

∂t
ψ(r, t) = −~ ḟ ψ(r, t) . (58)

Since f(t) is primarily unspecified and −~ḟ possesses the dimension of an
energy the latter may justifiably be equated with the energy E which is the
only energy-related constant characterizing the wave function of the system:

−~ ḟ = E ; that is if(t) = − i
~
E t . (59)

34



As a result, we have from Eq.(57)

ψ(r, t) = ψ̂(r) e−
i
~E t (60)

for a wave function in a stationary state. Furthermore, we have from
Eqs.(56), (58) and (59)

− ~2

2m0
∇2ψ(r, t) + V (r)ψ(r, t) = i~

∂

∂t
ψ(r, t) (61)

which constitutes the time-dependent Schrödinger equation. Its validity is
here still restricted to stationary systems, but it will be shown in Section
11 that it retains this form also for non-stationary systems. However, in
order to achieve this consistency, one has to introduce the negative sign in
Eq.(59) which seems to lack reason and can actually not be justified without
reference to Section 11.

8 The velocity potential and phase uniqueness

We rewrite Eq.(41) in the form

d

dt
v(r, t) = −∇P (r, t) (62)

where

P (r, t) =
1

m0
[V (r) + VPQ(r, t)] ,

and we have made use of Eq.(37) defining the “hydrodynamic” or convective
acceleration

d

d t
v(r, t) =

∂

∂ t
v + (v · ∇)v .

In hydrodynamics Eq.(62) corresponds to the Euler equation of perfect
(frictionless) fluids and constitutes the starting point of Helmholtz’s the-
ory of vortices. Thomson’s more elaborate analysis on vortices [33] builds
on Helmholtz’s considerations. We confine ourselves here to reporting only
the general ideas as far as they directly concern the present theory.
If we set ~ω = ∇ × v for the curl of the ensemble average of the particle
velocity, we have from Eq.(34)

(v · ∇)v = ∇v2

2
− v × ~ω .

We now form the curl of Eq.(62) and use this expression together with
Eq.(37). The result may be cast as

∂

∂t
~ω(r, t)−∇× [v(r, t)× ~ω(r, t)] = 0 , (63)
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where we have used ∇×∇P = 0 and ∇×∇v2 = 0. One recognizes from
Eq.(63) that ∂

∂t ~ω(r, t)|t=0 becomes zero for some chosen time, which we here
equate to zero for convenience, if ~ω(r, t)|t=0 = 0 at that time. Forming the
time derivative of Eq.(63) and setting again t = 0 we see that the second
time derivative of ~ω(r, t) vanishes as well. This can be carried further to
any higher order of the time derivative. Hence, the system stays irrotational
if it is irrotational at t = 0. We now consider an ensemble of free particles
(F (r) ≡ 0) when ~ = 0. They may start their motion at t = 0 at the same
point in real-space and with the same momentum p0 = m0 v0. If one allows
~ to attain its natural value, the particle positions diverge and form a point
cloud. Outside this cloud there are no particles and therefore v(r, t) ≡ 0.
Since the ensemble does not exchange momentum with the vacuum on the
average and consequently no angular momentum, we have everywhere within
the space of normalization

∇× v(r, t) = ~ω(r, t) ≡ 0 ∀ r, t . (64)

If one now turns on some (physically realistic) potential V (r), weighting
it with a smooth switch function from zero to one, starting at t = t0, the
velocity distribution v(r, t) for t > t0 will now change differently, of course,
but because of Eqs.(63) and (64) for t = t0, we have as before ~ω(r, t0) ≡
0 and ∂

∂t ~ω(r, t)|t=t0 ≡ 0 which again applies to any higher order time-
derivative at t = t0. We thus arrive at the conclusion that an ensemble
whose equation of motion is given by Eq.(62) is irrotational. In other words,
v(r, t) possesses a potential ϕ(r, t) which we express in the form

v(r, t) =
~
m0
∇ϕ(r, t) . (65)

Because of the prefactor ~/m0 the function ϕ(r, t) becomes dimensionless.
Eq.(65) may equivalently be cast as

ϕ(r) =
m0

~

∫ r

r0

v(r′) · dr′ (66)

where we have omitted the time-dependence in confining ourselves to a sta-
tionary state situation. As in the theory of perfect fluids there may be
singular vortex lines which occur if V (r) possesses axial or spherical sym-
metry. A vortex line then defines an axis of quantization. The latter may
be regarded as the boundary line of a semi-plane. Even in the presence of
a vortex line, can ϕ(r) be defined such that it remains unique if one only
stipulates that the starting point of the line integral in Eq.(66), r0, lies on
one side of this semi-plane and that the path along which the integral is
performed never crosses that semi-plane. The point r0 may be chosen at
will. In general, ϕ(r) will now be discontinuous at the semi-plane. The
ensuing section deals with this particular problem.
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9 Quantization of angular momentum

The primary objective of this section is to disprove Wallstrom’s notable
objection [20] against Madelung’s conviction, also held by other theorists of
this school of thought, that Newton’s modified second law (41) is equivalent
to the time-dependent Schrödinger equation which we shall derive below. In
so doing we have to exploit the uniqueness of the velocity potential shown
in the preceding section. By contrast, in standard quantum mechanics the
time-dependent Schrödinger equation is regarded as given. It is customarily
converted into the equation of continuity

ρ̇+∇ · [ ~
2im0
{ψ∗∇ψ − ψ∇ψ∗}] = 0

to show that the bracketed expression has to be interpreted as the current
density j(r, t). This conclusion is only legitimate if j(r, t) has been proven
to be irrotational which, however, is only tacitly presupposed. Inserting

ψ(r, t) = |ψ(r, t)| eiϕ(r, t) (67)

into the bracketed expression yields

j(r, t) = |ψ(r, t)|2 ~
m0
∇ϕ(r, t)︸ ︷︷ ︸

=v(r,t)

,

as a consequence of which one obtains Eq.(65). If one is dealing with a
stationary state whose velocity field contains a vortex line, e. g. an excited
state of a hydrogen electron possessing an orbital momentum, we have∮

v(r) · dr 6= 0 (68)

for any path encircling the vortex line (=quantization axis). On inserting
here v = ~

m0
∇ϕ one obtains∫ r

r0

∇ϕ(r) · dr = ϕ(r)− ϕ(r0) 6= 0 (69)

where r and r0 are two points facing each other across the semi-plane,
introduced in Section 8, at an infinitesimal distance. Thus, in general the
phase of the wave function, and consequently the wave function itself, will
be discontinuous at the semi-plane as opposed to ρ(r) and j(r) which may
be presupposed to be smooth functions everywhere.
Clearly, as follows from Eq.(67), ψ(r) remains continuous at the semi-plane
if

ϕ(r)− ϕ(r0) = 2mπ where m = integer . (70)
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But there is no immediately obvious reason why one should require ψ(r)
to be continuous because only ρ(r) and j(r) can be regarded as reflecting
physical properties of the system. We are hence led to conclude that with-
out an additional argument neither our derivation nor standard quantum
mechanics yields a justification of the proven relation

m0

∮
v(r) · dr = 2mπ ~ = mh where m = integer (71)

which comprises Eqs.(65), (68) to (70). This has already been pointed out
more than 75 years ago by Pauli [21] and Born and Jordan [22]. As opposed
to these considerations Wallstrom states in his paper [20]: ”To the best of
my knowledge, this condition (Eq.(71)) has not yet found any convincing
explanation outside the context of the Schrödinger equation”.
This is definitely incorrect: within that context the assumption of continuity
(Eq.(70)) has to be justified by an additional argument as well.

What else necessitates then the continuity of ψ(r) everywhere?

To keep the formalism as simple as possible we confine the considerations
to a two-dimensional one-particle system in which the potential V (r) is
cylindrically symmetric. For this case the time-independent Schrödinger
equation (50) attains the form(

− ~2

2m0

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

]
+ V (r)

)
φ(r, ϕ) = E φ(r, ϕ) .

If one introduces

φ(r, ϕ) = R(r) ei ϕ̂(ϕ) where ϕ̂(ϕ) = k ϕ ; k ∈ < ,

the Schrödinger equation becomes[
d2

dr2
+

1

r

d

dr
− k2

r2
+ ε− v(r)

]
R(r) = 0 where ε− v(r) = 2m0

~2 [E − V (r)] .(72)

For any choice of k and for an appropriate value of ε one can always find a
normalizable solution to this differential equation which is regular at r = 0
and vanishes exponentially for r →∞, provided that V (r) is not ill-behaved
and allows bound states. In this case one can always think of performing a
numerical integration of this differential equation to obtain a bound state
R(r). If R(r) satisfies Eq.(72), then φ(r, ϕ) satisfies the Schrödinger equation
everywhere even if k is non-integer. True, φ(r, ϕ) is discontinuous within
the interval 0 < ϕ ≤ 2π for ϕ = 0 since

ei k 2π 6= 1 ,
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however |φ(r, ϕ)|2 and

v(r, ϕ) = ~
m0

1
r

∂
∂ϕ ϕ̃(ϕ) eϕ = ~

m0

k
r eϕ

remain smooth functions everywhere, and the associated angular momentum
is

1

2π

∮
m0 v(r, ϕ) · dr =

~
2π

∫ 2π

0

k

r
r dϕ = k ~ .

We now consider two functions Rk1 and Rk2 which solve Eq.(72) for two
non-integer values k1 and k2, respectively. We choose an appropriate nor-
malization

2π

∫ ∞
0

R2
k1

(r) r dr = 1 2π

∫ ∞
0

R2
k2

(r) r dr = 1

and cast their energy eigenvalues εk1 , εk2 , obtained from numerical integra-
tion, for example, as

εk1 = ~ωk1 und εk2 = ~ωk2 .

As already alluded to in Section 7 the time-dependent Schrödinger equation
which we are going to derive in Section 11 , has the form(
− ~2

2m0

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

]
+ V (r)

)
φ(r, ϕ, t) = i ~

∂

∂t
φ(r, ϕ, t) .

Since it constitutes a linear partial differential equation it will be satisfied
also by a linear combination of the two functions

φ(r, t) = 1√
2π

[ck1 Rk1(r) ei( k1 ϕ−ωk1
t)

+ck2 Rk2(r) ei( k2 ϕ−ωk2
t)] .

Without loss of generality the two coefficients ck1 , ck2 may be chosen as
real-valued. We now form the expression for the norm of φ(r, t)∫

|φ(r, t)|2︸ ︷︷ ︸
=ρ(r,t)

d2r
!

= 1 = c2
k1

+ c2
k2

+ ck1 ck2 Ik1 k2×

1

2π

[∫ 2π

0
ei(k2−k1)ϕ dϕ ei(ωk1

−ωk2
) t + c.c.

]
.

Here Ik1 k2 denotes

Ik1 k2 =

∫ ∞
0

Rk1(r)Rk2(r) r dr .

If k2 − k1 is non-integer, Ik1 k2 does not vanish, and the norm of φ(r, t)
becomes time-dependent which is inadmissible, of course. Hence k2−k1 has
to be integer. Since the groundstate of the system, associated with εk1 , for
example, is definitely associated with zero current, i. e. k1 = 0, it follows
immediately that k2 must be integer for any state with angular momentum
(k2 6= 0).
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10 An instructive objection, quantum beats and a
possible which-way detection

An apparently serious objection against a stochastic foundation of quantum
mechanics along the lines of the preceding sections goes back to Mielnik and
Tengstrand [31]. The authors refer to an experimental setup as sketched in
Figure 7 where the test particle enters from a distant source on the left-hand
side and is kept within a tube that extends up to a screen on the right. The
tube contains an impermeable partition that completely seals off the upper
part (A) from the lower part (B). It possesses a limited, but macroscopic
length of, say, 10 cm. The authors argue that according to conventional
quantum mechanics the incoming wave would split up into an upper and
totally independent lower portion. Yet both portions retain their capability
of interfering with each other when they merge again within the area C and
beyond. However, if the wave portions are replaced by the set of irregular
trajectories which stochastic quantum mechanics claims to be an equivalent
of, it seems to be very unlikely that stochastic-force controlled trajectories
can preserve information over so long a distance as well as waves. This
criticism amounts to perceiving the preceding derivation of the Schrödinger
equation from Eq.(41) as ill-founded or even erroneous. It is just the solu-
tion to the Schrödinger equation for the particular setup around which the
present authors’ consideration revolve. On the other hand, it is easy to ver-
ify the validity of the derivation. There is simply no step where one may be
in doubt. But one has to keep in mind that the solutions ψ(r) = |ψ(r)| eiϕ(r)

to the Schrödinger equation provide only information on ensemble proper-
ties and not on a particular trajectory that is a member of the ensemble
under study. For example, the velocity v(r) = ~

m0
∇ϕ(r) at some point in

the area marked C represents such an average over all trajectories of the
ensemble running through that point. This ensemble defines the probability

Figure 7: Interference of trajectories
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in which direction a particular particle that has arrived at C, e. g. along
the “A”-trajectory, will move further. (S. Figure ??, lower panel.) This is
analogous to considerations we shall discuss in the context of the Smolu-
chowski equation (Section 39). The properties of the ensemble are just an
image of the property of the vacuum fluctuations to ensure the absence of
dissipation. This manifests itself in the fact that v(r) is irrotational as in
ideal fluids. An individual particle that has moved along the “A”-trajectory
and arrives at C “feels”, so to speak, the possibility of a “B”-trajectory.
As stated above, it continues its trajectory depending also on the family of
“B”-trajectories running through C. If the partition in the tube would be
elongated and the point C correspondingly shifted to the right, irrespective
of how much, the “A”- and “B”subset of trajectories would now be different,
but the scattering probability at C of a particle that has moved along an
“A”(or “B“)-trajectory would still be influenced by possible “B” (or “A”)-
trajectories. Furthermore, if one would place some electrostatic array into
the upper part of the setup which would cause a spatially confined accel-
erating electic field the “A”-trajectories would change accordingly and give
rise to a different interference pattern within the “C”-range.
To make the surprising content of this observation even more striking we
consider a situation where one has particles enter the setup one by one from
the left so that only one particle traverses the setup at a time. First, we
switch the accelerating array off so that there is no extra potential along the
“A”-trajectory. If one has placed a detector, an electron multiplier, for ex-
ample, at some position rscreen on the screen, it would monitor the incoming
electrons at a certain rate. These electrons come either along an ‘A”- or a
“B“-trajectory. Once the extra potential has been turned on, the count rate
at rscreen changes. Although an electron may have moved along the unmod-
ified “B“-portion of the setup, it feels the modification of the “A”-portion
when it arrives at “C”. As explained above, this is due to the change of
the vacuum scattering probability at C. Electrons that have arrived at some
elementary volume within C and have so far preferentially been scattered
into rscreen are now also scattered to other positions on the screen, thereby
changing the count rate at rscreen.
If the electrostatic array in the “A”-portion would simply consist of two pla-
nar parallel grids perpendicular to the average particle motion, and if one
applies an accelerating voltage V between the grids, the particles’ kinetic
energy ε0 increases by an amount ∆ε = e V where e denotes the particle
charge. The wave function ψscreen(r, t) at the screen is the sum of the “A”-
and “B”-related contributions:

= 1√
2

[
ψ̂A(rscreen) e−iωA t + ψ̂B(rscreen) e−iωB t

]
(73)

where
ψ̂A/B(rscreen) = 1√

V e
ikA/B rscreen
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and
~ωA = ε0 + ∆ε ; ~ωB = ε0 ,

and with 1/
√
V denoting an appropriate normalization factor. The function

ψ(r, t) solves the time-dependent Schrödinger equation (61) for the partic-
ular array under study. If we introduce ε = ε0 + 1

2 ∆ε we may cast ~ kA/B
as ~ kA/B ≈

√
2m0 ε

(
1± 1

2
∆ε
ε

)
if ∆ε

ε << 1 where m0 denotes the rest mass
of the particle. Eq.(73) can then be rewritten

ψ(rscreen, t) = 1√
V e

i(k rscreen−ω t)

× 1√
2

[
ei(∆k rscreen−∆ω t) + e−i(∆k rscreen−∆ω t)

]
where ~ k =

√
2m0 ε , ∆k = kA − kB and ~∆ω = 1

2 ∆ε. Hence we have for
the current density j(r, t) ∝ count rate at rscreen

j(rscreen, t) = ~k
m0
|ψ(rscreen, t)|2 = 1

4V
~k
m0

[1 + cos(2∆k rscreen − 2∆ω t)] .(74)

That means: the count rate oscillates at a period of T = 2π ~
∆ε . This most

surprising effect of “quantum beats” has, in fact, been observed by Rauch
and collaborators (s. Badurek et al. [92]) who used spin polarized neu-
trons instead of electrons. The energy change ∆ε in the “A”-section of the
setup was in that case imparted to the respective neutron by flipping its
spin within a spatially confined magnetic field along the “A”-trajectory. (In
practice one used a spin flipper also in the “B”-portion of the setup where
the corresponding magnetic field was slightly lower than in the “A”-portion
so that ∆ε referred to the difference of two spin flip energies in this case.
Another spin-flip was necessary anyway to enable the two beams to interfere
with each other.)
It is worth noticing that j(rscreen, t) displays - apart from its oscillatory
time dependence - an oscillatory behavior also in space, i. e. in the plane of
the screen. This is due to the occurrence of ∆k rscreen in the argument of
the cosine. Hence, in the plane of the screen the current density displays
an interference pattern which moves perpendicular to the interference lines
with a velocity ∆ω/∆k. If one would replace the screen by a one-slit di-
aphragm of adjustable width, a detector behind the slit would monitor the
incoming electrons one by one. According to Eq.(74) the current density

oscillates at the frequency 2∆ω about the value 1
4V

~k
m0

. If the capture width
of the detector, i. e. the slit of the diaphragm comprises a bright and a dark
interference line, there is no oscillation of the count rate any more. If the
width is narrower than that, oscillations occur which indicate the presence
of the interference pattern. This situation will (very likely) not be affected,
that is, the oscillations will persist, if one places an energy analyzer between
the diaphragm and the detector. The analyzer can be set such that only
electrons that have the energy of the “A-trajectory” are allowed to pass.
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As the oscillations still occur, one is led to conclude then that tracing the
electron’s path does not destroy the interference.

11 The time-dependent Schrödinger equation

In the most general case v and hence ϕ are time-dependent. As already
pointed out in Section 7 the substitution of ρ(r) has to be modified then in
the form

ψ(r, t) = ±
√
ρ(r, t) eiϕ (r, t) (75)

which was introduced by Madelung in 1926 [34].
It cannot be overemphasized that this transform achieves actually a miracle.
The equation of motion (41), (42) that we have obtained by allowing for
additional stochastic vacuum forces is unpleasantly non-linear. This results
from the peculiar occurrence of ρ(r, t) in the quantum potential (42) whereby
Newton’s modified second law (41) attains the form

m0
d

dt
v(r, t) = −∇

(
V (r) + ~2

4m0

[
1

2

(
∇ρ
ρ

)2

− ∇
2ρ

ρ

])
.

Moreover, there is an additional non-linearity connected with the second
term on the right-hand side of

d

dt
v(r, t) =

∂

∂t
v(r, t) + (v(r, t) · ∇)v(r, t))

which persists, of course, if v(r, t) is replaced with its potential

v(r, t) =
~
m0
∇ϕ(r, t) .

The function ψ(r, t) in (75) absorbs the two real-valued functions ρ(r, t) and
ϕ(r, t) to form a complex-valued one. It is this combination which makes
quantum mechanics in a peculiar way different from classical mechanics and
electrodynamics where all fields are real-valued. Most surprisingly the above
non-linearities disappear when ρ(r, t) and ϕ(r, t) are eliminated by using
(75) which leads to the time-dependent Schrödinger equation as will become
apparent below. This fortunate situation remains when electromagnetic
fields come into play. This will be the subject of Section 15.

The ±-sign in Eq.(75) requires a comment. As discussed in Section 4, ρ(r, t)
will generally be presupposed as a smooth function. The zeros of ρ(r, t)
pose a particular problem that occurred already in Section 7, but was not
explicitly mentioned. The admissible type of zeros limits the set of functions
ρ(r) that can be mapped onto ψ(r) according to Eq.(55). For simplicity we
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confine ourselves to the time-independent case and assume that the zeros of
ρ(r) lie on the faces of a rectangular parallelepiped defined by the equations
xν = xν0 with xν and ν = 1, 2, 3 denoting Cartesian coordinates. Hence
close to xν = xν0 and perpendicular to the respective face the density varies
as (xν − xν0)2. Since we have everywhere ρ(r) ≥ 0 its square root varies
as |xν − xν0| and thus would not be differentiable at xν = xν0. In defining
the map ρ(r) → ψ(r) one is forced hence to choose the positive sign in
front of

√
ρ(r) outside the rectangular parallelepiped if one has chosen the

minus sign inside (or vice versa) to ensure that ψ(r) stays differentiable
across the face of the rectangular parallelepiped. Hence, mapping functions
ρ(r) onto differentiable functions ψ(r) is only possible if the zeros of ρ(r)
subdivide the space of volume V into cells without leaving empty space. At
first sight it appears that this limitation in the set of admissible functions
ρ(r) constitutes a serious drawback of the entire concept. One has to bear
in mind, however, that the functions ψ(r) are not determined as a map of
ρ(r) but rather by solving the Schrödinger equation (50) which has been the
objective of the derivation. Physical meaningful solutions to Eq.(50) have
automatically the required spatial structure of their zeros.

We now move on to derive the time-dependent Schrödinger equation under
the supposition that the above considerations apply to the time-dependent
case as well.
If one uses instead of Eq.(41) the arithmetic mean of the original Eq.(25)
and its “anti-Brownian” analogue where the sign of ν and u(r, t) is reversed,
one obtains

∂

∂t
v + (v · ∇)v − (u · ∇)u +

~
2m0

∆u =
1

m0
F (r) . (76)

This can be simplified in the form:

∂

∂ t
v = − 1

m0
∇V − 1

2
∇v2 +

1

2
∇u2 − ~

2m0
∆u , (77)

where we have made use of the relations

v · ∇v =
1

2
∇v2 ; u · ∇u =

1

2
∇u2 and ν =

~
2m0

.

With the first two equations it has been observed that v and u are irro-
tational. On differentiating u with respect to time and using Eq.(26) one
obtains

∂

∂ t
u = − ~

2m0
∇ (

∂ ρ

∂ t
/ρ) , (78)

Invoking the equation of continuity

∂ ρ/∂ t+∇ · (ρv) = 0 (79)
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that is
∂ ρ/∂ t+ ρ∇ · v + v · ∇ρ = 0

∂ ρ
∂ t /ρ can be replaced with −∇ · v − v · 1

ρ ∇ρ which yields

− ~
2m0

∇ (
∂ ρ

∂ t
/ρ) =

~
2m0

∇ (∇ · v)−∇
[
v ·
(
− ~

2m0

1

ρ
∇ρ
)]

. (80)

Using Eq.(26) we may substitute v ·u for the expression in the [...]-brackets
on the right-hand side. Hence Eq.(80) takes the form

∂

∂ t
u =

~
2m0

∇(∇ · v)−∇(u · v) . (81)

On multiplying the equation of motion (77) by the imaginary unit i and
subtracting Eq.(81) we obtain

∂

∂ t
(−u + iv) =

− i

m0
∇V − i

2
∇v2 +

i

2
∇u2 − i ~

2m0
∆u− ~

2m0
∇(∇ · v) +∇(u · v) .

After reordering the terms on the right-hand side this becomes

∂

∂ t
(−u + iv) =

i

2
∇(−u + iv)2 +

i ~
2m0

∇ [∇ · (−u + iv)]− i

m0
∇V . (82)

Here we insert Eqs.(31), (65) and (75) in the form

−u + iv =
~
m0
∇ ln [ψ/

√
ρ0] . (83)

After interchanging the operators ∂/∂ t and ∇ one obtains

∇
(

~
m0

1

ψ

∂ ψ

∂ t

)
= ∇

[
i

2

~2

m2
0

{(
1

ψ
∇ψ
)2

+∇ ·
(

1

ψ
∇ψ
)}
− i

m0
V

]
.

If the gradient of some function equals that of another function the two
functions can only differ by a real-space independent function of time which
we denote by β(t). Hence, if one divides the above equation by the imaginary
unit the result may be cast as

−i ~
m0

1

ψ

∂ ψ

∂ t
=

1

2

~2

m2
0

[(
1

ψ
∇ψ
)2

+∇ ·
(

1

ψ
∇ψ
)]
− 1

m0
V − i β(t) . (84)

One can now make use of the identity

∇ ·
(

1

ψ
∇ψ
)

= −
(

1

ψ
∇ψ
)2

+
1

ψ
∇2ψ
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and multiply Eq.(84) by −m0 ψ. This yields

i~
∂ ψ

∂ t
= −~2∇2

2m0
ψ + V ψ + γ(t)ψ (85)

where

γ(t) = im0 β(t) .

If ψ(r, t) is replaced by ψ̂(r, t) defined through

ψ(r, t) = ψ̂(r, t) exp

[
− i
~

∫ t

t0

γ(t′) dt′
]
,

Eq.(85) becomes an equation for ψ̂(r, t):

i~
∂ ψ̂(r, t)

∂ t
=

[
p̂2

2m0
+ V (r)

]
ψ̂(r, t) , (86)

where

p̂ ≡ −i~∇ . (87)

The two functions ψ(r, t) and ψ̂(r, t) differ only in a time-dependent phase
factor without physical relevance. Only the functions

ρ(r, t) = ψ∗(r, t)ψ(r, t) (density) (88)

and the current density:

j(r, t) = ρ(r, t)
~
m0
∇ϕ(r, t) , (89)

refer to relevant quantities of the system which obviously do not depend
on this phase factor. For this reason we may set γ(t) ≡ 0, that is, replace
ψ̂(r, t) in Eq.(86) with ψ(r, t) without loss of generality. To simplify the
notation we introduce the so-called Hamiltonian defined by

Ĥ ≡ p̂2

2m0
+ V (r) . (90)

Eq.(86) then takes the familiar form of the Schrödinger equation

i~
∂ ψ(r, t)

∂ t
= Ĥ(r)ψ(r, t) (91)

which is linear in ψ(r, t), as announced in the beginning of this section.
The first order time derivative on the left-hand side can be traced back to
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the acceleration (∂/∂t)v in Newton’s modified second law (76).
Using

ψ(r, t) = |ψ(r, t)| ei ϕ(r,t)

and inserting this into Eqs.(88) and (89) one obtains the familiar expression

j(r, t) = ρ(r, t)v(r, t) =
~

2im0
[ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)] (92)

which on real-space integration and multiplication by m0 yields

m0 〈v(t)〉 =

∫
ψ∗(r, t) p̂ ψ(r, t) d3r ≡ 〈p̂〉 (93)

where ψ(r, t) has been required to satisfy the usual boundary conditions at
the surface of the normalization box. Because of Eq.(93) one is justified in
terming p̂ “momentum operator”.
In Bohm’s version of quantum mechanics [28] Eq.(92) is recast to define the
velocity field

v(r, t) =
~
m0
=
(
∇ψ(r, t)

ψ(r, t)

)
.

The flowlines of this field are interpreted as true particle trajectories. From
our point of view this appears to be rather absurd because the explicit r-
dependence of v comes about by forming the ensemble average over the (in
principle infinite) family of true trajectories as defined in Eq.(21). Bohm’s
definition of v as describing the true velocity of the particle leads inescapably
to strange results, notably with stationary real-valued wave functions ψ(r)
for which v(r) ≡ 0. Hence, the particle appears to be at rest although the
kinetic energy of the particle

〈T̂ 〉 =

∫
ψ∗(r)

p̂2

2m0
ψ(r) d3r ≡ 〈p̂

2〉
2m0

(94)

is definitely different from zero.
The time-dependent Schrödinger equation represents the center of non-
relativistic quantum mechanics. Fundamentally different from the present
approach where it is derived from a new vacuum concept, in conventional
quantum mechanics it falls out of the blue, and this applies to Bohm’s the-
ory as well. As the latter associates the pattern of smooth flowlines with
the set of true particle trajectories, it is forced to explain the probabilistic
character of the information contained in ψ(r, t) by an additional “quantum
equilibrium”- hypothesis. It is therefore hard to see that anything can be
gained from “going Bohmian”. The “process of measurement” in which a
particle moves from a source to the detector where it fires a counter, is in
our view described by one of the irregular trajectories which is terminated
at the detector. Due to the stochastic forces that cause this irregularity, the
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information on the ensemble properties is naturally probabilistic.
A frequently raised objection against Bohm’s theory concerns the asym-
metric way in which it deals with the particle’s real-space position and its
momentum. In fact, the real-space position r plays a pivotal role in Bohm’s
theory compared to the other observables which are “contextualized” by re-
sorting to the wave function ψ(r, t) that solves the Schrödinger equation for
the system under study. By contrast, in our approach the ensemble’s i-th
particle position ri and its velocity vi(t) enter into the theory as autonomous
quantities. This is reflected in the occurrence of two independent functions
ρ(r, t) and v(r, t) = ~

2m0
∇ϕ(r t). As stated above, it is this pair of infor-

mation ρ(r, t) ;ϕ(r, t) that necessitates the description of the one-particle
system by a complex-valued function

ψ(r, t) = ±
√
ρ(r, t) ei ϕ(r,t) .

12 The uncertainty relation and the issue of “mea-
surement”

By performing a Fourier transform on ψ(r, t)

ψ(r, t) =
1

(2π)3/2

∫
C(k, t) eik·r d3k (95)

Eqs.(93) and (94) may alternatively be written

〈p̂〉 =

∫
ψ∗(r, t) p̂ ψ(r, t) d3r =

∫
C∗(k, t) (~k)C(k, t) d3k

〈p̂2〉 =

∫
ψ∗(r, t) p̂2 ψ(r, t) d3r =

∫
C∗(k, t) (~k)2C(k, t) d3k (96)

where

C∗(k, t)C(k, t) ∆3k = P (k, t) ∆3k (97)

describes the probability of the particle possessing a momentum that lies
within ∆3k about k in the k-space. We temporarily label the coordinate-
components of the particle in the two spaces by an index ν:

ν = 1, 2, 3 .

The mean square departures of the position coordinates xν and kν , respec-
tively, from their arithmetic means x̄ν and k̄ν are given by

〈(xν − x̄ν)2〉t =

∫
ψ∗(r, t) (xν − x̄ν)2 ψ(r, t) d3r
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and

〈(kν − k̄ν)2〉t =

∫
C∗(k, t) (kν − k̄ν)2C(k, t) d3k .

Since C(k, t) is the Fourier transform of ψ(r, t) we have as a fundamental
mathematical theorem

〈(xν − x̄ν)2〉t 〈(kν − k̄ν)2〉t ≥
1

4

that is

〈(xν − x̄ν)2〉t 〈(~ kν − ~ k̄ν)2〉t ≥
~2

4
. (98)

Following the standard notation by setting ∆xν =
√
〈(xν − x̄ν)2〉t and

∆pν =
√
〈(~ kν − ~ k̄ν)2〉t =

√
〈(p̂− 〈p̂〉)2〉t the latter relation may be cast

as

∆xν ∆pν ≥
~
2

(99)

which constitutes the celebrated uncertainty relation. It is commonplace
to interpret this relation, loosely speaking, by saying: “momentum and po-
sition of a particle cannot be measured simultaneously with any desirable
precision”.
From our point of view it does in no way refer to any measurement on the
position or momentum of the particle in question. It is nothing more than
the theorem Eq.(98) on the product of two quantities that are intercon-
nected by a Fourier transform. Furthermore, since this relation is - besides
the Schrödinger equation - just another consequence of our concept, it can-
not possibly conflict with the existence of trajectories which constitute a
fundamental element of that concept.
Eq.(99) is considered ground-laying for the Copenhagen interpretation of
quantum mechanics. The latter is based on the conviction that it is the
measurement that causes the indeterminacy in quantum mechanics and ne-
cessitates a probabilistic description of microscopic mechanical systems. In
a highly respected article [35] Heisenberg gives a revealing example of such
a measurement. To pinpoint an electron moving along the x-axis within an
experimental setup he considers a γ-ray source, that illuminates the elec-
tron beam, and a hypothetical γ-ray microscope that possesses a sufficiently
high resolution in detecting the position of that electron up to an error of
∆x. He demonstrates that the γ-ray photon that “hits the electron” and is
subsequently scattered into the microscope, transfers a momentum ∆px to
the electron so that

∆x∆px ≈ ~ . (100)
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The above result reflects only a property of the microscope

∆x∆kx ≈ 2π

which interrelates the resolved linear dimensions ∆x = λ/ sinα of an object
and the admissible maximum angle α required to ensure that the scattered
wave (of wavelength λ) is still captured by the front lens of the microscope,
and ∆kx = k sinα which describes the kx-change of the wave vector of the
scattered wave. But this interrelation expresses only the content of Eq.(98)
in a different form. The measurement, however, is completely fictional for
two reasons. Firstly, imaging systems within that regime of wavelength are
for fundamental reasons unfeasible. Secondly, different from the picture in-
sinuated by Heisenberg’s phrasing, the interaction does not take place as an
instantaneous collision process where a point-like particle (the photon) hits
another point-like particle, the electron. Instead the transition probability of
the electron for attaining a different momentum is given by the mod squared
of the transition matrix element Mopt, a real-space integral that extends over
a range of many light wave lengths in diameter. Moreover, the transition is
not instantaneous but rather takes some time of the order ~/|Mopt|. Within
this transition time the electron moves a distance ∆x′ which has nothing to
do with ∆x in Eq.(100). Other examples of “measurement”, e. g. diffraction
at slits of a certain width ∆x show even more directly that the probabilistic
information on the (non-relativistic) motion of a particle is exhaustively de-
scribed by the Schrödinger equation and boundary conditions for ψ(r), and
hence this information merely reflects our vacuum concept, irrespective of
whether or not results on the diffraction are verified by measurements.
The host of considerations invoking the uncertainty relation (99) refers to
situations where a particle is located within an interval ∆x and one inter-
prets this confinement of the particle indiscriminately in terms of a “mea-
surement” of its coordinate x with limited accuracy. One concludes then
from the uncertainty relation that ∆x correlates unavoidably with a diper-

sion ∆p2
x of its momentum such that ∆x∆px

>
≈ ~

2 where ∆px
def
=

√
∆p2

x. In

reality neither a measurement on ∆x nor on ∆p2 is truly executable. The
uncertainty relation merely states that a solution of the one-dimensional
Schrödinger equation for a particle in a box of length ∆x yields a ground

state energy ∆E = ∆p2

2m0
where ∆p2 =

(
~ π

∆x

)2
. Hence one obtains simply

as a consequence of solving the Schrödinger equation for that case “without
observer”(!) ∆x∆p = π ~. One cannot help but quote John Bell’s question
phrased in his stirring article “Against Measurement”[36]

“What exactly qualifies some physical systems to play the role of ’mea-
surer’?”

The above considerations are in line with a discussion of Heisenberg’s paper
by Wigner [37].
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13 Averaging over the total ensemble

In forming the arithmetic mean of the two equations (35) and (38) we omit-
ted to mention a problem that we wish to discuss here in more detail.
We temporarily decompose the entire ensemble considered so far into a
“Brownian” and “anti-Brownian” sub-ensemble, each characterized by the
associated stochastic forces and comprising an equally large number of mem-
bers. Accordingly we distinguish the velocities v(r, t) and the densities
ρ(r, t) in the respective sub-ensembles by subscripts B (for “Brownian”)
and A (for “Anti-Brownian”). If the velocities in these two equations agree
at a time t, they are definitely different at a later time t+ ∆t. Yet forming
the arithmetic mean of the two equations can only lead to the same average
- which we could recast as “Newton’s modified second law”, Eq.(41) - if the
two velocities vB,vA and the densities ρB, ρA agree also at t+ ∆t and any
later time. At first sight the latter appears to be irreconcilable with the
former. One has to recall, however, that our subdivision of the entire en-
semble into sub-ensembles B and A represents only a simplifying model for
the actually occurring reversible scatterings. In the real system the stochas-
tic forces of the B-type become automatically forces of the A-type and vice
versa within the characteristic time τ so that the change of the velocity ∆v
in either sub-ensemble is [∆vA + ∆vB]/2 within a time span ∆t� τ which,
however, must be small compared to time intervals within which the quanti-
ties of interest change sizeably. The situation is similar to that encountered
in diffusion theory where we have

∂ρ

∂t
= ν∆ρ .

This equation is obtained from the equation of continuity for vB = u and
u = −ν∇ρ/ρ with the latter equation based on similar considerations as
the derivation of Eq.(25) invoking Einstein’s law (40) which implies ∆t� τ .
The above equation of diffusion hence describes changes that are actually
defined only on a coarse grain time scale and its validity is confined to
changes that are sufficiently slow on that time scale. As we have already
discussed in Section 5, this is also the assumption underlying our derivation
of Newton’s modified second law (41).
We temporarily rewrite the two equations (35) and (38) for an - in that
sense - “appropriately long, but sufficiently short time interval” ∆t in the
form

∆vB/A(r, t+ ∆t) = RB/A(r, t) ∆t
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where

RB/A(r, t) =
1

m0

(
−∇[V (r) + VQP (r, t)]± ~Ω(r, t)

)
. (101)

and

~Ω =
∂u

∂t
+ (v · ∇)u− (u · ∇)v + ν∆v .

Here we have already used VQP instead of Vstoch, but still denoted the pref-

actor of ∆v by ν to demonstrate that ~Ω (and consequently u) changes sign
when ν changes sign. It should be noticed that according to Eq.(42) VQP
has the property VQP (ρB(r, t)) = VQP (ρA(r, t)) = VQP (ρ(r, t)) since at the
time t under consideration we have ρA(r, t) = ρB(r, t) = 1

2 ρ(r, t).
Within a time span ∆t the velocities vB(r, t) and vA(r, t) change according
to

vB(r, t+ ∆t) = v(r, t) +RB(r, t) ∆t ,

vA(r, t+ ∆t) = v(r, t) +RA(r, t) ∆t .

At the end of this time interval one forms according to the definition (21) the
average over the total ensemble, that is the arithmetic mean of vB(r, t+∆t)
and vA(r, t+ ∆t)

v(r, t+ ∆t)
def
= 1

2 [vA(r, t+ ∆t) + vB(r, t+ ∆t)] = v(r, t) +
1
2 [RA(r, t) + RB(r, t)]︸ ︷︷ ︸

= 1
m0

(−grad [V (r)+Vstoch(r,t)])

∆t .

We consider this equation as implicitly defining “motion under reversible
scattering”. In the subsquent time interval each of the N/2 particles changes
its affiliation (B from A or vice versa).
Subtracting v(r, t) on either side and dividing by ∆t/m0 one obtains for
sufficiently small ∆t

m0
d

dt
v(r, t) = F (r)−grad VQP (r, t)︸ ︷︷ ︸

Def
= FQP (r,t)

.

We want to demonstrate that the densities behave analogously. For this
reason we resort to the equation of continuity (79) which holds for each
sub-ensemble

∂ρB/A

∂t
+∇ · (ρB/A vA/B) = 0 . (102)

It describes the conservation of the number of particles in each of the two
subsystems. We conclude from this equation that ρ̇B(r, t) = ρ̇A(r, t), if
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ρB(r, t) = ρA(r, t) and vB(r, t) = vA(r, t). If one differentiates Eq.(102)
with respect to time and uses v̇B(r, t) = v̇A(r, t) = v̇(r, t) as a result of
the preceding considerations, we may conclude ρ̈B(r, t) = ρ̈A(r, t). One
can carry this conclusion further to any order of time derivative. Thus, the
Taylor-expansions of ρB(r, t+ ∆t) and ρA(r, t+ ∆t) agree for any length of
the time interval ∆t if ρB, ρA and vB,vA agree at time t.

14 Conservative diffusion. Ehrenfest’s theorem

We want to prove the validity of Eq.(46) which constitutes a necessary con-
dition for the preservation of classical motional behavior on the average. To
see this more clearly, we first consider one particle (the i-th) in the cube
∆3r about r acted upon by the external force F (r) and the stochastic force
Fs i(t). According to Newton’s second law we have

d

dt
m0 vi(t) = F (ri) + Fs i(t) .

If we sum this equation over the n(r, t) particles contained in ∆3r, divide
by N and form ensemble averages similar to Eqs.(19) and (21) we obtain

∂

∂t
m0

1

N

n(r,t)∑
i=1

vi(t)︸ ︷︷ ︸
=n(r,t)v(r,t)

=
1

N

n(r,t)∑
i=1

F (ri)︸ ︷︷ ︸
=n(r,t)F (r)

+
1

N

n(r,t)∑
i=1

Fs i(t)︸ ︷︷ ︸
=n(r,t)Fs(r,t)

. (103)

Here the summation runs over all particles in the cell irrespective of whether
they belong to the first or second sub-ensemble.
The idea of “conservative diffusion” implies that the N =

∑Nr
r n(r, t) parti-

cles of the entire ensemble do not feel a stochastic force on average although
Fs(r, t) does locally not vanish in general. Thus, Fs(r, t) is required to have
the property

Nr∑
r

n(r, t)

N
Fs(r, t) =

∫
V
ρ(r, t) FQP (r, t)︸ ︷︷ ︸

≡Fs(r,t)

d3r = 0 ∀ t , (104)

as a result of which Eq.(103) yields after summation over all elementary cells

∂

∂t

Nr∑
r

m0
n(r, t)

N
v(r, t) =

d

dt

∫
V
ρ(r, t)m0 v(r, t) d3r︸ ︷︷ ︸

≡〈p(t)〉

=

Nr∑
r

n(r, t)

N
F (r)︸ ︷︷ ︸

=
∫
ρ(r,t)F (r) d3r=〈F 〉

.
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We thus obtain as a consequence of the required property of Fs(r, t)

d

dt
〈p(t)〉 = 〈F 〉 (105)

which is Ehrenfest’s first theorem[38].
In case of a force-free particle for which 〈F 〉 = 0, Eq.(105) yields

〈p(t)〉 = const.

which demonstrates that a free particle exposed to Brownian/anti-Brownian
stochastic forces does not change its momentum on the average, as opposed
to a particle that moves in a classical “Brownian” environment.

We now want to show that the expectation value of “Newton’s modified
second law” that we have derived in the form of Eq.(41), attains, in fact,
exactly the form of Eq.(105). To this end it is convenient to recast Eq.(42)
as

VQP =
~2

4m0

[
1

2

(
∇ρ
ρ

)2

− ∇
2ρ

ρ

]
= m0

[
−u2(r, t)

2
+

~
2m0

∇ · u(r, t)

]
where we have used Eq.(26) defining u(r, t). Hence∫

ρ(r, t)FQM (r, t) d3r =

m0

∫ [
1

2
ρ(r, t)∇u2(r, t)− ~

2m0
ρ(r, t)∆u(r, t)

]
d3r . (106)

We rewrite the integral over the second term on the right-hand side using
Gauss’ theorem∫

V
ρ ∇ · (∇u)︸ ︷︷ ︸

=∆u

d3r =

∫
V
∇ · (ρ∇u) d3r︸ ︷︷ ︸
=
∫
F ρ∇u·d2r

−
∫
V
∇ρ · ∇u d3r .

We assume that ρ(r, t) differs sizeably from zero only within a volume that
lies completely within the finite space and drops sufficiently fast to zero
toward infinity so that the surface integral vanishes. Using again Eq.(26)
we hence arrive at

−
∫
V
∇ρ · ∇u d3r =

2m0

~

∫
V
ρ (u · ∇)u︸ ︷︷ ︸

= 1
2
∇u2

d3r

which shows that, in fact, the right-hand side of Eq.(106) equals zero. Thus,
the expectation value of the right-hand side of “Newton’s modified second
law”, Eq.(41), becomes equal to 〈F 〉. However, we have on the left-hand side
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〈 ddt m0 v〉 instead of d
dt 〈m0 v〉. Nevertheless, the two expressions are equal

as follows from multiplying d
dt m0 v by ρ(r, t) and observing that v(r, t) is

irrotational. Because of the latter we have
d

dt
v =

∂

∂t
v +

1

2
∇v2

which can be recast as

m0 ρ
d

dt
v = m0 ρ

∂

∂t
v +

[
m0 v

∂ρ

∂t
−m0 v

∂ρ

∂t

]
+
m0

2
ρ∇v2

where we have added zero in the form of the bracketed expression. The
real-space integral over this equation may be written after reordering

∂

∂t

∫
V
ρ(r, t)m0 v(r, t) d3r︸ ︷︷ ︸

= d
dt

∫
V ρ(r,t)m0 v(r,t) d3r

= 〈 d
dt
m0 v〉+

m0

2

∫
V

[
2v

∂ρ

∂t
− ρ∇v2

]
d3r .(107)

The integral on the right-hand side vanishes because of the equation of
continuity

∂ρ

∂t
+∇ · (ρv) = 0 . (108)

This follows from multiplying this equation by v and performing a real-space
integration. We then have∫

V
v
∂ρ

∂t
d3 r = −

3∑
ν=1

eν

∫
V
vν ∇ · (ρv) d3 r =

−
3∑

ν=1

eν

∫
V
∇ · (vν ρv) d3 r︸ ︷︷ ︸
=
∫
A vν ρv·d2 r

+
3∑

ν=1

eν

∫
V
ρv · ∇vν d3 r︸ ︷︷ ︸

=
∫
V ρ (v·∇)v d3 r

(109)

with eν denoting unit vectors. The surface integral has been obtained by
invoking Gauss’ theorem. It vanishes since we may assume ρ |v| to van-
ish sufficiently toward infinity. Again exploiting the property of v being
irrotational the second integral on the right-hand side can be written∫

V
ρ (v · ∇)v d3 r =

1

2

∫
V
ρ∇v2 d3 r .

It follows then from Eq.(109) that the integral on the right-hand side of
Eq.(107) is, in fact, equal to zero. Thus we have shown that the expectation
value of the “vacuum force” FQM (r, t) vanishes∫

ρ(r, t)FQM (r, t) d3r = 0

which plays also a central role in information theory (s. e. g. Garbaczewski
[39]).
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15 The time-dependent Schrödinger equation in
the presence of an electromagnetic field

In going through the various steps that led from Eq.(41) (“Newton’s modi-
fied second law”) to the time-dependent Schrödinger equation (91) one rec-
ognizes that we implied nowhere that F has to be time-independent. Hence
one is justified in allowing F in Eq.(41) to be time-dependent and attain
the particular form

F (r, t) = −∇Vcons(r) + e Ê(r, t) + ev(r, t)×B(r, t) (110)

if the particle under study possesses the charge e and is acted upon by an
electric field Ê(r, t) and a magnetic field B(r, t). The quantity Vcons(r) de-
notes the potential of an additional conservative field (e. g. the gravitational
field) which we include to ensure full generality, and v(r, t) is the ensemble
average defined by Eq.(21). From B = ∇×A and Faraday’s law of induc-
tion we have ∇ × (Ê + Ȧ) = 0, and hence Ê + Ȧ may be expressed as a
gradient of a scalar function which we denote by −1

e Vel(r, t). Thus

e Ê(r, t) = −e Ȧ(r, t)−∇Vel(r, t) . (111)

If the magnetic field is switched on, it induces a voltage VR along any circular
path C

VR =

∮
C
Êind.(r

′, t) · dr′ = − ∂

∂ t

∫
A
B(r′, t) · d2r′

where C is the rim of the surface A. On multiplying this equation by e
and observing that e Êind. represents an additional force that changes the
momentum of the particle, we obtain∮

C
ṗ(r′, t′) · dr′ =

∮
C
e Êind.(r

′, t′) · dr′ = − ∂

∂ t′

∮
C
eA(r′, t′) · dr′ .

Integrating this equation from t0 to t and assuming A(r′, t0) ≡ 0 we obtain

−
∮
C
p(r′, t0) · dr′ +

∮
C
p(r′, t) · dr′ = −

∮
C
eA(r′, t) · dr′ .

where ∮
C
p(r′, t0) · dr′ = m0

∮
C
v(r′, t0) · dr′ = 0 ,

which follows from Eq.(64). Thus∮
C

[
v(r′, t) +

e

m0
A(r′, t)

]
· dr′ = 0 ∀ t

which means that the curl of the integrand vanishes:

∇×
[
v(r, t) +

e

m0
A(r, t)

]
≡ 0 . (112)
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Consequently, it can be expressed as a gradient of a scalar function which
we denote by (~/m0)ϕ(r, t). Hence we arrive at

v(r, t) +
e

m0
A(r, t) =

~
m0
∇ϕ(r, t) . (113)

which now stands in place of Eq.(65).
We note here only in passing that we have because of ψ(r) = |ψ(r)|eiϕ(r)

1

2i
[ψ∗∇ψ − ψ∇ψ∗] = |ψ(r)|2∇ϕ .

Using Eq.(113) one can recast this as

~
2m0

[ψ∗∇ψ − ψ∇ψ∗] = ρv +
e

m0
|ψ|2A

or equivalently

ρv =
1

2m0
[ψ∗P̂ψ + c.c.]

where P̂ is short-hand for p̂ − eA. After real-space integration and an
integration by parts one arrives at

〈v〉 =
1

m0

∫
ψ∗(r, t)P̂ ψ(r, t) . (114)

Because of Eq.(112) the expression (v · ∇)v which appears in

m0
d

dt
v(r, t) = m0

[
∂

∂t
v + (v · ∇)v

]
= F (r, t) + FQP (r, t) (115)

cannot be replaced with 1
2∇v

2 any more. Because of the generally valid
relation

(a · ∇)a = ∇ a2

2
− a× (∇× a)

and because of Eq.(112) we now have

(v · ∇)v =
1

2
∇v2 − v × (∇× v) =

1

2
∇v2 +

e

m0
v × (∇×A) .

Using ∇×A = B we may recast this as

(v · ∇)v =
1

2
∇v2 +

e

m0
v ×B .

Inserting this result together with Eq.(110) and FQP = −∇VQP into Eq.(115)
we notice that the Lorentz-force ev(r, t) × B(r, t) drops out in favor of
A(r, t), and we get

∂

∂ t
(v +

e

m0
A) = − 1

m0
∇V − 1

2
∇v2 +

1

2
∇u2 − ~

2m0
∆u (116)
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where we have introduced

V (r, t) = Vcons(r) + Vel(r, t) . (117)

We now multiply Eq.(116) by the imaginary unit i and subtract Eq.(81)
which gives by complete analogy with Eq.(82)

∂

∂ t

[
−u + i(v +

e

m0
A)

]
=

i

2
∇(−u + iv)2 +

i ~
2m0

∇ [∇ · (−u + iv)]− i

m0
∇V. (118)

We mention here only in passing that Eq.(81) is equivalent to Fick’s law and
is hence not affected by the presence of an electromagnetic field as long as
Einstein’s law (40) remains unchanged which is obvious from his derivation.
(S. also Fritsche and Haugk [113].)
As in the case without electromagnetic field we absorb the two independent
scalar informations ρ(r, t) and ϕ(r, t) into one complex-valued function

ψ(r, t) = ±
√
ρ(r, t) eiϕ(r,t) . (119)

As v is no longer equal to ~
m0
∇ϕ we have now in place of Eq.(83)

~
m0
∇(lnψ/

√
ρ0) = −u + i(v +

e

m0
A) . (120)

The left-hand side of Eq.(118) is obviously the time-derivative hereof. It will
be useful to notice that

∂

∂ t

~
m0
∇(lnψ/

√
ρ0) = ∇(

1

m0 ψ
~
∂

∂ t
ψ) . (121)

We may also use Eq.(120) to recast the first expression on the right-hand
side of Eq.(118)

i

2
∇(−u + iv)2 =

i

2

~2

m2
0

∇[∇ ln(ψ/
√
ρ0)]2 +

~
m0

e

m0
∇[A · ∇ ln(ψ/

√
ρ0)]− i

2
∇(

e

m0
A)2 .

If one observes that

∇[∇ ln(ψ/
√
ρ0)] =

1

ψ
∆ψ − [∇ ln(ψ/

√
ρ0)]2 , (122)

the second expression on the right-hand side of Eq.(118) can be written

i
~

2m0
∇ [∇ · (−u + iv)] = − i

2

~2

m2
0

∇[∇ ln(ψ/
√
ρ0)]2

+i∇

 1

ψ

1

2

~2

m2
0

∆ψ − ~
2m0

e

m0
ψ∇ ·A︸ ︷︷ ︸

=(∇·A)ψ−(A·∇)ψ


 .
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Hence we obtain

i

2
∇(−u + iv)2 +

i ~
2m0

∇ [∇(−u + iv)] = −i∇
[

1

m0 ψ
G ψ
]

where

G = − ~2

2m0
∆ + i

~
2

e

m0
∇ ·A + i 2

~
2

e

m0
A · ∇+

1

2m0
(eA)2 .

The right-hand side of this equation may be compactified by using the mo-
mentum operator (87) as a convenient short-hand notation

i

2
∇(−u + iv)2 +

i ~
2m0

∇ [∇(−u + iv)] = −i∇
[

1

m0 ψ

(p̂− eA)2

2m0
ψ

]
.

Inserting this result into Eq.(118) which derives from Eq.(115) (“Newton’s
modified second law”) and Eq.(27) (≡ Fick’s law) and exploiting the Eqs.(121)
and (122) we arrive at

i~
∂ ψ(r, t)

∂ t
= Ĥ(r, t)ψ(r, t) (123)

where

Ĥ(r, t) =
P̂ 2

2m0
+ V (r, t) and P̂ = p̂− eA(r, t) .

16 A model for non-Markovian diffusion illustrat-
ing the origin of non-locality

It is instructive to consider a model illustrating “conservative diffusion”.
The latter is a consequence of forming the arithmetic mean of Eqs.(35) and
(38) which leads to Eq.(39). If one were to follow the motion of an individual
particle, just one member out of the total ensemble, one would directly see
the effect of stochastic forces changing back and forth from “Brownian” to
“anti-Brownian” with the latter causing a motion enhancement after the for-
mer have effected a slow down of the particle motion. Figure 8 shows three
situation of the (free) particle which moves within a two-dimensional frame
where a two-slit diaphragm has been inserted on the left-hand side. The
“walls” of the frame are assumed elastically reflecting. The stochastic forces
acting on the particle are simulated by a two-dimensional gas of N identical
point masses (N � 1) that interact via Lennard-Jones pair-potentials with
each other and with the particle under study as well. The latter will hence-
forth be referred to as “test particle”. It is this situation which the original
derivation of Einstein’s law (40) refers to where the motion of the test par-
ticle is described by a Langevin equation into which the embedding of the
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Figure 8: Trajectory of the test particle undergoing reversible scatterings

particle enters through a stochastic force. (The practical calculations have
been performed with slightly modified Lennard-Jones potentials that were
truncated at twice the average particle distance.) In our model the particle
motion of the embedding gas results from a molecular dynamics simulation
which one starts by first keeping the test particle fixed at the point rA and
letting the N gas particles start from some corner of the frame with equal
absolute values of their momenta. Thereby one defines a certain value of
their total kinetic energy Egaskin . After a short simulation time the gas par-
ticles are uniformly distributed within the frame and their distribution in
the momentum space has become Maxwellian. The latter is associated with
a certain temperature such that the thermodynamical expectation value of
the kinetic energy equals Egaskin . It is this temperature which finally shows
up in Einstein’s law (40). After the embedding gas has “thermalized” one
imparts a certain momentum p on the test particle and continues the molec-
ular dynamics simulation with the test particle now included. As indicated
in the upper panel of the figure, it performs an irregular (Brownian) motion
and loses momentum to the embedding gas whose particles are not shown
in the figure. We have chosen the starting point rA such that the particle
moves through the upper slit of the diaphragm and reaches the point rB
after a simulation time ∆t of the order of τ which is the time constant of a
freely moving particle in a gaseous medium with friction. We now look for
a point rC further to the right in the forward direction of the test particle
(s. panel in the middle of the figure). At this point we impart a momentum
−p on the particle (after thermalization of the embedding gas), i.e. just the
reverse of the momentum at rA.
The point rC is chosen such that the trajectory ends - again after an iden-
tical simulation time of ∆t seconds - at point rB. At this point the test
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particle has lost its original momentum −p almost completely. If one now
turns the velocities of all particles around by 1800 and starts the simulation
again with the time running forward as before, the test particle continues
its motion from point rB and moves exactly along the trajectory it had
formerly followed in the opposite direction coming from rC . When it has
reached rC again, it has regained the previously lost momentum, but this
time with the sign reversed. Hence, in moving from rA to rC the particle
undergoes scattering processes that are in alternating succession Brownian
and anti-Brownian within a time interval of the order τ . Thereby the aver-
age momentum of the particle is conserved. This is illustrated in the third
panel (bottom). A striking feature of the momentum reconstruction by the
above scattering processes is the occurrence of non-locality. This can be
demonstrated by repeating the procedure that led to the trajectory portion
from rC to rB with a crucial modification: If one closes the lower slit of the
diaphragm and starts then with the same position/velocity configura-
tion of all particles as before, the trajectory of the test particle evolves now
differently and does no longer join the previously generated trajectory por-
tion at rB. This is what the molecular dynamics simulation clearly yields.
On the other hand, this is to be expected anyway because every momen-
tum transfer from the test particle to the gas spreads with sound velocity
throughout the entire structure and probes the change that has been intro-
duced. The stochastic forces acting on the test particle are modified by such
a change when these sound waves are reflected back on the particle. If one
wants the modified trajectory to join the first trajectory portion at rB again,
one has to choose a different starting point r′C . Once the test particle has
arrived at rB, one inverts all the velocities as before, and the particle will
now recover the momentum p on its modified trajectory toward r′C . Note:
this change in the course of the particle motion results just from closing the
lower slit although the particle definitely traverses the upper slit. One is
tempted to surmise that this mechanism of probing the environment “in real
life” as the particle exchanges temporarily momentum with the vacuum,
occurs at light velocity. The latter would impose a limit on the distance
beyond which a previously passed potential structure can no longer affect
the evolution of the particle’s trajectory at its current position.
If one were dealing with Brownian scattering only, the succession of scatter-
ing events could be classed as “Markovian”. (Shorthand definition: given the
presence, future and past are independent.) However, the overall character
of the combined Brownian/anti-Brownian scattering processes is obviously
non-Markovian. It is true that the particle has almost completely lost its
memory of its original momentum when it arrives at rB, but its future time
evolution while moving toward rC reconstructs, so to speak, past scattering
events. The particle’s momentum p(0) when it is at rA, and its momentum
p(t) at rC are strongly correlated.
This does not apply to the positions rA(0) and rC(t): if one repeats the
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experiment and lets the particle start at rA with the same momentum p(0)
as before, but with the thermalization process of the embedding gas started
some time interval earlier, the particle’s trajectory will now be different and
lead to a point different from rC though it regains its original momentum
after (approximately) the same traveling time.
Obviously, the non-Markovian (reversible) character of particle motion which
results from such a combination of scattering processes can only show up
on a coarse grain time scale which is the crucial assumption underlying our
derivation of Newton’s modified second laws Eqs.(41) and (115) together
with (110).

17 Operators and commutators

An important advantage of our approach may be seen in the derivability of
Hermitian operators which in standard quantum mechanics can merely be
obtained from educated guessing employing Jordan’s replacement rules. In
Section 11 we have already derived the momentum operator

p̂ = −i ~∇

exploiting our expression (65) for v(r, t) and j(r, t) = ρ(r, t)v(r, t). The
same arguments used in deriving p̂ apply to the angular momentum operator
L̂ which occurs on forming the expectation value of the angular momentum
of a particle with respect to a center located at r = 0. This expectation value
〈L〉 is primarily defined as a real-space integral over the angular momentum
density r ×m0 j:

〈L(t)〉 =

∫
r ×m0 j(r, t) d3r (124)

If one here inserts j from Eq.(92), integrates by parts and requires ψ(r, t)
to vanish sufficiently toward infinity, the result may be written

〈L(t)〉 =

∫
ψ∗(r, t) (r × p̂)ψ(r, t) d3r (125)

which justifies terming L̂ ≡ r × p̂ “angular momentum operator”.
The kinetic energy of an individual particle, labeled by the index j, is defined
as the work performed on that particle by the external force F in accelerating
it from zero velocity at time t = 0 to its velocity vcj(t) at time t, which yields

Ejkin =
m0

2
v2
cj(t) .

Forming the ensemble average according to Eq.(21) one obtains Ekin =
m0
2 v2

c (r, t). Thus, the density of the kinetic energy is given by

εkin(r, t) =
m0

2
ρ(r, t) [vc(r, t)]

2 .
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In the two subsystems “B” and “A” we generally assume the associated
velocities v to be identical, whereas the convective velocities vc are different,
and therefore we distinguish vBc from vAc and form the ensemble average over
the two subensembles:

εkin(r, t) = m0
ρ(r,t)

2
1
2

([
vBc (r, t)

]2
+
[
vAc (r, t)

]2)
(126)

According to Eq.(24) which still refers to the “B”-system, we have

vBc = v − u and therefore vAc = v + u .

Consequently Eq.(126) may be cast

εkin(r, t) = m0
ρ(r, t)

2

(
[v(r, t)]2 + [u(r, t)]2

)
. (127)

From Eq.(83) we have

−u + iv =
~
m0

1

ψ
∇ψ .

The modulus square of this equation times m0 ρ/2 is equal to the right-hand
side of Eq.(127), that is

εkin.(r, t) =
~2

2m0
|∇ψ(r, t)|2 .

Taking the real-space integral of this expression one obtains the kinetic en-
ergy

Ekin ≡ 〈T (t)〉 =

∫
V

~2

2m0
∇ψ∗(r, t) · ∇ψ(r, t) d3r (128)

which by employing Green’s theorem may be given the familiar form∫
V

~2

2m0
∇ψ∗(r, t) · ∇ψ(r, t) d3r =

∫
V
ψ∗(r, t)

[
−~2∇2

2m0

]
ψ(r, t) d3r ,

and hence

〈T (t)〉 =

∫
V
ψ∗(r, t)

p̂2

2m0
ψ(r, t) d3r ,

which justifies terming p̂2/2m0 “kinetic energy operator”.
In practical calculations one often benefits from the fact that Ekin may
alternatively be cast as in Eq.(128) where the integrand is real-valued and
may immediately be interpreted as “kinetic energy density”.

The statistical operator is a particular example of derivability from a simple
concept. We confine ourselves here to the case of a quantum mechanical
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system of a bound particle in contact with a heat bath of temperature T . In
a stationary state the latter constantly exchanges energy with the system,
in the simplest case photons. Hence, the wave function of that system
cannot be one of its eigenstates any more, but rather represents a solution
to the time-dependent Schrödinger equation and can be expanded in terms
of eigenfunctions ψn(r)

ψ(r, t) =
∑
n

cn(t)ψn(r) e−
i
~ En t (129)

where En denotes eigenvalues of the unperturbed one-particle Hamiltonian
Ĥ.
To make the external system classifiable as a heat bath, the time-averaged
coupling energy of the two systems must be negligibly small compared to the
difference En′ −En of any two eigenvalues. The particle’s thermodynamical
expectation value of its energy (indicated by double brackets) is given by

〈〈Ĥ〉〉 ≡ U =
1

τ

∫ t+τ

t

[∫
ψ∗(r, t′) Ĥ ψ(r, t′) d3r

]
dt′ (130)

where τ (not to be confused with the slow-down time in Section 5) has to
be chosen sufficiently large such that U does not depend on t any more.
Quantities that derive from U like the specific heat, are only defined as
time-averages of this kind.
Inserting Eq.(129) into (130) we obtain

U =
∑
n

En {
1

τ

∫ t+τ

t
|cn(t′)|2 dt′} . (131)

The expression in curly brackets may be interpreted as the relative frequency
of the system of being in the n-th eigenstate.
Straight-forward thermodynamics yields for a system that possesses energy
levels En

U =
∑
n

En
1

σ
e−β En , β =

1

kB T
(132)

where
σ =

∑
n

e−β En .

Thus, we have from Eq.(131)

1

τ

∫ t+τ

t
|cn(t′)|2 dt′ = 1

σ
e−β En .

If one defines a statistical operator

ρ̂ =
1

σ
e−β Ĥ
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Eq.(132) can alternatively be cast as

U =
∑
n

〈ψn|ρ̂ Ĥ|ψn〉 ≡ Tr(ρ̂ Ĥ) .

Commutation rules for the operators apply when the potential V (r) in
the time-independent Schrödinger equation (50) possesses a certain symme-
try. If V (r) is spherically symmetric, for example, one verifies simply by
performing partial differentiations that(

ĤL̂2 − L̂2Ĥ
)
ψn(r) ≡ [Ĥ, L̂2]ψn(r) = 0

and similarly
[Ĥ, L̂z]ψn(r) = 0

if ψn(r) is an eigenfunction of Ĥ.

If one is dealing with some operator Â which represents just some analytical
expression in r and p̂, the time dependence of its expectation value 〈Â〉
can be determined by employing the time-dependent Schrödinger equation
which gives

d

dt

∫
ψ∗(r, t) Â ψ(r, t) d3r =∫

ψ∗(r, t)
i

~
[Ĥ, Â]ψ(r, t) d3r ,

in short-hand notation

d

dt
Â =

i

~
[Ĥ, Â] . (133)

Commutation rules of the above kind, again in short-hand notation

[Ĥ, L̂2] = 0 ; [Ĥ, L̂z] = 0 ,

similarly
[Ĥ, p̂] = 0 if V (r) = const. ,

but also

[p̂j , xk] =
~
i
δj k where j = 1, 2, 3 ; k = 1, 2, 3

constitute fundamental elements of standard quantum mechanics and are
discussed as pivotal in the context of measurement. From our point of view
they are just byproducts of the Schrödinger equation and do not contain any
more physics than has already gone into the derivation of the Schrödinger
equation. In practice it is impossible to find quantum systems where eigen-
values of Ĥ and L̂z, for example, can be measured simultaneously although
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there is a widespread belief to the contrary. It is not even possible, for
example, to measure the eigenvalues of Ĥ for a hydrogen atom which - in
clamped proton approximation - represents the archetypal one-particle sys-
tem and the starting point of quantum mechanics. The lines one observes
in its discrete optical spectrum refer to eigenvalue differences and possess -
different from true eigenvalues - a natural line width which goes to zero only
in the hypothetical case of zero radiation coupling, that is when the lines
cannot be observed any more.
There is a remark by Wigner [41] which reveals exactly that lack of strin-
gency and consistency in the foundation of orthodox quantum mechanics:

“ All these are concrete and clearly demonstrated limitations on the measur-
ability of operators. They should not obscure the other, perhaps even more
fundamental weakness of the standard theory, that it postulates the measur-
ability of operators but does not give directions as to how the measurement
should be carried out.”

18 Collaps of the wave function and the node prob-
lem

A vital point of the Copenhagen interpretation consists in the notion that
the wave function of a stationary one-particle state collapses on performing
a measurement on the position of the particle, for example. Within our
approach a phenomenon of this kind cannot occur. First of all, in our view
“measurement” is not a process of something foreign intruding the realm of
quantum mechanics but is rather a part of it. If one calculates, for example,
the time-independent wave function ψ(r) for a stationary situation where
electrons in a diffraction chamber leave a tunneling cathode, sufficiently far
behind each other, run through a two-slit diaphragm and finally hit a flu-
orescent screen, |ψ(r)|2 will display the familiar diffraction pattern behind
the diaphragm and in particular on the screen. But clearly, the structure
of this pattern reflects the distribution of the entire ensemble of electrons
that leave the cathode, and a particular electron, that hits the screen some
place, is only one member out of this ensemble. Hence its capture at the
screen does not destroy the properties of the ensemble. The electron capture
by an atom of the screen constitutes a process that has only marginally to
do with the diffraction state in that the latter determines the probability of
the electron being at that particular atom. Otherwise the capture process is
governed by the time dependent Schrödinger equation and the perturbation
caused by the electromagnetic field of the outgoing photon. All this is com-
pletely independent of the possible presence of an “observer” who might see
that photon.

Despite deceptive similarities the situation becomes conceptually different
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when one replaces the tunneling tip in the otherwise unchanged diffraction
chamber by a light source that emits, again in sufficiently large time inter-
vals, photons of the same wave length as the previously considered electrons.
Since the space-time structure of the wave (in principle ∝ cos[k · r − ω t])
with which each photon is associated, is not defined as the property of
an ensemble of mechanical objects but rather by classical electrodynamics
(Maxwell’s equations), it will, in fact, disappear on the disappearance of
the photon in question. There are a couple of properties by which photons
differ crucially from massive particles: They move always at light veloc-
ity along straight lines in vacuo and the associated waves are vector-valued
functions. By contrast, the de Broglie waves of massive particles are in gen-
eral complex-valued functions, and the average velocity of the particles is
given by the gradient of the functions’ phase. Their interaction with other
particles and parts of an experimental setup is described by the Schrödinger
equation and the potentials therein. On the other hand, the interaction of
photons with polarizers, mirrors, quaterwave plates, filters etc. is governed
by classical electrodynamics. Malus’ law, for example, constitutes a law of
classical optics. Because of these rather fundamental differences any analysis
of photon correlation experiments, for example, should critically be scruti-
nized whether a transfer to analogous experiments with massive particles is
truly justified. In Section 33 we shall draw on the familiar example of the
Stern-Gerlach experiment to demonstrate that the selection mechanism for
up-spin and down-spin particles in the Stern-Gerlach magnet has nothing
to do with the mechanism separating horizontally and vertically polarized
photons in a polarizing beam splitter.

According to Mielnik and Tengstrand [31] excited stationary states appear
to pose a serious problem in that ψ(r) possesses nodal surfaces at which the
normal derivative ∂

∂nρ(r) vanishes but the normal component of the osmotic
velocity

un(r) = − ~
2m0

∂
∂nρ(r)

ρ(r)
en

becomes formally infinite. Moreover, at surfaces across which ρ(r) attains
a maximum, ∂

∂nρ(r) vanishes as well, but un(r) becomes now zero. If ψ(r)
is real-valued then v(r) vanishes everywhere, and therefore we have on such
surfaces with maximum probability density

v = un = 0 .

In the 2s-state of a hydrogen electron, for example, one has a spherical sur-
face of this kind. Hence, it seems that this sphere separates two regions
of space that are mutually inaccessible for the electron. But the above ve-
locities are only ensemble averages or - in the spirit of the definition (23) -
averages of non-vanishing velocities v(ti),un(ti) of different directions over
a sufficiently long time T .
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As for |un(r)|, going to infinity on crossing a nodal surface of ψ(r), one
has to keep in mind that stationary excited states (excited eigenstates) are
highly fictional and do actually not exist in nature. Because of ∆E∆t ≈ ~
and ∆E = 0 for an eigenstate it would take an infinite time to prepare them.
Hence, truly existing excited states do not possess nodal surfaces where ψ(r)
vanishes exactly. But even if one would allow them to exist, the kinetic en-
ergy density m0

2 ρ(r)u2(r) = ~2

2m0
|∇ψ(r)|2 remains finite and hence ensures

a physically meaningful behavior even for this idealized situation.

19 The Feynman path integral

As our concept builds on the existence of particle trajectories one might sur-
mise that there should be some affinity to Feynman’s path integral method
[42] which also relates to possible paths a particle might take. We shall
outline that there is neither any formal kinship nor does Feynman name any
cause for the possible occurrence of non-classical trajectories. In so doing we
limit ourselves, as Feynman in his article, to the one-dimensional case of a
particle that moves non-relativistically in a potential V (x). Feynman’s con-
siderations are based on two hypotheses that may be summarized by stating
that the wave function ψ(x, t+ ∆t) of the particle at some point x and time
t + ∆t is connected with the wave function ψ(x − σ, t) at a previous point
x−σ and earlier time t by an integral equation similar to the Smoluchowski
equation (344) in (Section 39), viz.

ψ(x, t+ ∆t) =

∫
ψ(x− σ, t)F (x, x− σ, t,∆t) dσ (134)

where F (x, x−σ, t,∆t) is the function that brings in classical mechanics. It
is defined as

F (x, x− σ, t,∆t) =
1

A
e
i
~ S(x, x−σ, t,∆t)

where

A =

(
2π~ i∆t

m0

) 1
2

.

Here S(x, x− σ, t,∆t) denotes Hamilton’s first principle function for a par-
ticle moving classically in a potential V (x) along a trajectory from a point
x− σ to x within an infinitesimally small time span ∆t. Hence

S(x, x− σ, t,∆t) =

Min.

∫ t+∆t

t

[m0

2
σ̇2 − V (x− σ(t′))

]
dt′

where
L(σ̇(t), σ(t)) =

m0

2
σ̇2 − V (x− σ(t))
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denotes the Lagrangean.
As ∆t is infinitesimally small S(x, x− σ, t,∆t) may be approximated

S = ∆t

[
m0

2

( σ
∆t

)2
− V (x)

]
.

Hence one has

F =
1

A

[
e
im0
2~∆t

σ2 · e−
i V (x) ∆t

~

]
.

The first exponential oscillates rapidly as a function of σ because of the
prefactor 1/∆t in the exponent, whereas, by comparison, ψ(x − σ, t) may
be assumed slowly varying as a function of σ. The value of the integral in
Eq.(134) depends therefore only on a small interval of σ about the point x.
Within this interval ψ(x− σ, t) may be expanded as

ψ(x− σ, t) = ψ(x, t)− dψ

dx
σ +

1

2

d2ψ

dx2
σ2 .

If one inserts this into Eq.(134), observes

1

A

∫ ∞
−∞

e
im0
2~ ∆t

σ2
dσ = 1 ;

(note that this equation defines A!), further

1

A

∫ ∞
−∞

e
im0
2~∆t

σ2
σ dσ = 0 ,

1

A

∫ ∞
−∞

e
im0
2~ ∆t

σ2
σ2 dσ =

i~
m0

∆t

and uses

e−
i V (x) ∆t

~ ≈ 1− i V (x) ∆t

~
,

one obtains

ψ(x, t+ ∆t) = ψ(x, t)

(
1− i

~
V (x) ∆t

)
+

1

2

d2ψ

dx2
· i~
m0

∆t

(
1− i V (x) ∆t

~

)
.

Multiplying this equation by i~
∆t and letting ∆t tend to zero one arrives at

the time dependent Schrödinger equation

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m0

∂2

∂x2
+ V (x)

]
ψ(x, t) .

Though the Schrödinger equation is obviously recovered following this line of
argument, it remains unclear why Hamilton’s classical first principle function
should appear in the exponent of F (x, x − σ, t,∆t). Feynman’s considera-
tions lean closely on arguments of measurement typical of the Copenhagen
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school of thought, cast into an axiomatic framework notably by v. Neumann
[43]. But ψ(x, t) may, for example, describe the motion of a harmonic os-
cillator in the absence of any measurement. In fact, if one were to perform
a measurement on the harmonic oscillator the Schrödinger equation would
contain a perturbative extra term that would give rise to a different wave
function. Clearly, as already stated in Section1 the probabilistic character
of ψ(x, t) does not originate from indeterminacies caused by the process of
measurement. The complex-valuedness of the wave function in the form
ψ(x, t) = |ψ(x, t)| eiϕ(x,t) comes about by incorporating two autonomous
real-valued informations: the probability density |ψ(x, t)|2 of the particle
being at x and time t and the ensemble average v(x, t) = ~

m0

d
dx ϕ(x, t) of

its velocity. For that reason our derivation of the Schrödinger equation re-
quires two Smoluchowski equations for the real-valued functions ρ(r, t) and
v(r, t) instead of Feynman’s single Eq.(134). In summary, we believe that
our derivation provides a much clearer insight into the connection between
classical mechanics and quantum mechanics and is not flawed by highly
artificial assumptions.

20 Spontaneous light emission

Understanding the discrete spectrum of light emitting atoms had been the
primary motivation for developing a theory beyond classical mechanics and
electrodynamics. It was far from being likely that Planck’s constant h which
he introduced to explain the continuous spectrum of light emitting incandes-
cent “black bodies” could have anything to do with those discrete spectra.
By hindsight it must be seen as a surprise when Niels Bohr [44] could explain
the well studied spectrum of the hydrogen atom by requiring the associated
electron to orbit around the nucleus on concentric circles where its angular
momentum L equals integer multiples of Planck’s reduced constant ~ = h

2π :
L = n ~ and n = 1, 2, . . .. In each of the orbitals the electron was considered
to be in a stable state, but it was allowed to jump spontaneously to another
orbital of lower energy and convert the energy difference into light. Those
“quantum jumps” still belong to the vocabulary of present-day quantum
mechanics (see e. g.[45]) although their existence lacks any foundation as we
shall demonstrate.
In Bohr’s theory the electron always possesses a non-vanishing angular mo-
mentum so that the centrifugal force keeps it well separated from the nucleus
and thereby ensures a well defined size of the hydrogen atom for n = 1, its
state of lowest energy. In reality, i. e. according to our approach, the par-
ticle under study, the electron, is driven by the combined action of the
static classical Coulomb force exercised by the nucleus and by the stochastic
forces of the vacuum. As a consequence, its probability amplitude obeys the
Schrödinger equation, the time-independent solutions of which, ψ̂nlm(r), are
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characterized by integer quantum numbers n, l,m where r is referenced to
the position of the nucleus. The latter is considered to be a clamped point
charge for simplicity. The state ψ̂100(r) refers to the groundstate where
〈L〉 = 0, distinctly different from Bohr’s theory. Only excited states (n >1)
for which l equals |m| display a toroidal probability density and resemble
diffuse circular Bohr orbitals.
The energies that are associated with the eigensolutions ψ̂nlm(r) are given
by

Enlm = − R
n2

where n > l + |m| l = 0, 1, 2, . . . , m = −l, . . . 0 . . .+ l(135)

and

R = 1
2 α

2m0 c
2 = Rydberg constant ; R = 13.6059 eV .

Here m0 denotes the electron’s rest mass, c the velocity of light in vacuo
and α the fine structure constant:

α =
e2

4πε0 ~c
=

1

137.036
.

The quantity ε0 represents, as before, the permittivity of the vacuum and e
is the elementary charge.
As has already been discussed in Section 12, it is one of the fundamental
credos of conventional quantum mechanics that eigenvalues of the energy as
in (135) constitute results of appropriate measurements, more precisely, as
Mermin [46] states in a widely recognized article:

“...quantum mechanics requires that the result of measuring an observable
be an eigenvalue of the corresponding Hermitian operator.....”

Although this statement belongs to the seemingly ineradicable rituals in
conversing about quantum mechanics, it is void of meaning. Of course,
there has always been the discrete hydrogen spectrum in the back of the
minds of the founding fathers, and that spectrum seemed to be clearly some
map of the eigenvalues (135). But in actual fact one commonly measures
the wave length of the emitted light by a spectrometer about or more than
1010 atomic diameters away from the emitter. When the packet of the light
wave enters the “measurement process”, i e. the spectrometer, the atom has
long left its original state. The phraseology “measuring eigenvalues” invites
the impression as if it would compare to measuring somebody’s collar size.
Moreover, as we shall show, in the emission process the energy of the atom
attains all values between the eigenvalues that are involved in the transition,
but the frequency and the measured associated wavelength of the emitted
light remain constant.
Before we go into the details of our approach we want to emphasize that its
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basic idea is almost identical with what has been popularized by E. T. Jaynes
already in 1963 [47] and in the following years [48], [49] under the name
“neoclasical theory (NCT)”. The terminology is rather misleading. In the
present theory (and in Jaynes’ theory as well) the electromagnetic field is
generated by an oscillating electronic current density which sets up a vector
potential and this, in turn, appears in the kinetic energy operator of the
electronic Hamiltonian. What should be considered “neoclassical” in using
this interrelation? Quantum mechanical current densities are foreign objects
to classical electrodynamics.
Although we arrive at a time evolution of the light emission that differs in
crucial details from a purely exponential decay as obtained by Weisskopf and
Wigner [50], the decay times are in agreement with each other. This applies
to Jaynes’ theory as well. Most of the criticism voiced against Jaynes’ work
revolves around his non-exponential time evolution. He tries to defend this
result by considering ineffective excitations in which the atom acquires only
a small portion of the full excitation energy. He argues that this will nor-
mally happen in reality, and therefore only the tail of his transition curve
can show up in the experiment. This tail is essentially an exponential func-
tion.
We fundamentally disagree with this notion. If the atom re-emits light with
a frequency ω the associated wave packet contains a photon of energy ~ω
and not a fraction of it. Hence the atom must have definitely been in its
excited state prior to the emission process.

How does spontaneous light emission fit into the framework that we have de-
veloped so far? Our point of departure from the standard approach consists
in questioning the assumption that eigenstates “can be prepared”. How
should such a “preparation” be achieved? By definition, an eigenstate is
associated with zero dispersion of its energy. Hence, because of

∆E∆t ≈ ~ where ∆E =

√
(E − Enlm)2 (136)

the preparation time ∆t is infinite for an eigenstate.2 That is, in reality, an
excited state can only be a solution to the time-dependent Schrödinger
equation and hence may be cast as

ψ(r, t) =
∑
n, l,m

cnlm ψ̂nlm(r) e−i
Enlm

~ t (137)

where ∫
ψ̂∗n′l′m′(r) ψ̂nlm(r) d3r = δn′n δl′l δm′m (138)

2A similar situation occurs if one wants to excite a superconducting cavity in one of
its modes. If the cavity can lose energy to the outside at a small rate it behaves as if it
were slightly attenuated. The time it takes to arrive at a stationary state grows longer
and longer the weaker the energy loss becomes. The excitation time tends to infinity as
the loss rate tends to zero.
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and because of∫
|ψ(r, t)|2 d3r = 1 one has

∑
n, l,m

|cnlm|2 = 1 . (139)

Each term under the sum in Eq.(137) satiesfies individually the time-dependent
Schrödinger equation of the hydrogen electron since by definition

Ĥψ̂nlm(r) = Enlm ψ̂nlm(r) where Ĥ =
p̂ 2

2m0
− e2

4πε0 r
and p̂ = −i~∇ .(140)

A realistic “eigenstate” is characterized by the property that the square
modulus of one the coefficients cnlm in Eq.(137) is close to unity, that of the
others correspondingly small.
In the following we consider the situation in which the hydrogen atom has
been excited from the ground state 1s to the state 2p where m = 0. The
excitation may have been caused by absorbing linearly polarized light. As
stated above, it is, as a matter of fact, impossible that the atom in the
excitation process really ends up in the eigenstate 2p. Its state will rather
have the form

ψ(r, t) = c0 ψ̂1s(r) e−i
E1s
~ t + c1 ψ̂2p(r) e−i

E2p
~ t

where 0 < |c0| � |c1| < 1 . (141)

Using Eq.(141) we obtain∫
ψ∗(r, t) Ĥ ψ(r, t) d3r = |c1|2︸︷︷︸

=1−|c0|2

E2p + |c0|2E1s

that is E = E2p − Ẽ |c0|2 (142)

where

Ẽ = E2p − E1s . (143)

The expression Ẽ |c0|2 represents obviously the uncertainty ∆E with which
the 2p-state has been “prepared”.
From Eq.(141) we may form the electronic charge density ρ(r, t) = e |ψ(r, t)|2
which we cast as

ρ(r, t) = ρ0(r) + ρ̃(r, t) (144)

where

ρ0(r) = e
[
|c0|2 ψ̂2

1s(r) + |c1|2 ψ̂2
2p(r)

]
(145)
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and

ρ̃(r, t) = |c∗0 c1| e ψ̂1s(r) ψ̂2p(r)

[
e
i
[
E2p−E1s

~ t+ϕ
]

+ e
−i

[
E2p−E1s

~ +ϕ
]]
. (146)

where ϕ is defined through

c∗0c1 = |c∗0c1| eiϕ . (147)

Here we have exploited the fact that ψ̂1s(r) and ψ̂2p(r) are real-valued func-
tions. Eq.(144) may hence be rewritten

ρ(r, t) = ρ0(r) + 2 |c∗0 c1| ρ̃0(r) cos(ωt+ ϕ) (148)

where

ρ̃0(r) = e ψ̂1s(r) ψ̂2p(r) and ω =
E2p − E1s

~
i. e. ~ω = E2p − E1s(149)

The following figure shows four snapshots of the time evolution of ρ(r, t)

Figure 9: Four snapshots of the color coded density of a H-atom in the
transition 2p→1s

As one can see from Eq.(142):

E = |c0|2E1s + |c1|2E2p and 0 ≤ |c0| ; 0 ≤ |c1| |c0|2 + |c1|2 = 1

the energy of the electron can have any value between E2p and E1s. Re-
gardless of the value of E its charge density oscillates sharply at ω ! In
the following calculation we shall derive a transition time which the electron
takes to change its state from (141) with 0 < |c0| � |c1| < 1 to a form of
ψ(r, t) where |c0| ≈ 1 and |c1| ≈ 0. This transition time turns out to be of
the order of 10−9 s, that is, there are no quantum jumps! At this point
it should be remembered that the article by Dehmelt and collaborators [45]
“..on the observation of quantum jumps” shows a plot of these jumps on a
time scale of 20 s unit length!

The function ψ(r, t) defined by Eq.(141) is a solution to the time-dependent
Schrödinger equation

Ĥψ(r, t) = i ~
∂

∂t
ψ(r, t) (150)

74



only as long as the coefficients c0, c1 are constant. However, even when
c0 is very small compared to unity, ρ(r, t) oscillates at the frequency ω
and thus gives rise to the emission of an electromagnetic wave. The latter
is polarized in the direction of the quantization axis of ψ̂2p(r) which also

defines the symmetry axis of ψ̂1s(r) ψ̂2p(r) in Eq.(149). As the atom loses
energy in building up the electromagnetic wave, E in Eq.(142) decreases,
and hence c0 must now increase as a function of time. This is a consequence
of the fact that the radiation field acts back on the atom, and therefore the
Hamiltonion in Eq.(150) is now modified:

Ĥ ′ψ(r, t) = i ~
∂

∂t
ψ(r, t) where Ĥ ′ =

(p̂− eA(r, t))2

2m0
− e2

4πε0 r
(151)

where A(r, t) denotes the vector potential of the radiation field. It is set
up by the quantum mechanical current density j(r, t). As we expect and
what the calculation actually comes up with is an outgoing wave packet
with a thickness of c τ̂ where τ̂ is the transition time. At a distance of some
wavelength away from the center of the atom there is still a longitudinal
component in the oscillating electric field in the wave packet. Moreover,
the current density of the energy flow, S(r, t), will display the characteristic
feature of a Hertzian dipole.
In the article by Weisskopf and Wigner [50] the radiation field is quantized
which suggests that their derivation qualifies to be more fundamental. The
authors consider a transition between two states, an initial state defined
by the electrons of the atom being in an excited eigenstate with no pho-
ton present and a final state that describes the electrons being in the lower
eigenstate and a linear combination of quantized electromagnetic modes in a
cube of volume V with ideally reflecting walls. Hence, these modes represent
standing waves. The sum of the mod squared of the coefficients in the lin-
ear combination equals unity. All modes that pertain to the final state are
assumed to have equal weight and are associated with essentially the same
frequency ω =

Ei−Ef
~ . Here Ei and Ef refer to the energy of the electronic

initial and final state, respectively.

From a principal point of view this field-theoretical description appears to
be rather absurd. The final state does not represent an outgoing electro-
magnetic wave of a certain thickness which forms a hollow sphere about
the emitter, as with our theory, but rather a set of standing waves which
penetrate the emitter undisturbed. They penetrate the atom completely
unmodified also during the entire transition process. There is nowhere a
longitudinal electric field component. It seems to border on magic that a
calculation of this kind still arrives at a result that is in agreement with the
experiment, although the time evolution is hardly accessible and therefore
still open to discussion.

We now turn back to our derivation. To obtain A(r, t) we first determine
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the current density

j(r, t) =
e ~

2im0
[ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)] . (152)

On inserting ψ(r, t) from Eq.(141) the current density takes the form

j(r, t) =
e ~
m0
|c∗0 c1| [ψ̂1s(r)∇ ψ̂2p(r)− ψ̂2p(r)∇ ψ̂1s(r)] sin(ω t+ ϕ) . (153)

The vector potential A(r, t) and j(r, t) are interconnected by

A(r, t) =
µ0

4π

∫
j(r′, t− |r

′−r|
c )

|r′ − r|
d3r′ where µ0 =

1

ε0 c2
. (154)

Because of Eq.(152) A(r, t) is a functional of ψ(r, t). It follows then from
inspection of Eq.(151) that this modified Schrödinger equation constitutes
now a non-linear partial differential equation since the Hamiltonian Ĥ ′

depends on ψ(r, t). Below we shall derive a detailed solution to this equation.
If one is not interested in the details of the time dependence one can take a
short-cut:
First we give the expressions

ψ̂1s(r)∇ ψ̂2p(r) and ψ̂2p(r)∇ ψ̂1s(r)

a different form by using the identity (which is just an application of the
chain rule):

[Ĥ r − r Ĥ] ψ̂(r) = −i ~
m0

p̂ ψ̂(r) = − ~2

m0
∇ ψ̂(r) . (155)

This yields

ψ̂1s(r)∇ ψ̂2p(r) =
m0

~2
[ψ̂1s(r) r Ĥ ψ̂2p(r)− ψ̂1s(r) Ĥ r ψ̂2p(r)]

and

ψ̂2p(r)∇ ψ̂1s(r) =
m0

~2
[ψ̂2p(r) r Ĥ ψ̂1s(r)− ψ̂2p(r) Ĥ r ψ̂1s(r)] .

Forming the integral of Eq.(153), exploiting the hermitiaty of Ĥ, using
Eq.(208) and ~ω = E2p − E1s we thus obtain

I(t) ez = 2 |c∗0 c1| e ω
∫
ψ̂1s(r) r ψ̂2p(r) d3r sin(ω t+ ϕ) where ez||z − axis .(156)

The quantity I(t) denotes the alternating current that is set up in the atom
as a result of c0 not being zero. The quantization axis of ψ̂2p(r) is taken
along the z-axis. We may rewrite the above integral∫

ψ̂1s(r) r ψ̂2p(r) d3r =

∫
ρdipole(r) r d3r = r
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where we have expressed the fact that ψ̂1s(r) ψ̂2p(r) represents a dipole-type
probability density. Hence, Eq.(156) can be cast as

I(t) ez = − d

dt
p(t) where p(t) = g(t) |e| r cosω t and g(t) = 2 |c∗0(t) c1(t)| .

As the emission of the electromagnetic wave proceeds, the coefficient c0

becomes larger and will finally attain its largest value 1 at the end of the
transition. According to Eq.(137) it will be equal to 1√

2
in the middle of

the transition. The coefficient c1 changes in reverse since the sum of the
square of the coefficients must be unity at any time. Hence, in the middle of
the transition the function g(t) defined above attains its maximum value 1
and drops asymptotically to zero on either side. To serve the purpose of the
present short-cut, we approximate the actually bell-shape time-dependence
of g(t) by a rectangle of width τ̂ and height unity.
We now invoke Hertz’s result on the density S(r, t) of the energy flow from
an oscillating dipole:

S(r, θ, t) =
1

16π2 ε0 c3

sin2 θ

r2

[
d2

dt2
p(t)

]2

where θ is the angle that r encloses with the dipole axis.
Forming a surface integral with S(r, θ, t) over a concentric sphere of radius
r and averaging over one oscillation period one arrives at

S(t) = [g(t)]2
e2 ω4

6π ε0 c3
|pn′n|2

where S(t) = π r2

∫
|S(r, θ, t)| sin 2 θ d θ and n′ = 1s ;n = 2p

and

pn′n =

∫
ψ̂n′(r) r ψ̂n(r) d3r ; [g(t)]2 =

{
1 for |t| ≤ τ̂ /2
0 for |t| > τ̂/2

. (157)

Integration of S(t) over the transition time τ̂ must yield E2p − E1s = ~ω :∫ τ̂

0
S(t) dt = ~ω =

e2 ω4

6π ε0 c3
|pn′n|2τ̂ .

From this we obtain an expression for the inverse of the transition time

1
τ̂ =

e2 ω3

6π ε0 c3 ~
|pn′n|2 or 1

τ̂ = α
2ω3

3 c2
|pn′n|2 where α =

e2

4πε0 ~
(158)

in agreement with the result of the standard calculation (s. e. g. [50]) which
is based on a remarkably different concept, as already mentioned above. It
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should be observed, however, that this calculation yields an expression for
the transition rate 1

τ ′ which is equated with d
dt |c0|2(t)|t=0 = 2

τ̂ . Hence

1
τ ′ =

e2 ω3

3π ε0 c3 ~
|pn′n|2 .

It is worth noting that the problem of spontaneous light emission has for
the first time been treated by Fermi [51] in 1927. He chose an approach
very similar to ours, but used the classical expression for the radiation back
action ∝ d3

dt3
p which led to a frequency shift of the emitted light depend-

ing on the transition time. However, this is at variance with the observation.

We now turn back to the problem of calculating the detailed time-dependence
of |c0(t)|2, |c1(t)|2. To this end we first observe that

Ĥ ′ = Ĥ + Ĥint =
(p̂− eA(r, t))2

2m0
− e2

4πε0 r
= Ĥ − e

m0
A(r, t) · p̂ + . . .(159)

where the dots stand for (eA(r,t))2

2m0
which will be neglected for the term linear

in A(r, t). Inserting (159) and ψ(r, t) from (141) into the time-dependent

Schrödinger equation Eq.(151), multiplying this equation by ψ̂2p(r) ei
E2p
~ t

or alternatively by ψ̂1s(r) ei
E1s
~ t and performing a real-space integration one

arrives at

i~ ċ1 = c0M10 e
iω t + c1M11 (160)

where

M10 =

∫
ψ̂2p(r) Ĥint ψ̂1s(r) d3r and M11 =

∫
ψ̂2p(r) Ĥint ψ̂2p(r) d3r

and

Ĥint = i
e~
m0

A(r, t) · ∇ . (161)

Analogously we have, in obvious notation

i~ ċ0 = c1M01 e
−iω t + c0M00 . (162)

According to Eqs.(153) and (154) one has

A(r, t) = |c∗0c1|
e~

4πε0m0c2
× (163)

∫
[ψ̂1s(r

′)∇′ψ̂2p(r
′)− ψ̂2p(r

′)∇′ ψ̂1s(r
′)] sin[ω (t− |r−r

′|
c ) + ϕ]

|r − r′|
d3r′ .

The retardation in the time dependence of the sine-function is crucial for
the occurrence of an outgoing wave. If one were to neglect retardation the
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atom would not undergo a change of its energy, averaged over an oscillation
period.

For light frequencies ν = ω
2π ≈ 1015s−1 and |r − r′|

<
≈ 4 · 10−8cm for points

within the atomic volume we have ω
c |r − r′|

<
≈ 10−2, and hence we may

approximate:

sin[ω (t− |r−r
′|

c ) + ϕ] ≈ sin(ω t+ ϕ)− ω |r−r
′|

c cos(ω t+ ϕ)

Inserting this into Eq.(163) one obtains

A(r, t) = A1(r, t) + A2(r, t) = Â1(r) sin(ω t+ ϕ) + Â2 cos(ω t+ ϕ) (164)

where

Â1(r) = |c∗0c1|
e~

4πε0m0c2

∫
[ψ̂1s(r

′)∇′ψ̂2p(r
′)− ψ̂2p(r

′)∇′ ψ̂1s(r
′)]

|r − r′|
d3r′(165)

and

Â2 = −|c∗0c1|
e ~ω

4πε0m0c3

∫
[ψ̂1s(r

′)∇′ψ̂2p(r
′)− ψ̂2p(r

′)∇′ ψ̂1s(r
′)] d3r′ (166)

The integral in Eq.(166) can be rewritten by using the identity (155):

A2(r, t) = Â2 cos(ω t+ ϕ) =

−2|c∗0c1|
e ω2

4πε0 c3

∫
ψ̂1s(r

′)r′ ψ̂2p(r
′) d3r′︸ ︷︷ ︸

=pn′n

cos(ωt+ ϕ) . (167)

We now form the matrix element of Ĥint = i e~m0
A(r, t) · ∇ according to

Eq.(160) using again the identity (155).

M10 =
i~
m0

2|c∗0 c1|
e2 ω2

4π ε0 c2
pn′n ·

∫
ψ̂2p∇ ψ̂1s d

3r︸ ︷︷ ︸
=−ω m0

~ pn′n

cos(ωt+ ϕ) (168)

+
i~
m0

∫
ψ̂2p(r)

e

m0
Â1(r) · ∇ ψ̂1s(r) d3r sin(ω t+ ϕ)

We multiply Eq.(160) by c∗1 and form the sum with its complex conjugate.
The result may be written:

∂

∂t
|c1(t)|2 = −4γ |c∗0(t)c1(t)|2 cos2(ω t+ ϕ)+ (169)
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2|c∗0(t)c1(t)|
∫
ψ̂2p(r)

e

m0
Â1(r) · ∇ψ̂1s(r) d3r cos(ω t+ ϕ) sin(ω t+ ϕ)

+2|c1(t)|2
∫
ψ̂2p(r)

e

m0
Â1(r) · ∇ψ̂2p(r) d3r sin(ω t+ ϕ)

+2|c1(t)|2
∫
ψ̂2p(r)

e

m0
Â2 · ∇ψ̂2p(r) d3r cos(ω t+ ϕ) .

The quantity γ in the first line of this equation stands for

γ =
e2 ω3

4π ε0 c3 ~
|pn′n|2 . (170)

We now perform a time average on the right-hand side of Eq.(169) over
successive oscillation periods T = 2π

ω of the emitted light. Since the emission
time τ̂ is many orders of magnitude larger than T , one may approximate
|c0/1(t)| by |c0/1(t̄ν)| where ν = 1, 2, . . . counts successive oscillation intervals
and t̄ν denotes an appropriately chosen time in the respective interval. On
performing the time average all terms on the right-hand side of Eq.(169)
now drop out except for the first one. Hence we arrive at

∂

∂t
|c1(t)|2 = −2γ |c0(t)|2|c1(t)|2 (171)

where we have used cos2(ω t+ ϕ) = 1
2 with the bar denoting time averag-

ing. We have, furthermore, replaced the histogram-type functions of time
|c0/1(t̄ν)|2 on the right-hand side by their smooth least mean-square fits.
In complete analogy we obtain

∂

∂t
|c0(t)|2 = 2γ |c0(t)|2|c1(t)|2 . (172)

Since |c0(t)|2 + |c1(t)|2 = 1, the time derivative of this sum must vanish.
This is obviously ensured by the above two coupled equations (171) and
(172). It can readily be verified that their two solutions are

|c0(t)|2 = 1
2 (1 + tanh 2t

τ ) and |c1(t)|2 = 1
2 (1− tanh 2t

τ ) . (173)

On multiplying these two functions one gets

|c0(t)|2|c1(t)|2 = 1
4

1

cosh2 2t
τ

.

From Eq.(171) we have

∂

∂t
|c1(t)|2 = −2γ |c0(t)|2|c1(t)|2 = −1

2 γ
1

cosh2 2t
τ

.
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Figure 10: Optical transition: time-dependence of the “driving force” ∝ A2
2

On the other hand it follows from Eq.(173) on differentiating |c1(t)|2

∂

∂t
|c1(t)|2 = −1

τ

1

cosh2 2t
τ

.

That means, the functions |c1(t)|2 and |c0(t)|2 fulfill Eqs.(171) and (172) if

1
τ = 1

2 γ =
e2 ω3

8π ε0 c3 ~
|pn′n|2 .

Comparing this result with our “short-cut calculation” (158) we see that it
is 25% smaller than the latter:

1

τ
= 0.75

1

τ̂
.

This difference originates in the simplification of the time dependence of
|c1(t)|2 and |c0(t)|2 in taking the short-cut.
The following figure illustrates the time dependences according to Eq.(173).
We have marked two points A and B on the left-hand side of the curve
for |c1(t)|2. As explained in connection with Eq.(142), the quantity [E2p −
E1s] |c0|2 represents the energy uncertainty with which the state ψ̂2p(r) has
been “prepared” as a result of the finite preparation time ∆t. With the aid
of Eq.(136) and |c1(t)|2 = 1− |c0(t)|2 this can be recast

1− |c1(t)|2 =
~

[E2p − E1s] ∆t
.

The shorter the excitation time, the more |c1(t)|2 departs from unity. Hence,
point A refers to a longer excitation time than point B. Correspondingly, if
the system has landed at A after the excitation process, it takes a longer
time to reach the transition interval (marked by two vertical dashed lines)
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Figure 11: Optical transition between two states: Time dependence of the
modulus square of the two-state related coefficients

than it would take if it would start at B. One may refer to these residence
times prior to emission as “dead times”. It should be noticed, however, that
the “emission time”, limited by the two vertical dashed lines, remains largely
unaffected by the different lengths of the dead times. That is to say, largely
independent of the form of the excitation one observes a spectral line of a
natural width that is only determined by the two states of the atom under
study.
As already alluded to, the time evolution of the transition obtained above
contrasts remarkably with that of Weisskopf and Wigner [50]. Their article
is still considered ground laying for the theory of spontaneous light emission.

However, these authors arrive at |c1(t)|2 = e−
t
τ ′ which appears to be plau-

sible at first sight, but is inconsistent with a solution to the time-dependent
Schrödinger equation as follows from our derivation.
Another point of misunderstanding concerns “the measurement” of that ex-

ponential decay law e−
t
τ ′ . Clearly, neither |c1(t)|2 nor any related quantity,

for example E = |c0(t)|2E1s+ |c1(t)|2E2p, is experimentally accessible in any
way since one can only detect the light (i. e. the associated photon) when
it has been fully emitted. What is actually done in the experiments is mea-
suring the time-dependence of the photon-capture rate at which a photon
detector fires after a large number of identical atoms has been excited by
a flash. In the ensuing process the atoms re-emit the light spontaneously.
The instant of time of the flash serves as a reference point with respect
to which the detector records the flow of the incoming photons, and this
flow is exponentially decaying in time. But each atom contributes only one
single photon. Obviously, the photons are emitted at different times from
different atoms. What has the time-dependence of their flow to do with the
Weisskopf-Wigner decay law which refers to the time evolution of a single
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atom? According to their theory all atoms start decaying immediately after
the excitation by the flash. Since the photons can only be detected after the
asssociated wave packets have been fully emitted, they should also be mon-
itored by the detector at approximately the same time and not according to
an exponential time law.
Our derivation relates the re-emission of photons at different times to differ-
ent deadtimes which occur because of the spectral width of the light-flash.
If the atom absorbs a photon of lower frequency out of the flash (ω < ω0)
it ends up in a state where |c1(t)|2 is now smaller than unity and we have
because of Eq.(142)

~∆ω = ∆E [1− |c1(t)|2] which can be recast ~∆ω = ∆E |c0(t)|2 (174)

with ∆ω denoting ω0 − ω where ω0 =
E2p−E1s

~ .
We temporarily abbreviate 2t

τ into x and observe

tanhx =
ex − e−x

ex + e−x
≈ −1+e2x if x� −1 and hence 1

2 (1+tanhx) ≈ 1
2 e

2x .

Eq.(174) may therefore be rewritten (replacing ∆E with E2p−E1s for clar-
ity):

~∆ω =
E2p−E1s

2 e
4t
τ . (175)

Here t � −τ is referenced to the middle of the transition interval. If one
wants to find the position of some point like A or B in the above figure for
some atom that has absorbed a photon of energy ~(ω0 − ∆ω), one has to
insert the particular ∆ω in Eq.(175) and one obtains the associated t that
gives the distance of that point from the middle of the transition interval. If
the spectrum of the flash is rectangular the probability of an atom absorbing
such a photon is equal for all frequencies of the spectrum. That means that
the lengths of the dead times t associated with the various values of ∆ω are
ordered in an exponential fashion.
Each atom appears with one deadtime point on its associated |c0(t)|2-curve
( Fig.(11)). These points form a dotted line along a common |c0(t)|2-curve
if one projects them from their individual curves onto one plot. The density
of the points is exponentially decreasing in the (−t)-direction. The points
move at constant velocity towards the transition intervall. The time a point
takes to travers the transition interval is τ . If n(t) is the number of atoms
whose points are within that transition interval at time t, the transition rate
is then given by n(t)

τ which means

ṅ = −n(t)

τ
↪→ n(t) = n0 e

− t
τ ,

where t = 0 marks the beginning of the emissions and n0 is the number
of originally excited atoms. It is this result which explains the observed
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exponential time law of spontaneous emission.

In concluding this section we want to hint at a particular feature of our
treatment that might encourage an interesting experiment: One could use
the experimental setup by Dehmelt and associates [45] in which a single Ba+-
ion is kept in a Paul-trap. The ion contains one outer electron which behaves
very similar to a hyrogen electron considered so far. One can excite this
electron from its 6s-groundstate to a 6p-state by the absorption of linearly
polarized light of the appropiate energy. According to our theory the ion
will spontaneously emit light then which is polarized in the same plane as
the light that was previously absorbed. A detector monitors the emitted
photon at some fixed distance d. (As for the definition of a photon the
ensuing section should be consulted.) The detector can be moved on a
sphere of radius d. If the excitation has been repeated sufficiently often, the
lateral distribution of detection events along the sphere should display the
characteristic features of the Hertzian dipole radiation, i. e. the dependence
of its electromagnetic energy density as a function of the polar angle.

21 Planck’s radiation law

An important spin-off product of the previous section is the perception
of a rigid interrelation between the energy content of an electromagnetic
wavepacket that oscillates at an angular frequency ω and the concomitant
energy loss ∆E of an electrically charged quantenmechanical system:

~ω = ∆E . (176)

”Free radiation“ which all considerations in quantum electrodynamics and
its formalisms of quantization start from does not exist in nature. Radiation
always originates from a source where it has been generated by oscillating
current densities that are associated with charged particles. Their motion
is governed by quantum mechanics and therefore gives rise to an apparent
quantization of the emitted electromagnetic wave according to Eq.(176).

In his paper of 1905 Einstein [52] suggested the existence of “light quanta”
(later renamed “photons” by the chemist Gilbert Newton Lewis [53] and
earlier already by Arthur Compton). Though this new idea was already
introduced 20 years before the advent of the quantum mechanics of radia-
tion it proved to be ground laying for today’s understanding of light/matter
interaction. For the first time it introduces a puzzling and seeemingly con-
tradictory particle/wave-concept which can be summarized as follows:

1. The photon is a point-like object. It contains the full energy of the
primarily generated electrodynamical wave packet emitted from some
oscillating charge, in particular from an atom. Despite the fact that
the electrodynamical field spreads from the atom over the entire space
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as long as it is not absorbed, it is evident from the experiments that
the energy of the wavepacket is in the end fully transferred to an ab-
sorber atom. This absorber may be astronomically distant. Of course,
the absorption probability decreases as the inverse of the distance
squared, but if the absorption takes place it is the original amount
of energy. This behavior can only be explained if the lateral dimen-
sion of a photon is infinitesimally small. On its way to the absorber
it never divides up even when the wavepacket is split according to the
laws of electrodynamics, for example, at beam splitters or any other
optical object. It stays with one part of the split wavepacket and the
probability of which part it chooses is dictated by the classical re-
flectivity/transparency. Quite generally, the laws of electrodynamics
governing the propagation of the wavepacket stay intact everywhere.
The polarization of the photon is that of the wave packet.

2. The probability density of finding the photon of frequency ω in the
associated propagating wave field is given by3

ρ(r, t) =
u(r, t)

~ω
(177)

where u(r, t) = ε0 c | ~Eγ(r, t)|2 denotes the electromagnetic energy den-

sity, ~Eγ the electrical field vector in the wave packet, c the light veloc-
ity in vacuo, and ε0 the permittivity of the vacuum. The expression

| ~Eγ(r, t)|2 is a spatial average of | ~Eγ(r, t)|2:

| ~Eγ(r, t)|2 = 1
δV

∫
δV
| ~Eγ(r, t)|2 d3r ,

where δV denotes a cylindrical volume about the point r.
It is given by the infinitesimal cross section of an energy fluxtube in
the direction of propagation times the wavelength λ = 2π c

ω of the wave
packet. To keep the notation simple the centroid of this volume is also
denoted by r.
If the wavepacket has been split up but the various portions are refo-
cused again to a confined space where they can interfere, the photon
will not appear where u(r, t) is zero due to destructive interference.
This is despite the fact that it has been following only one of the
portions to the place of interference.

It is important to note that Einstein’s photon hypothesis has to be regarded
as a postulate. It cannot be proved opposed to what one might erraneously
be inferred from the existence of quantum electrodynamics where photons

3This applies to a very good approximation if the frequency spread of the wave packet
is very small compared to the central frequency of its spectrum.
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appear as a consequence of the formal apparatus. The formalism is con-
trived to yield the quantization.
Another point which is actually quite irritating concerns the size of a pho-
ton: There is still a widespread doubt as to whether or not the photon
is a point-like particle as one form of its appearance in the particle/wave
concept. It has been Louis de Broglie who used exactly this particle/wave
duality when he layed ground to wave mechanics. He just reversed Einstein’s
line of thought. Ironically, today nobody has any qualms about interpreting
the modulus square of the wavefunction ψ(r) as the probability density of
a point-like particle occurring at r, but there are always doubts about the
size of a photon.

Thermal (“black”) radiation as a radiation standard is generated in closed
cavities whose surface inside is kept at a well defined temperature. Towards
the outside there is a small opening which must be small enough to ensure
that the outgoing radiative energy flux whose spectral density is the object
of interest, affects only negligibly the thermal equilibrium of the radiation
inside.
Inside the cavity the heated walls represent oscillating charged currents
which emit electromagnetic wavepackets into the hollow space of the cavity.
For simplicity the hollow space is assumed to be a rectangular parallelepiped
whose edge lengths are Lj with j = 1, 2, 3 numbering the three coordinate
axes which are collinear with the edges.
In a stationary state of the radiation inside the cavity the walls re-absorb as
much radiation as they emit. If a photon stays within the cavity for some
residence time much larger than the oscillation period of its associated wave,
it can attain a quasi-stationary state only if that wave is a standing wave,
i. e. a “mode” of the cavity. Each mode is characterized by a wave vektor k
whose components are specified by the requirement:

kj =

{
(2nj − 1) π

Lj
; nj = 1, 2, 3, . . .

nj
2π
Lj

; nj = 1, 2, 3, . . .
(178)

This ensures that the standing wave has nodes at the inner surface of the
cavity. The photons considered in the following will exclusively be linearly
polarized with the two planes of polarization denoted by σ = ±1.
Since photons do not interact, there can be any number of photons shar-
ing this mode. This simply amounts to increasing the amplitude of that
standing wave by a faktor of

√
nk,σ if there are nk,σ photons. Recalling the

interconnection (176) one obtains for the energy in that mode:

Ek,σ = nk,σ ~ωk where nk,σ = 0, 1, 2 . . . . (179)
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In contact with the cavity walls which serve as a heat bath of temperature
T the thermal average of this energy becomes

Ek,σ =
1

σk,σ

∑
Ek,σ

Ek,σ e−β Ek,σ

where

σk,σ =
∑
Ek,σ

e−β Ek,σ denotes the partition function and β
def
= 1

kB T
.

Using Eq.(179) one can rewrite the right-hand side

Ek,σ =
~ωk

σkσ

∑
nk,σ

nk,σ

[
e−β ~ωk

]nk

. (180)

The sum on the right-hand side has the form

∞∑
n=1

nQn =
d

dQ

∞∑
n=0

Qn =
d

dQ

1

1−Q
=

Q

(1−Q)2
where Q = e−β ~ωk .

Correspondingly we have

σk =
∑
nk

[
e−β ~ωk

]nk

=
1

1−Q
. Hence Ek,σ = ~ωk

Q

(1−Q)
,

One can therefore cast the average energy Ek,σ as

Ek,σ ≡ Ek = ~ωk nk , (181)

where

nk =
1

e
~ωk
kB T − 1

. (182)

The right-hand side represents formally a Bose-distribution function of ~ωk

with vanishing chemical potential. This reference is, however, quite mis-
leading because particle spin does nowhere appear along the entire deriva-
tion, and there is no symmetric N -particle wavefunction in the configuration
space which would refer to the photons under consideration. All that has
been presupposed is that the wavepackets, and consequently the modes, can
linearly be superposed.
The total radiation energy within the cavity is given by

E =
∑
k,σ

Ek = 2
∑
k

Ek . (183)

87



Because of (178) one has

kj,nj+1 − kj,nj
def
= ∆kj =

2π

Lj

and hence

∆3k
def
= ∆k1 ∆k2 ∆k3 =

2π

L1

2π

L2

2π

L3
=

(2π)3

V
, that is

V
(2π)3

∆3k = 1 .

Eq.(183) may therefore be rewritten

E = 2
V

(2π)3

∑
k

Ek ∆3k ≈ 2
V

(2π)3

∫
Ek d3k =

V
π2

∫ ∞
0
Ek k2dk

where it has been exploited that ωk depends only on k = |k|.
Substituting k with ω

c and inserting Ek from Eq.(181) one arrives at

E
V

def
= u =

∫ ∞
0

~
π2 c3

ω3 1

e
~ω
kB T − 1︸ ︷︷ ︸

def
= ûω

dω .

The quantity u denotes the energy density, and ûω stands for the spectral
energy density. The latter expression represents Planck’s radiation law.
Although the spectral density of sunlight is exactly described by this law
it remains rather unclear how nearsurface subspaces of the sun can be sub-
divided into cavities and their interior. This applies similarly to the light
emitted from incandescent material.

22 The time-dependent N-particle Schrödinger
equation

So far we have merely been concerned with a single particle whose stochas-
tic behavior was described by regarding it as a member of N identically
prepared, but statistically independent one-particle systems under the sup-
position that N be sufficiently large. To avoid confusion we shall henceforth
rename that number by N . Instead of a single particle we now consider
N particles that interact via pair-forces. Each of these particles is individ-
ually a member of N statistically independent one-particle systems where
the N − 1 remaining particles appear at fixed positions r2, r2, . . . rN if the
particle under consideration, picked at will, just happens to be “number
1”. The considerations of Sections 11 and 15 carry over to this N -particle
system. To see that one simply has to replace the 3-dimensional real-space
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of the single particle discussed as yet by a 3N -dimensional space where the
N particles appear as one point again. Instead of the probability density
ρ(r, t) one is now dealing with

ρ(r1, r2, . . . rN , t) = ρ(rN , t)

where

∫
ρ(rN , t) d3r1 d

3r2 . . . d
3rN = 1 (184)

and

rN = (r1, r2, . . . rN ) =
N∑
j=1

3∑
k=1

xj k ej k

with j = 1, 2, . . . N numbering the particles and xj k denoting Cartesian
coordinates which are associated with orthogonal unit vectors ej k. The
quantities ∇N , uN and vN are defined analogously.
Instead of ϕ(r, t) we now have φ(rN , t). Thus

vN (rN , t) =
~
m0
∇N φ(rN , t) . (185)

Correspondingly, the 3N -dimensional osmotic velocity has the form

uN (rN , t) = − ~
2m0

∇N ln[ρ(rN , t)/ρ0] , (186)

and hence we have similar to the single-particle case

∂uN

∂t
= − ~

2m0
∇N ∂

∂t
[ln ρ/ρ0] = − ~

2m0
∇N

[
1

ρ

∂ρ

∂t

]
. (187)

Invoking the equation of continuity

∂ρ

∂t
+ ∇N · (ρvN )︸ ︷︷ ︸

=ρ∇N ·vN+vN ·∇Nρ

= 0

and using the definition (186), Eq.(187) can be cast as

∂uN

∂t
= − ~

2m0
∇N [(∇N · vN )− (uN · vN )] . (188)

In the following we first confine ourselves to time-independent conservative
forces which - in the spirit of our notation - may be written

FN
ext.(r

N ) =
N∑
j=1

3∑
k=1

F ext.k (rj) ej k
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where

F ext.k (rj) = − ∂

∂xj k
Vext.(rj)

with Vext.(r) denoting an external potential. Hence FN
ext. may alternatively

be written
FN
ext.(r

N ) = −∇N V̂ext.(r1, r2, . . . rN )

where

V̂ext.(r1, r2, . . . rN ) =
N∑
j=1

Vext.(rj) .

The force exerted on the j-th particle due to pair-interaction with the N −1
remaining particles is given by

F interj k (rj) = − ∂

∂ xj k

N∑
i=1
i 6=j

V (|rj − ri|) ,

where V (|rj − ri|) denotes the interaction potential. The generalized total
force in the 3N -dimensional space may therefore be cast as

FN (rN ) = −∇N V̂ (r1, r2, . . . rN ) ,

where V̂ (r1, r2, . . . rN ) is defined by

V̂ (r1, r2, . . . rN ) =
N∑
j=1

Vext.(rj) +
1

2

N∑
j=1

N∑
i=1
i 6=j

V (|rj − ri|) . (189)

Newton’s modified second law (77) hence attains the form

∂ vN

∂ t
= −∇N

[
1

m0
V̂ +

1

2
(vN )2 − 1

2
(uN )2+

~
2m0

∇N · uN
]
. (190)

As in the one-particle case the two scalar functions ρN (rN , t) and φ(rN , t)
can be absorbed into a complex-valued function Ψ(r1, r2, . . . rN , t) defined
by

Ψ(r1, r2, . . . rN , t) = ±
√
ρ(r1, r2, . . . rN , t)× exp [i φ(r1, r2, . . . rN , t)] .

This is equivalent to

−uN (rN , t) + ivN (rN , t) =
~
m0
∇N (ln Ψ(rN , t)/

√
ρ0) =

~
m0

∇NΨ

Ψ

which is the analogue to Eq.(83), and we obtain accordingly

∂

∂t
(−uN + ivN ) = ∇N

(
~
m0

1

Ψ

∂Ψ

∂t

)
.
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If we here insert Eqs.(188) and(190) for ∂ vN

∂ t and ∂ uN

∂ t and proceed exactly as
in the single-particle case we arrive at the N -particle Schrödinger equationĤ0 +

1

2

∑
i,j

i 6=j

V (|rj − ri|)


︸ ︷︷ ︸

=Ĥ

Ψ(r1, . . . rN , t) = i ~
∂

∂ t
Ψ(r1, . . . rN , t) . (191)

Here Ĥ0 denotes the “free Hamiltonian”

Ĥ0 =

N∑
j=1

Ĥj where Ĥj =

[
p̂2
j

2m0
+ Vext.(rj)

]
. (192)

Because of Eq.(185) the phase of the wave function may still depend on time
when ρ and vN are time-independent:

φ(rN , t) = φ0(rN ) + f(t) .

Thus we have in this case

Ψ(rN , t) = Ψ0(rN ) e−if(t) ;

Ψ0(rN ) = ±
√
ρ(rN ) exp [i φ0(rN )]

which on insertion into Eq.(191) yields

Ĥ Ψ0(rN ) = ~ ḟ Ψ0(rN ) ↪→ ~ ḟ = const. = E ↪→ f(t) =
E

~
t ,

whereby Eq.(191) becomes the time-independent Schrödinger equation

Ĥ Ψ0(rN ) = EΨ0(rN ) . (193)

23 States of identical particles and entanglement

If the particles are non-interacting, one would näıvely expect their motions
to be completely uncorrelated which means

ρ(r1, r2, . . . rN , t) =
N∏
j=1

ρj(rj , t) , (194)

and

φ(r1, r2, . . . rN , t) =

N∑
j=1

ϕj(rj , t) . (195)
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In that case Eq.(185) attains the form

(v1(r1, t),v2(r2, t), . . .vN (rN , t)) =
~
m0

(∇1ϕ1(r1, t),∇2ϕ2(r2, t), . . .∇NϕN (rN , t)) .

Likewise, Eq.(186) becomes

(u1(r1, t),u2(r2, t), . . .uN (rN , t)) =

− ~
2m0

(∇1 ln[ρ1(r1, t)/ρ01], ∇2 ln[ρ2(r2, t)/ρ02], . . .∇N [ln ρN (rN , t)/ρ0N ]) .

Newton’s modified second law (190) decomposes accordingly into N anal-
ogous equations for single particles, as has to be expected. Each of these
equations can be subjected to a Madelung transform which yields time-
dependent one-particle Schrödinger equations solved by one-particle wave
functions ψj(rj , t). If one multiplies

Ĥj(rj)ψj(rj , t) = i~
∂

∂ t
ψj(rj , t) (196)

by
∏N

i=1
i 6=j

ψi(ri, t) one obtains

Ĥj(rj)
N∏
i=1

ψi(ri, t) =
N∏
i=1
i 6=j

ψi(ri, t) i~
∂

∂ t
ψj(ri, t)

which on forming the sum
∑N

j=1 yields, in fact,

Ĥ0 Ψ(r1, r2, . . . rN , t) = i~
∂

∂ t
Ψ(r1, r2, . . . rN , t)

where Ψ(r1, r2, . . . rN , t) =
N∏
j=1

ψj(rj , t) . (197)

Hence, the above time-dependent N -particle Schrödinger equation is solved
by the product of individually time-dependent wave functions ψj(rj , t).

Obviously, the density (194) that results from this wave function is not in-
variant against interchange of any two particles if they are in different states,
say ψkn(rk, t) and ψlm(rl, t) where kn 6= lm.
It is not exactly physical wisdom but rather firm belief that even non-
interacting massive particles, though non-existing in nature, do not perform
an uncorrelated motion and can, therefore, not be described by the wave
function (197). This belief is based on the idea that the particles cannot
be tracked individually as they move (contrary to classical particles) be-
cause the uncertainty relation “forbids” the existence of trajectories. Our
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approach to the many-particle problem is characterized by the plausible as-
sumption that each particle can be identified any time by an affix if it has
been assigned to a certain number at some chosen instant since each particle
follows an individual trajectory. The quantity v1(r1, r2, . . . rN , t), for exam-
ple, represents the average over all particle velocities at r1 and time t of the
ensemble associated with particle “number 1”. In forming this average the
positions r2, r3, . . . rN of the N − 1 remaining particles are kept fixed, that
is, the average results from the entire set of “number 1”-trajectories that
occur in the “number 1”-ensemble while the particles “number 2, 3 ...N”
are at fixed positions. Clearly, if one or more of those particles are kept at
different positions and if all particles interact, v1 will in general be different
at r1 and time t. Hence in our view there is no extra quantum phenomenon
of indiscernibility. As in classical mechanics it is entirely sufficient to char-
acterize identical particles merely by their property of having the same mass
and charge.

If one insists, however, on “quantum indiscernibility” also for non-interacting
particles, that is, on the invariance of ρ(r1, r2, . . . rN ) against interchange of
any two particles, one has to replace (197) with a renormalized linear com-
bination of all N ! products that differ in the interchange of two particles

Ψ(r1, r2, . . . rN ) =
1√
N !

N !∑
P=1

(±1)P P̂ (k, l)

N∏
j=1

ψnj (rj) . (198)

where P̂ (k, l) is the permutation operator exchanging the particle referring
to j = k with that for j = l, and P numbers the permutations.

If the particles interact and are bound in an external potential or move
in a parallelepiped where Ψ(r1, r2, . . . rN ) is subjected to periodic boundary
conditions, each particle is constantly scattered, and hence the probability
of some particle, say “number k”, being within an elementary volume ∆3r
about r is given by:

P (r) =

∫
|Ψ(r1, . . . rk−1, r, rk+1 . . . rN )|2 d3r1 . . . d

3rk−1d
3rk+1 . . . d

3rN ∆3r .

Indiscernibility means that P (r) is the same for any particle one picks,
that is, each particle appears at r with the same probability. Hence we have

ρ(r) = N P (r)

with ρ(r) ∆3r denoting the probability of any of the N electrons being in
∆3r.
The function ρ(r1, r2, . . . rN ) is now naturally invariant against interchange
of any two particles.
An important property of particles is their spin which will be discussed
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farther below in this article. In the present context it may be sufficient to
introduce

x = (r, σ)

as a generalized particle coordinate where σ = ±1 denotes its discrete spin
coordinate and refers to parallel or anti-parallel orientation with respect to
a global axis. The wave function (198) for non-interacting particles then
takes the form

Ψ(x1,x2, . . .xN ) =

1√
N !

N !∑
P=1

(±1)P P̂ (k, l)
N∏
j=1

ψnj (xj) . (199)

The alternative in the sign under the sum is related to the two fundamentally
different species of particles: The plus sign in (±1)P characterizes bosons,
the minus sign fermions. Hence the latter are associated with a wave function
that changes sign on interchanging any two particles. This property persists
when Ψ(x1,x2, . . .xN ) describes N interacting fermions. Antisymmetry of
the wave function gives rise to a peculiar behavior of the so-called pair-
density

ρ2(x,x′)
Def
= N(N − 1)

∫
|Ψ(x,x′,x3, . . .xN )|2 d4x3 . . . d

4xN

where ∫
. . . d4x =

∑
σ

. . . d3r .

Obviously

Ψ(x1, . . .xν ,xν+1, . . .xN ) ≡ Ψ(x1, . . .xν+1,xν , . . .xN ) if xν = xν+1 .

On the other hand, Ψ is required to change sign on interchanging two par-
ticles, and hence the above equation can only hold if Ψ equals zero if the
coordinates of any two particles are equal. Thus

ρ2(x,x′) = 0 if x′ = x .

This indicates the occurrence of the so-called Fermi-hole which is absent in
bose-particle systems.
The form of the wave function (199) may be cast as a determinant, named
after J. C. Slater. In so-called EPRB-experiments (EPRB=Einstein, Podol-
sky, Rosen [54], Bohm [55]) which were originally devised to test possible
correlations between two macroscopically distant fermions in a singlet state,
the associated wave function is just a 2×2 determinant. The respective two
one-particle states are in this context commonly referred to as “entangled
states”.
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The requirement of antisymmetry, which is equivalent to the Pauli exclusion
principle, is a strong subsidiary condition in solving the Schrödinger equa-
tion (193). Wave functions associated with fermions constitute only a small
subset of the set of functions that satisfy the Schrödinger equation (193).

It should clearly be stated that the antisymmetry of the wave function is
definitely not a consequence of our stochastic approach, but rather has to
be required as an additional property, as in standard quantum mechanics.

The derivation of the time-dependent Schrödinger equation (191) can again
be extended to the case where the particles move in an electromagnetic field.
The external potential becomes time-dependent then (Vext.(r) → V (r, t))
and p̂j has to replaced with P̂j(r, t) = p̂j − eA(rj , t).

24 A borderline case of entanglement

We consider a hydrogen molecule whose nuclei are located at RA and RB,
respectively. The Hamiltonian of the two electrons is given by

Ĥ =
2∑

k=1

[
(−i~∇k − eA(rk, t))

2

2m0
+ V (rk)

]
+

e2

4π ε0

∑
k,l 6=k

1

|rk − rl|
(200)

where

V (r) = − e2

4π ε0|r −RA|
− e2

4π ε0|r −RB|
,

and ε0 denotes the permittivity of the vacuum.
We first assume that there is no external field (A(r, t) ≡ 0) and that the 2-
electron wave function has for large proton-proton separation, that is when
RAB = |RA−RB| �Bohr radius, still the entangled form of a singlet state
dictated by the Pauli principle

Ψ(r1, r2) =
1√
2

[ψ(r1 , ↑)⊗ ψ(r2 , ↓)− ψ(r1 , ↓)⊗ ψ(r2 , ↑)] (201)

where

ψ(r, σ) = [aσ(RAB)ϕA(r) + bσ(RAB)ϕB(r)]χ(σ) (202)

and
σ =↑ (↓) ; a2

σ + b2σ = 1 ; ϕA/B(r) = ϕ(r −RA/B)

with the property ∫
|ϕ(r −RA/B)|2 d3r = 1 .
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Here the integrand denotes the electronic 1s-orbital of a single hydrogen
atom, and ρA/B(r, t) = |ϕ(r−RA/B)|2 is the associated probability density.
Furthermore, the unit spinors χ(σ) have the property

χ†(σ′)χ(σ) = δσ′σ .

Under the supposition that RAB = |RA−RB| is sufficiently large, say 10 cm
or even larger, the expectation value 〈Ĥ〉 attains a minimum for either

(a↑ → 1 , a↓ → 0) ↪→ (b↑ → 0 , b↓ → 1) “case l”

or
(a↑ → 0 , a↓ → 1) ↪→ (b↑ → 1 , b↓ → 0) “case r” .

For both cases 〈Ĥ〉 yields the correct value, viz. -2 Ryd, as has to be expected
for two hydrogen atoms, each of which possesses the energy -1 Ryd. Since
the spin structure does not reflect the symmetry of the potential, one forms
a symmetry-adapted linear combination

Ψi(r1, r2) =
1√
2

[Ψl(r1, r2) + Ψr(r1, r2)] ,

where

Ψl(r1, r2) =
1√
2

∣∣∣∣ ϕA(r1)χ(↑) ϕA(r2)χ(↑)
ϕB(r1)χ(↓) ϕB(r2)χ(↓)

∣∣∣∣
and

Ψr(r1, r2) =
1√
2

∣∣∣∣ ϕB(r1)χ(↑) ϕB(r2)χ(↑)
ϕA(r1)χ(↓) ϕA(r2)χ(↓)

∣∣∣∣ .
The two 2-electron functions are associated with the same energy which
hence applies to Ψi(r1, r2) as well. As a consequence of the symmetry of
Ψi(r1, r2) in r1 and r2 we have

ρ(r1) =

∫
|Ψ(r1, r2)|2 d3r2 = ρA(r1) + ρB(r1)

and

ρ(r2) =

∫
|Ψ(r1, r2)|2 d3r1 = ρA(r2) + ρB(r2) .

Moreover ∫
ρA/B(r1/2) d3r1/2 =

1

2
and∫

ρA/B(r1) d3r1 +

∫
ρA/B(r2) d3r2 = 1 . (203)

That means that each electron appears in each of the atoms (A and B)
with the same probability. This has rather implausible consequences if one
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exposes, for example, one of the atoms (say A) to a Laser puls of frequency
ω. Now A(r, t) is no longer zero. The associate perturbation operator has
the form

Vperturb(r1, r2, t) =

{
ie~
m0

∑2
k=1 A(rk, t) · ∇k if r1, r2 in or near atom A

0 else

which promotes the 2-electron system to an excited state

Ψf (r1, r2) =
1√
2

[Ψ
(f)
l (r1, r2) + Ψ(f)

r (r1, r2)]

where

Ψ
(f)
l (r1, r2) =

1√
2

∣∣∣∣∣ ϕ(f)
A (r1)χ(↑) ϕ

(f)
A (r2)χ(↑)

ϕB(r1)χ(↓) ϕB(r2)χ(↓)

∣∣∣∣∣
and

Ψ(f)
r (r1, r2) =

1√
2

∣∣∣∣∣ ϕ(f)
B (r1)χ(↑) ϕ

(f)
B (r2)χ(↑)

ϕA(r1)χ(↓) ϕA(r2)χ(↓)

∣∣∣∣∣ .
Here ϕ

(f)
A/B(r) describes an outgoing wave which has in principle the asymp-

totic form

ϕ
(f)
A/B(r) ∼=

1

rA/B
eik rA/B Y10(r̂A/B) ; rAB ≡ |r −RA/B|

with Y10(r̂A/B) denoting the spherical harmonic for l = 1,m = 0, and k is
given by ~2 k2/2m0 = −1 Ryd + ~ω. We have assumed linearly polarized
Laser light with the quantization axis of Y10(r̂A/B) coinciding with the axis
of polarization. Moreover we have disregarded the residual charge left with
each atom as part of the electronic charge is emitted.
Although only the illuminated volume of atom A can contribute to the
transition matrix element

Mfi =

∫
atomA

∫
Ψ∗f (r1, r2)Vperturb(r1, r2) Ψi(r1, r2) d3r1 d

3r2

the final state Ψf (r1, r2) yields a current density

j(r) =
~
im0

∫
[Ψ∗f (r, r2)∇Ψf (r, r2)− c.c.] d3r2

=
~
im0

∫
[Ψ∗f (r1, r)∇Ψf (r1, r)− c.c.] d3r1

= jA(r −RA) + jB(r −RB)

where jA/B is associated with ϕ
(f)
A/B, and hence j(r) contains also a photo

emission current coming from the non-illuminated atom B at a distance of
10 cm away from A. Similar considerations apply if one excites the molecule
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to a bound state which would spontaneously decay back then to the ground-
state by emitting fluorescent light. If one repeats the excitation sufficiently
often one would obtain as many fluorescence photons coming from the illu-
minated atom as from the non-illuminated one. There is no experimental
evidence that anything like that could ever happen.
We are hence led to conclude that the concept of entanglement (i. e. anti-
symmetry of the wavefunction when dealing with fermions) does not apply
anymore when the atoms are macroscopically distant. The reason may be
traced back to the definition (22) of the probability density ρ(r) as the rel-
ative residence time that a particle spends in an elementary volume ∆3r
about r, provided it is bound in a potential and thus occurs repeatedly in
that volume. On pulling the two atoms of a H2-molecule gradually apart
one arrives at a situation where one of the two electrons remains captured
near the nucleus of atom A for a while, and accordingly the second electron
stays captured near the nucleus of atom B for the same time. The Coulomb
repulsion between the two electrons effects a correlated separation of the two
electrons into the two regions.4 If the inter-nuclear distance becomes large
compared to the linear dimensions of the atoms, the time spans for tunneling
of the “A-electron” (marked by the index “1”) into the B-region and vice
versa become enormously long compared to the time required to cross the
associated atom. The time T for the photo-excitation process will therefore
be many orders of magnitude shorter than the tunneling time. Given this
situation, the definition (22) yields

ρ(r1/2) =

{
ρA/B(r1/2) for r1/2 about nucleus A/B

0 else

where - different from Eq.(203) - the densities ρA/B(r1/2) now integrate to
unity. The two electrons do not appear entangled any more, and only the
A-atom will now emit an electron under the exposure of light.

25 van der Waals interaction

Chemical bonding occurs when Nat atoms get so close to each other that
their total number of electrons (Ne =

∑Nat
i=1 Ne i) becomes associated with

a new common wave function which is anti-symmetric with respect to the
exchange of any two electrons from the entire set of Ne electrons. At larger
distances the atoms interact only weakly by so-called van der Waals forces.
The associated interaction energy has first been treated by Eisenschitz and

4The possibility that both electrons accumulate in one of the atoms can safely be
excluded. In such a case the other atom would be left ionized requiring an energy ∆E of
about 1Ryd. Within a time ∆t that excess energy must disappear again where ∆t results
from ∆E ∆t ≈ ~. This yields ∆t ≈ 5 ·10−17 s, thus excluding the possibility for one of the
electrons to go back to the ionized atom 10 cm away at a speed well below light velocity.
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London [58]. Further studies (s. e. g. Dzyaloshinskii et al. [59]) are based
on the idea that the atoms undergo density fluctuations that give rise to
temporary dipole moments. The latter cause interatomic attraction. From
our point of view density fluctuations of the electronic probability density
cannot occur in the groundstate of any system because it would inevitably
cause radiative emission. This follows immediately from our treatment of
spontaneous light emission in Section 20. We shall therefore go back to the
original idea of the Eisenschitz-London paper.
We consider two atoms A and B whose electronic densities are spherical.
Their nuclei are centered at RA and RB, respectively. The individual atoms
of that pair may in general be different, consist of a sodium and a potassium
atom, for example. The interatomic distance is assumed larger than the
sum of the atomic radii so that the overlap of the electronic densities may
be regarded as zero on the scale of interest. It is this situation which we
have analyzed in the previous section for two hydrogen atoms whose two-
electron wave function factorizes at this distance into the wave functions
of the individual atoms. Accordingly, we have in the present case for the
groundstate Ψ0 of the atomic pair

Ψ0(rA1, rA2, . . . rANA , rB1, rB2, . . . rBNB ) =

φA0 (rA1, rA2, . . . rANA)φB0 (rB1, rB2, . . . rBNB )

with NA and NB denoting the number of electrons of the respective atoms,
and φA0 , φ

B
0 represent antisymmetric wave functions. They are normalized

to unity: ∫
|φA0 |2 d3rA 1 d

3rA 2 . . . d
3rANA = 1

and ∫
|φB0 |2 d3rB 1 d

3rB 2 . . . d
3rBNB = 1 .

For simplicity we have dropped the spin coordinates. The two wave functions
are solutions to the associated Schrödinger equations

ĤA/B φ
A/B
0 = E

A/B
0 φ

A/B
0

where

ĤA/B =

NA/B∑
i=1

[
−1

2
∇2
A/B i −

ZA/B

|rA/B i −RA/B|

]
+

1

2

∑
i, j

i 6=j

1

|rA/B i − rA/B j |

with ZA/B denoting the respective atomic number. The indices i , j in the
second sum run over NA/B coordinates, and hence this sum describes only
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the electron-electron interaction within the associated atom.
To simplify the notation we have introduced atomic Hartree units, i. e. the
Bohr radius rB as the unit length and 1 Hartree as the unit of energy.
Obviously, Ψ0 satifies the Schrödinger equation

(ĤA + ĤB)Ψ0 = (EA0 + EB0 )Ψ0

and hence

E = 〈Ψ0|ĤA + ĤB|Ψ0〉 = EA0 + EB0 . (204)

However, the actual Hamiltonian describing the (NA +NB)-electron system
and the two nuclei is given by

Ĥtotal = ĤA + ĤB +

NA∑
i=1

NB∑
j=1

1

|rA i − rB j |
−

−
NB∑
j=1

ZA
|rB j −RA|

−
NA∑
j=1

ZB
|rA i −RB|

+
ZA ZB
|RA −RB|

. (205)

The electronic densities ρA0 (r), ρB0 (r) are defined by

ρA0 (r)
def
= ρ̃A0 (r −RA) = NA

∫
|φA0 (r, . . . rANA)|2 d3rA 2 . . . d

3rANA

ρB0 (r)
def
= ρ̃B0 (r −RB) = NB

∫
|φB0 (r, . . . rBNB )|2 d3rB 2 . . . d

3rBNB

(206)

On forming the expectation value 〈Ψ0|Ĥtotal|Ψ0〉 the single sum over the
rB-coordinates in Eq.(205) yields because of (206)

−ZA
∫

ρB0 (r)

|r −RA|
d3r = − ZA ZB

|RB −RA|
.

The latter holds since NB equals ZB for neutral atoms, and ρB0 (r) is assumed
spherically symmetric with respect to RB.
Similarly, when dealing with the double-sum in Eq.(205), if one first performs
the integration over the rB-coordinates one obtains as an intermediate result

NA∑
i=1

∫
ρB0 (r)

|rA i − r|
d3r =

NA∑
j=1

ZB
|rA i −RB|

with the latter again being a consequence of the spherical symmetry of ρB0 (r)
with respect to RB. Performing the remaining integration of this expression
and of the third sum in Eq.(205) over the rA-coordinates, one recognizes
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that the two expressions cancel. Hence, one has - because of perfect mutual
screening - despite the occurrence of the extra sums in expression (205)

E = 〈Ψ0|Ĥtotal|Ψ0〉 = EA0 + EB0 (207)

as before in (204).
That means, at this level of analysis each atom remains unaffected by the
presence of the other. However, because of the occurrence of the extra sums
in (205) Ψ0 does not satisfy the Schödinger equation

ĤtotalΨ = Etotal0 Ψ . (208)

As the solution to (208) yields a minimum of the expectation value of Ĥtotal

for the groundstate Ψtotal
0 one may equivalently state that 〈Ψ0|Ĥtotal|Ψ0〉

can be lowered to the exact total energy Etotal0 , i. e. to the lowest eigenvalue

of Ĥtotal by appropriately distorting Ψ0 toward Ψtotal
0 . This can be done

in a simplified way by partially including excited states of the atoms so
that one is now dealing with a wave function that slightly departs from the
groundstate Ψ0

Ψtotal
0 = c0 Ψ0 + c1 Ψ1 = c0 φ

A
0 φ

B
0 + c1 φ

A
1 φ

B
1 (209)

with c0 , c1 denoting real-valued coefficients, and φA1 stands for some excited
state of atom A associated with an energy EA1 > EA0 . Corresponding defini-
tions apply to atom B. The set of electronic coordinates and their assocation
with the respective wave functions remain unchanged. As we assume an only
slight departure from the groundstate we have

|c1| � 1 , and we observe c2
0 + c2

1 = 1 . (210)

The latter reflects the unaltered norm unity of Ψ.
To simplify the argument, we confine ourselves to just one excited state, a
lowest lying state that can be mapped onto a Slater determinant in which
the excited orbital possesses a negative parity compared to the correspond-

ing groundstate (s-type) orbital ψ
A/B
0 (r − RA/B) that is replaced in the

excitation. We choose as the excited one-electron state ψ
A/B
1 (r −RA/B) a

pz-type orbital whose quantization axis, the z-axis, is taken along the direc-
tion RA −RB.
Different from ρA0 (r) the electronic charge density in the excited state

ρA1 (r) = NA

∫
|φA1 (r, rA2, . . . rANA)|2 d3rA 2 d

3rA 3 . . . d
3rANA

is not spherical any more, but its centroid still conicides with the nucleus,
that is, its electrostatic potential does not contain a dipole-type contribution,
merely a short-range quadrupole component that we shall ignore in the
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following. The same applies to ρB1 .
As a result, all considerations above for the groundstate carry over to the
present case except for the double-sum in Eq.(205). In forming |Ψtotal

0 |2 we
obtain

|Ψtotal
0 |2 = c2

0|φA0 |2|φB0 |2 + c2
1|φA1 |2|φB1 |2 + 2c0 c1 φ

A
0 φ

A
1 φ

B
0 φ

B
1 .

It is the occurrence of the last expression which gives rise to an interatomic
potential that has been absent so far.
In forming 〈Ψtotal

0 |Ĥtotal|Ψtotal
0 〉 one obtains

〈Ψtotal
0 |Ĥtotal|Ψtotal

0 〉 = c2
0 (EA0 + EB0 ) + c2

1 (EA1 + EB1 ) + . . . (211)

where the dots stand for

2c0c1

∫
ψA1 (rA −RA)ψA0 (rA −RA)×[∫

ψB1 (rB −RB)ψB0 (rB −RB)

|rA − rB|
d3rB

]
d3rA . (212)

The numerator in the second integral represents a dipole-type charge density
with the dipole axis lying in the RA−RB-direction. As |rA−rB| is assumed
to be large compared to the sum of the atomic radii, one may approximate
the second integral∫

ψB1 (rB −RB)ψB0 (rB −RB)

|rA − rB|
d3rB ≈

pB
|rA −RB|2

(213)

where

pB = e′ |δrB|

denotes the dipole moment, and ± e′ is the effective charge in the centroid
of that charge density above and below the plane across the B-nucleus and
perpendicular to the z-axis. The two charges are interconnected by δrB.
Similarly, the integral∫

ψA1 (rA −RA)ψA0 (rA −RA)
pB

|rA −RB|2
d3rA

may be approximated∫
ψA1 (rA −RA)ψA0 (rA −RA)

pB
|rA −RB|2

d3rA =
2 pA pB

|RA −RB|3
.

Because of (210) one may set 2 c0 c1 ≈ 2 c1 and replace c2
0 by 1− c2

1 so that
Eq.(211), on employing (212), takes the form

E = 〈Ψtotal
0 |Ĥtotal|Ψtotal

0 〉 = (EA0 + EB0 ) + c2
1 ∆E1 + 2 c1

2 pA pB
R3

(214)
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where

∆E1 = (EA1 + EB1 )− (EA0 + EB0 ) or

∆E1 = EA1 − EA0 + EB1 − EB0 and (215)

R
def
= |RA −RB| .

The new groundstate is given then by requiring

dE

dc1
= 0 that is c1 ∆E1 +

2 pA pB
R3

= 0

which yields

c1 = − 1

∆E1

2 pA pB
R3

.

Inserting this into Eq.(214) one arrives at a total energy that is now different
from (207)

E = (EA0 + EB0 )− 4

∆E1

p2
A p

2
B

R6
. (216)

This constitutes van der Waals’ well known law on the R-dependence of the
attractive potential between neutral atoms whose charge densities do not
overlap. By breaking the spherical symmetry of the electronic densities the
bi-atomic system lowers its total energy. We shall denote this R-dependent
portion by VvdW (R) from now on.

As one would qualitatively expect, the attraction is large for atoms with low
lying excitation energies. It is obvious from our derivation that it applies to

any combination of orbitals ψ
A/B
0 (r−RA/B) and ψ

A/B
1 (r−RA/B) that lead

to a product with dipole character, regardless which of the orbitals refers
to the groundstate configuration. Although the groundstate charge density
in the bi-atomic system may well be shaped by an incompletely filled p-, d-
or f-shell of the respective atoms, it will merely give rise to negligible short
range quadrupole (multipole) contributions to the interaction potential.

As indicated, the above derivation can be refined by including more than
just one excited pair φA1 φ

B
1 , that is by allowing for additional pairs which

contain higher excited orbitals that also yield dipole-type products with the
groundstate orbitals. To this end the ansatz (209) has to be generalized in
the form

Ψtotal
0 = c0 Ψ0 +

∑
(n,m)

cnm Ψnm = c0φ
A
0 φ

B
0 +

∑
n

∑
m

cnm φ
A
n φ

B
m ; n,m > 0(217)

where
c2

0 +
∑
n

∑
m

c2
nm = 1 .
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Instead of (216) one then obtains the general expression

VvdW (R) = −

[
4
∑
n

∑
m

p2
nA p

2
mB

EAn − EA0 + EBm − EB0

]
1

R6
(218)

where
VvdW (R) = E(R)− (EA0 + EB0 ) .

This result is essentially identical with that derived by Dzyaloshinskii et
al.[59], however in an exceedingly involved, completely different way based
on quantum field theory and “long-wave electrodynamical fluctuations”.
The paranthesized expression is commonly denoted by C6. The expres-
sion obtained by Dzyaloshinskii et al. contains a factor of 6 in front of
the double-sum instead of 4. Some experimental results seem to favor our
smaller factor. (For details see Feibelman [60], p.394.)
If the two atoms are identical (A=B) and if one only considers the contri-
butions for n = m to the above sum Eq.(218) takes the form

V
(n,n)
vdW (R) = −

[
2
∑
n

p4
nA

∆En

]
1

R6
. (219)

The parenthesized expression closely resembles the static polarizability α of
the atom which - to first perturbation order - attains the form

α = 2
∑
n

p2
nA

∆En
. (220)

The similarity of expression (219) and α has led to quote −∇Vvdw(r) oc-
casionally by the name “dispersion force” which is exceedingly misleading.
Obviously, only the static polarizibility displays a certain affinity with VvdW .
Optical dispersion relates to the frequency dependence of the dynamical po-
larizability.
In determining C6 from Eq.(218)) one can easily run into numerical inac-
curacies because of the large spatial extent of excited orbitals. To get an
estimate of C6 we determine p1A from the polarizibility α of the atom under
study. In Table 1 we have listed results on VvdW (R) = −C6/R

6 and on α for
the noble gases where we have reduced the sums in (219) and (220) to the
strongly dominating first summand and shortened the notation accordingly
by setting p1A = pA. Further, we have introduced

p0 = 1e · 1rB = 0.848 · 10−29Cm

as a unit for the atomic dipole and observed that in familiar units (ε0=vacuum
permittivity)

α =
2 p̂2

A

∆E1 4π ε0
; p̂A = pA p0 ;

p2
0

4π ε0
= 0.646 · 10−23 eV cm3 (221)
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Table 1 Polarizabilities in [10−24cm3], lowest excitation energies and the
vdW-prefactor

C6 in units of Hartree · r6
B for the noble gases pA = p̂A/p0 [Eq.(221)]

αexp α(pA) pA ∆E1[eV ] Cpresent6 Cref6

He 0.204 0.245 0.8 21.13 1.04 1.29 (1.45)
Ne 0.396 0.47 1.4 16.84 6.22 7.5
Ar 1.645 1.8 2.3 11.83 64.0 71.5
Kr 2.49 2.76 2.63 9.99 128.7 145.5
Xe 4.05 4.57 3.09 8.44 293.5 331.5

The results denoted by Cref6 were obtained by Hult et al.[61], the paran-
thesized value is due to Kohn et al.[62]. The rather involved calculations of
these authors are based on perturbational density functional theory. The ex-
perimental data on ∆E1 and α were taken from Smithsonian Physical Tables
[63]. As the theoretical expressions for α and C6 both contain pA we have
chosen a compromise value for the latter quantity to reconcile the former
quantities with least error. First-principles calculations on ∆En and pnA
require considerable numerical effort because excited atomic states are not
easily accessible. Their linear dimensions increase quickly with n. For that
reason we rather rely on experimental data on ∆E1 and α. To demonstrate
the sensibility with which C6 responds to errors in pA due to its appearance
in fourth power, we have listed in Table 2 recalculated Cpresent6 -values which
result from an increase of pA bei 3% compared to the pA-values given in
Table 1.

Table 2 C6 in units of Hartree · r6
B [Eq.(219),n = 1]

for the noble gases; pA = p̂A/p0 [Eq.(221)]

pA ∆E1[eV ] Cpresent6 Cref6

He 0.82 21.13 1.17 1.29 (1.45)
Ne 1.44 16.84 7.00 7.5
Ar 2.37 11.83 72.03 71.5
Kr 2.71 9.99 144.85 145.5
Xe 3.18 8.44 330.33 331.5

It is obvious from the above considerations which steps have to be taken
to improve on the accuracy of our results. Furthermore, as one can see
from Eq.(218), our approach is actually not restricted to atoms since it
is merely based on dipole-associated virtual excitations of the interacting
systems which may be molecules, clusters or even macroscopic solid objects.
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26 Decomposing an experimental setup into the
quantum system under study and an environ-
ment. Schrödinger’s cat

One of the puzzling credos of the Copenhagen interpretation of quantum me-
chanics consists in the conviction that an experimental setup for performing
measurements on microscopic particles, has to be subdivided “somehow”
into the particles under study and a remainder that functions as a classical
system. This decomposition is known under the name “Heisenberg-cut”.
Yet from an unbiased point of view it appears to be self-evident that an ex-
perimental setup as a whole represents a many-particle system each part of
which is subjected to the same laws of quantum mechanics as the particular
portion that constitutes the object under study, an electron in a diffraction
chamber, for example. We shall use this example to demonstrate the con-
sistency of this standpoint, but we limit ourselves to considering a system
that merely consists of just one specific apparatus plus a particle undergoing
diffraction in it. The generalization to the inclusion of the entire environ-
ment is obvious from the ensuing considerations.
We assume that the system is made up of N particles, a subset consisting of
atomic nuclei which we number by a label α, and Ne electrons, one of which
representing the single particle of interest, the “test particle”. To keep the
notation simple, we limit ourselves to considering only electrostatic parti-
cle interactions of the kind described by the many-body potential (189). If
the test particle has left the cathode of the setup it is kept by electrodes,
diaphragms and lenses at a macroscopic distance away from all kinds of
surfaces it might strike and where it might get captured. Thus, the asso-
ciated one-particle wave function ψe(r, t) which describes the electron on
its way through the apparatus to the screen or detector, has de facto zero
overlap with the wave function of the N −1 remaining particles of the appa-
ratus. Still, in standard setups it is intended that the particle hits a secluded
portion of material on its way to the monitoring device, a diffracting sin-
gle crystalline foil of metal, for example. But in the majority of cases the
contact time is so short compared to the electronic excitation times of the
material that the test electron cannot mingle with the other electrons. Be-
low we shall briefly discuss prominent exceptions.
Similar to the case of the H2-molecule with macroscopically distant nuclei,
one is justified then in assuming a factorization of the total wave function

ΨN (r, r2, . . . rN , t) = ψe(r, t) ΨN−1(r2, r3, . . . rN , t) (222)

where the spin coordinates have again been suppressed for simplicity. We
emphasize that ΨN (r, r2, . . . rN , t) in the present case constitutes the wave
function of N = Ne + Napp.

n particles: of the test electron, of the Ne − 1
electrons that belong to the apparatus and in addition of the Napp

n nuclei
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of the latter. If we insert this wave function into the associated N -particle
Schrödinger equation (191) we obtain

ΨN−1 i~ ψ̇e + ψe i~ Ψ̇N−1 = ψe Ĥ
(N−1)
0 ΨN−1 + ΨN−1 Ĥ

e
0 ψe + Vtotψe ΨN−1(223)

where Vtot denotes the total (Coulomb) interaction potential between all
particles

Vtot = Vapparatus(r2, r3, . . . rN ) + V N−1
e (r, r2 . . . rN )

with V N−1
e referring to the Coulomb interaction of the test particle with all

charges of the apparatus

V N−1
e (r, r2 . . . rN ) =

N∑
j=2

e2 Zj
4π ε0 |rj − r|

. (224)

From Eq.(192) we have

Ĥ0 =
N∑
j=1

[
p̂2
j

2m0
+ Vext.(rj , t)

]
= ĤN−1

0 +

[
p̂2

2m0
+ Vext.(r, t)

]
︸ ︷︷ ︸

=Ĥe
0

.

where Vext.(r, t) denotes some extra potential set up outside the apparatus.
In general it would at least be the gravitational potential, in which case
it would be time-independent In Eq.(224) |Zj | stands for the number of
elementary charges, i. e.

Zj =

{
−Zα if j runs over theαth nucleus

1 if j refers to an electron .

If one multiplies Eq.(223) by Ψ∗N−1 and performs an integration with respect
to r2, . . . rN one obtains

i~ ψ̇e+ψe
∫

Ψ∗N−1

[
i~
∂ΨN−1

∂t
−
(
Ĥ

(N−1)
0 + Vapparatus

)
ΨN−1

]
d3r2 . . . d

3rN

= Ĥe
0 ψe + V̂e ψe (225)

where V̂e(r, t) represents a one-electron potential defined as

V̂e(r, t) =

∫
Ψ∗N−1

N∑
j=2

e2 Zj
4π ε0 |rj − r|

ΨN−1 d
3r2 . . . d

3rN . (226)

Since the bracketed expression under the integral in the above equation
vanishes, we arrive at

i~
∂

∂t
ψe(r, t) = [Ĥe

0 + V̂e(r, t)]ψe(r, t) . (227)

107



Thus, the wave function of the electron under study obeys, in fact, a one-
particle Schrödinger equation.

However, in the above derivation we have ignored the response of the wave-
function ΨN−1 of the apparatus to the presence of the test particle. This
is is hidden in

∑N
j=2 Vext.(rj , t) being a constituent of ĤN−1

0 . Not only the
gravitational potential acts on the apparatus but also the “still external”
test particle through its Coulomb potential. Inclusion of this effect amounts
to adding this extra potential

∆Vext.(r2, r3, . . . rN ) =

∫
ψ∗e(r, t)V

N−1
e (r, r2 . . . rN , t)ψe(r, t) d

3r

to the unmodified expression for ĤN−1
0 in Eq.(225). With the appearance

of ∆Vext. the apparatus wave function changes and becomes a functional of
ψe(r, t). This, in turn, gives rise to a change of V̂e(r, t) as follows from its
definition Eq.(226). That means that the test particle feels the potential
of the charge distribution which it induces in the apparatus. It should be
clearly recognized that this - admittedly small - effect turns the one-particle
Eq.(227) into a non-linear partial differential equation. That is to say that at
this level of description even the simplest realistic case of a particle travelling
in a vacuum chamber leads to a non-linear Schrödinger equation. In the
following considerations we ignore this charge induction effect.

There are certain cases in which the contact time of the test particle is
not short enough, and hence there is a non-vanishing probability that the
particle mingles with those of the target. To get a rough picture of this
situation, we describe the wave function instead of (222) by

ΨN (r, r2, . . . rN , t) =

c0(t)ψe(r, t) ΨN−1(r2, r3, . . . rN , t) + c1(t) Ψcapt
N (r, r2, . . . rN , t) (228)

where c0(t) and c1(t) are real-valued functions with the property |c0(t)|2 +
|c1(t)|2 = 1, in particular

c0(t) = e−
t

2τ

and hence

|c0(t)|2 = e−
t
τ ; |c1(t)|2 = 1− e−

t
τ . (229)

Here τ refers to a characteristic interaction time with the target, and |c1(t)|2
is the probability with which the test electron is captured by the target.
Thereby it loses its identity as the “test electron”. The latter effect is
expressed by the property of Ψcapt

N being antisymmetric with respect to
interchange of any two particles out of the set of Ne electrons.
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Inserting ΨN from Eq.(228) into the Schrödinger equation (191) we obtain

c0(t)
[
ΨN−1 i~ ψ̇e + ψe i~ Ψ̇N−1

]
+

i~ ċ0(t)ψeΨN−1 + c1(t) i~ Ψ̇capt
N + i~ ċ1(t) Ψcapt

N

= c0(t)
[
ψe Ĥ

(N−1)
0 ΨN−1 + ΨN−1 Ĥ

e
0 ψe + Vtotψe ΨN−1

]
+ c1(t) Ĥ Ψcapt

N .(230)

The functions ΨN−1 and Ψcapt
N satisfy the associated time-dependent Schrödinger

equations

i~ Ψ̇N−1 =
[
Ĥ

(N−1)
0 + Vapparatus

]
ΨN−1 (231)

and
i~ Ψ̇capt

N = Ĥ Ψcapt
N .

If we insert this into Eq.(230), multiply the result in front by Ψ∗N−1 and
perform an integration over r2, r3, . . . rN , we obtain

c0(t)

[
i~

∂

∂t
− Ĥe

0 − V ′e (r, t)

]
ψe(r, t)+

i~ ċ1(t)

∫
Ψ∗N−1(r2, . . . rN , t) ·Ψcapt

N (r, r2 . . . rN , t) d
3r2 . . . d

3rN = 0 .(232)

Here we have used i~ ∂
∂t c0(t) = −i ~

2τ c0(t) and set

V ′e (r, t) = Ve(r, t) + i Ṽe where
Ṽe
~
≡ 1

2τ
.

The imaginary part of V ′e (r, t) is commonly referred to as “optical poten-
tial”.
According to our classification of the electron under study as either “distin-
guishable” or “non-distinguishable” the associated total probability density
ρ(r, t) splits (almost quantitatively) into the “either- and or-probability”

ρ(r, t) = |c0(t)|2 |ψe(r, t)|2︸ ︷︷ ︸
=ρ0(r,t)

+ |c1(t)|2
∫
|Ψcapt

N (r, . . . rN , t)|2 d3r2, . . . d
3rN︸ ︷︷ ︸

≡ρ1(r,t)

which means

Se(r, t) =

∫
Ψ∗N−1(r2, . . . rN )×Ψcapt

N (r, r2, . . . rN ) d3r2, . . . d
3rN ≈ 0 ∀ r, t .

It follows then from Eq.(232) that ψe(r, t) solves the modified Schrödinger
equation [

i~
∂

∂t
− Ĥe

0 − V ′e (r, t)

]
ψe(r, t) = 0 , (233)
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which describes situations one encounters, for example, in experiments on
low energy electron diffraction (LEED) at surfaces of solids.
The mod squared of the actually not completely vanishing overlap

S(t) =

∫
Se(r, t)ψ

∗
e(r, t) d

3r

determines the transition probability 1/τ . Eq.(228) and the resulting Eqs.(231)
and (233) are pivotal in describing generic quantum mechanical processes, a
subset of which plays the role of “measurements”5. For example, when one
is dealing with a setup where an electron traverses the legendary double slit
diaphragm, defined by the potential (226), the function Ψcapt

N (r, r2, . . . rN , t)
describes the situation when the electron has been captured by the detector
which is a part of the “apparatus”. In spirit this in keeping with a state-
ment by Hartle and Gell-Mann [56]: “In a theory of the whole thing there
can be no fundamental division into observer and observed” Our approach
reflects even more directly the standpoint taken by v. Kampen [57]: “The
measuring act is fully described by the Schroedinger equation for object and
apparatus together...”

It is the archetypal combination of a particular setup and “pointer readings”
of a detector that enables the experimentalist to determine certain proper-
ties of a one-particle quantum system: The sought-for information can only
be extracted from a solution to the respective Schrödinger (or Pauli) equa-
tion that yields j(r) = ρ(r, t)v(r, t) at rdetector. Eigenvalues of Hermitian
operators can only be obtained via this detour, and for fundamental, mostly
experimental, reasons, only with limited accuracy.

The paradoxical situation which one runs into if one endows the “observer”
(or “measurer”) with an unrealistic meaning, is illustrated by Schrödinger’s
cat example [64]: An alpha-particle emitted from some radioactive material
triggers a device that kills a cat in a closed box by releasing a poisonous
gas. Of course, the moment of radioactive decay does in no way depend
on the particular setup. Our description of this process would be based
on Eq.(228) where ΨN (r, r2, . . . rN , t) on the left-hand side now represents
the wave function Ψgas+cat(t) of the system cat plus gas, ψe(r, t) has to
be replaced with an N -particle wave function ψpoison referring to the only
weakly “cat-overlapping” molecules of the poisonous gas set free by the de-
vice, and ΨN−1(r2, r3, . . . rN , t) is the many-particle wave function Ψcat of
the live cat. After a time span of ≈ τ the system’s wave function Ψgas+cat(t)
has attained the form Ψcapture(t) where the poisonous molecules are now a
part of the cat. It solves the time-dependent Schrödinger equation of the
united system. The time-evolution of Ψcapture(t) describes all the atomic

5We side here emphatically with John Bell [36] who pleads in his article“Against Mea-
surement” for more common sense in describing what is actually happening: the time
evolution of a particular experiment.
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(chemical) processes that eventually lead to the cat’s death. It is this time-
dependent process that is familiar from ab initio calculations on chemical
reactions. The latter are completely “self-controlled”. There is definitely
no “observer-induced” influence. From this point of view it appears to be
rather absurd that orthodox quantum mechanics interprets Eq.(228) with
the explained new meaning of the wave functions as a superposition of a
“live” and a “dead”-state of the cat, and only on opening the lid of the box
by an observer, Ψgas+cat collapses onto the wave function of a live or dead
cat.

27 The origin of particle spin

In 1925 Uhlenbeck and Goudsmit [65] suggested in a widely recognized pa-
per that Pauli’s idea [66] of a fourth quantum number in the description
of electronic states of atoms might be associated with the rotation of an
electron about its own axis thus giving rise to an extra angular moment.
From the analysis of atomic spectra it was clear that the magnetic moment
generated by such a rotation of the electron as a charged sphere had to be
equal to the Bohr magneton

µB =
e~

2m0
.

There was also experimental evidence that the associated mechanical spin
moment ~S - different from the atomic orbital momentum - would not obey
the classical law of magneto-mechanical parallelism according to which µB
should differ from ~S by a factor e

2m0
. In actual fact this factor had been

found to be e
m0

instead so that

|~S| = ~
2
.

and hence

µB = g
e

2m0

~
2
. (234)

We ignore here and in the following the minute departure of g from 2 due
to quantum electrodynamical corrections.
The radius of the rotating electron sphere was equated with the classical
electron radius 2.8 · 10−13 cm. As van der Waerden [67] reports, Lorentz
immediately demonstrated to Uhlenbeck and Goudsmit that the electron
mass would actually be larger than that of a proton if the magnetic mo-
ment of a Bohr magneton would be confined to that sphere. Moreover, the
speed at the equator of the rotating sphere would by far exceed the veloc-
ity of light. Although these objections definitely disqualified the rotating
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sphere as a model of electron spin, it is still used, tacitly implied or appears
concealed as “intrinsic” property in the analysis of most of the present-day
experiments involving spin-orientation or spin flips. There are very explicit
warnings in widely used textbooks like that by Landau and Lifshitz [68]: In
particular, it would be wholly meaningless to imagine the “intrinsic” angu-
lar momentum of an elementary particle as being the result of its rotation
“about its own axis”. However, all these objections have failed to prevent
people from thinking in terms of this model.
If an “eigen-rotation” cannot explain the occurrence of a mechanical spin
moment associated with a gyratory electronic motion, what else can be re-
sponsible for it? The following considerations are based on the idea that
“spin” is not a property of the particle but is rather a property of
its quantum mechanical state. Ohanian [69] arrives at the same conclusion
summarizing an early analysis by Gordon [70] in 1928. He states:

This means that neither the spin nor the magnetic moment are internal
properties of the electron - they have nothing to do with the internal struc-
ture of the electron, but only with the structure of its wave field.

However, as for his basic message we definitely disagree with Ohanian. He
presents reasons that there is formally a strong similarity between a spin-
polarized particle wave and a circularly polarized electromagnetic plane
wave. His arguments are valid for the case of a longitudinally polarized
free particle wave, but they do not apply to a transversally polarized parti-
cle wave.

Our description of particle motion as modified by stochastic vacuum forces
makes it particularly suggestive to correlate - similar to the explanation of
zero-point motion of oscillators - particle spin with the quivering motion that
results from those forces and vanishes as ~ tends to zero. (This applies, of
course, to all the other quantum mechanical groundstate properties as well.)
Hestenes [71], [72] discussed particle spin within the same concept. To il-
lustrate our idea in more detail we consider the simplest case of a hydrogen
electron exposed to a magnetic field B = BZ ez in its ground state ψ0(r).
In Fig.12 we show a schematic distribution of positions that the electron
has successively taken at times ti and equal time intervals ti+1 − ti = ∆t
where ∆t is very small compared to T . This time span has been intro-
duced in Section 4 in connection with defining the probability density ρ(r).
The z−axis is thought to run through the atomic center perpendicular to
the plotting plane. At each of the points the electron possesses a velocity
which we decompose into a radial and a z−component, and in a component
perpendicular to the z−axis. Only the latter components are indicated by
arrows. For symmetry reasons there will be as many positive as negative
radial and z−components in the elementary volume about each point. They
average out. We subdivide the set of arrows into two subsets associated with
left-hand and right-hand circular motion, respectively. One might surmise
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Figure 12: Spin effective components of the quivering motion

that in the presence of the magnetic field along the z-direction one of the
sets becomes empty in favor of doubling the other set thereby giving rise to
a net circular current so as to minimize the total energy in that electronic
state. The gain in energy must be transferred to an external reservoir.
This energy gain is proportional to Bz which is a defining property, and it
vanishes as ~→ 0. As has been shown in Section 15 the magnetic field causes
a current density j(r) = e

m0
|ψ0(r)|2 A(r) when the particle is in the state

ψ0(r) , but the energy gain from this goes as B2
z because of ∆E =

∫
j ·A d3r

and B = ∇ × A. The omission of the empty subset of arrows does not
change the distribution of points defining ψ0(r). This distribution is via the
Schrödinger equation shaped by the guiding field in the system, which is the
nuclear electrostatic field in the case of a hydrogen electron, or, in general,
the effective field an electron feels in an atom. In the presence of a magnetic
field the associated vector potential A(r) in the kinetic energy operator is
a constituent of the total field shaping ψ0(r).

We thus arrive at the conclusion that the circular current which occurs on
allowing the quivering motion of the electron to become asymmetric does
not change the probability density which is characteristic of real-valued so-
lutions to the Schrödinger equation. But it definitely yields a physical effect
that has so far been outside our formal framework. In discussing certain
properties of solutions to the Dirac equation Schrödinger [73] was led to a
similar interpretation of particle spin and named the irregular particle mo-
tion causing it “Zitterbewegung”. However, he presupposed the existence of
the Dirac equation in his considerations as opposed to our approach where
the Dirac equation will be derived.
The additional spin-dependent interaction with a magnetic field occurs also
in complex-valued states ψ(r) when the particle moves in a spherical or cylin-
drical potential. These states contain an orbital momentum of the familiar
meaning. There is now an additional set of arrows superposed on those
shown in Fig.12. That set consists of arrows depicting v(r) = ~

m0
∇ϕ(r) at

the various points distributed according to |ψ(r)|2. Clearly, a linear super-
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position of those arrows is only possible as long as the velocities are within
the non-relativistic regime. Otherwise the superposition is affected by spin-
orbit coupling as a result of which ϕ↑(r) and ϕ↓(r) now become different.
This point will be taken up again in Section 34. It will, further, be shown in
Section 36 that the magnetic moment connected with the charged particle’s
“Zitterbewegung” has a fixed value, viz. the value of the Bohr magneton,
and this is independent of the specific shape of the wavefunction. Different
from the angular motion that has its roots in a classical orbital motion, the
occurrence of spin does not presuppose spherical or cylindrical symmetry of
the potential within which the particle moves. The potential must merely
possess a center or an axis. There is an extra velocity field vspin(r) associ-
ated with the particle-spin. This velocity field represents again an ensemble
average over the individual quivering velocities in the respective elementary
volumes about the points r. As this extra velocity field must also be non-
dissipative, it can be mapped onto a phase α(r) as the orbital velocity field
v(r) could be mapped onto ϕ(r). However, it should be kept in mind that
the wavefunction ψ(r) has been constructed such that ϕ(r) represents its
phase:

ψ(r) = |ψ(r)|ei ϕ(r) .

Only in this form Newton’s modified second law (41) can be transformed
- by using Eq.(75) - into the Schrödinger equation. Because of this rigid
connection of ϕ(r) with a velocity field v(r) that originates from the clas-
sical particle motion, an additional inclusion of α(r) into the phase of the
wavefunction is not possible.
The circular spin motion is always in addition to the ordinary orbital mo-
tion. This is similar to the motion of a harmonic oscillator whose angular
frequency is ω. The energy En in the n-th eigenstate is always in addition
to its zero-point energy:

En = (n+ 1
2)~ω .

It should be observed, however, that this simple addition only occurs when
the axes of the two circular motions are collinear. In the non-relativistic limit
there is no physical reason for collinearity because the two circular motions
occur independently. However, in the relativistic case a new phenomenon,
spin-orbit-coupling, comes into play which couples the two circular motions.
This matter will not be pursued any further in the present exposition.
Since vspin(r) possesses a velocity potential, this may - in analogy to the
“ordinary” velocity field - be expressed

vspin(r) =
~
m0
∇α(r) .

It follows then that any path integral of it encircling the “spin axis” must
yield a fixed value. As for the magnetic moment that is connected with
the current evspin one is tempted to assume that it agrees with the Bohr
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magneton. This assumption will prove to be consistent with the result one
obtains from the Dirac equation.

28 Generalizing one-particle quantum mechanics
by including particle spin

Several suggestions have already been made to incorporate particle spin into
a theory that is akin to the ideas of the present article (s. e. g. Hestenes
[72], Dankel [75], Dohrn et al. [76], Nelson [77]). We believe, however, that
our approach is easier to envisage and hence appears to be most desirable in
the spirit of v. Weizsäcker’s statement [74] “... What we are dissatisfied with
is basically not that the old perceptions have failed but that they could not
be superseded by something immediately comprehensible.”.

The points associated with the two subset of arrows in Fig.1 define prob-
ability densities ρ↑(r) and ρ↓(r) with ↑ and ↓ referring to the respective
direction of the spin moment. Both densities integrate to unity∫

ρ↑(↓)(r) d3r = 1 . (235)

If one turns on an infinitesimally small magnetic field in the z-direction,
the two densities split up. The density whose associated particle performs
a right-handed motion about the z-axis doubles at the expense of the other
density which disappears. The reverse applies to the density connected with
the left-handed circular motion. Accordingly, the two densities occur at
different energies due to their different interaction with the magnetic field.
(As presupposed, they differ only infinitesmally little.)
We first concentrate on ρ↑(r) and note:

ρ(r) = ρ↑(r) . (236)

What happens if one turns the coordinate system by some angle? For reasons
which will become clear later, we rename the original coordinate system into
(x′, y′, z′) and, accordingly, denote the new one by (x, y, z). The spin-up-
density in the new z-direction can only be a fraction of the original one,
which is now associated with the z′-axis. It will, therefore, be smaller than
the original one which integrated to unity. On the other hand, after one has
turned the coordinate system the total charge density which the new ρ↑(r)
is a part of, still integrates to unity. To satisfy the latter requirement one
might think of forming

ρ(r) = |a|2 ρ↑(r) + |b|2 ρ↓(r) (237)

where ρ↓(r) represents the spin-down density for the new z-direction, and a
and b denote coefficients whose modulus squares sum up to unity

|a|2 + |b|2 = 1 . (238)
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It is not possible, however, to partition the wave function analogously:
ψ(r) = aψ↑(r)+b ψ↓(r) because ψ∗(r)ψ(r) would contain cross-terms which
prevents ψ∗(r)ψ(r) from integrating to unity. However, if one introduces a
two-component spinor of the form

ψ(r) =

(
aψ↑(r)

b ψ↓(r)

)
= aψ↑(r)

(
1

0

)
+ b ψ↓(r)

(
0

1

)
(239)

and its adjoint ψ†(r) =
(
a∗ψ∗↑(r), b∗ψ∗↓(r)

)
where∫

|ψ↑(↓)(r)|2 d3r = 1 , (240)

one obtains as intended

ψ†(r)ψ(r) = |a|2 |ψ↑(r)|2 + |b|2 |ψ↓(r)|2 = ρ(r)

and ∫
ψ†(r)ψ(r) d3r = 1 . (241)

The spinors ψ↑(↓)(r) will be referred to as spin-up and spin-down compo-

nents from now on.
As in the classical theory of electricity the circular motion of a charged
particle is connected with a magnetic moment. This applies as well to the
spin motion under discussion. The absolut value of this moment turns out
to be identical with the Bohr magneton µB = e~

2m0
as can be derived from

the Dirac equation6 (see Section 36). For the time being it is considered
to be known. The above discussion started with a pure spin-up-state in
the z′-direction. The necessity for forming its equivalent representation in
a rotated cooordinate system by combining ψ↑(r) and ψ↓(r) leads to unex-

pected consequences. This becomes apparent if one applies a magnetic field
in the z-direction. The energy densities of the interaction with the magnetic
field for “up“- and “down”-spin may be cast as

−µBBz |a|2 ψ∗↑(r)ψ↑(r) and + µBBz |b|2 ψ∗↓(r)ψ↓(r) .

from which the total interaction density results as

umagn.(r) = −ψ†(r)µBB ψ(r) (242)

where we have introduced a matrix

B =

(
Bz 0
0 −Bz

)
. (243)

6As already mentioned earlier in connection with Eq.(234) quantum electrodynamics
yields a small correction to this value.
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Likewise, we may cast the non spin-dependent energy density of the electron
as

ψ†(r) Ĥ ψ(r)

where

Ĥ = Ĥ0 + V (r) and Ĥ0 =
(p̂− eA(r))2

2m0
, (244)

and with V (r) denoting some potential in which the electron moves.

29 The time-dependent non-relativistic Pauli equa-
tion

The basic two constituents of our approach, viz. |ψ(r, t)|2 and ∇ϕ(r, t) re-
main unaffected by our incorporation of spin. Hence, it is in line with the
conceptual idea of our approach to assume that the two theorems of Ehren-
fest stay unaffected as well. That means, according to Ehrenfest’s Second
Theorem

〈v〉 =
d

dt
〈r 〉 =

∫ [
ψ̇
†
(r, t) r ψ(r, t)

+ψ†(r, t) r ψ̇(r, t)
]
d3r , (245)

and we have alternatively from Eq.(114)

〈v〉 =
1

m0

∫
ψ†(r, t)P̂ ψ(r, t) , (246)

which holds without modification also for the spinors we have introduced.
Exploiting the relation

[Ĥ0 r − r Ĥ0]ψ(r, t) = −i ~
m0

P̂ ψ(r, t) ,

which follows from simply applying the chain rule, we may combine Eqs.(245)
and (246) to obtain∫ ([

Ĥ0 + i~
∂

∂t

]
ψ†(r, t)

)
r ψ(r, t) d3r −∫

ψ†(r, t) r

[
Ĥ0 − i ~

∂

∂t

]
ψ(r, t) d3r = 0 . (247)

This equation holds for any t if ψ(r, t) satisfies[
Ĥ0 − i ~

∂

∂t

]
ψ(r, t) = −D ψ(r)− F (r, t)ψ(r, t) , (248)
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and correspondingly[
Ĥ0 + i ~

∂

∂t

]
ψ†(r, t) = −ψ† (r)D − ψ†(r)F (r, t) ,

where F (r, t) is some integrable real-valued function and D denotes some
unitary 2×2-matrix that will be specified later to meet requirements of
Ehrenfest’s first theorem.
The expectation value of the force exercised on an electron which moves in a
potential V (r) and simultaneously - via its magnetic moment - feels a force
in a spatially varying magnetic field B(z, t) = Bz(z, t) ez may be cast as

〈F 〉 = −
∫
ψ†(r, t)

[
∇{V (r) + µB B}

]
ψ(r, t) d3r − 〈eȦ(r, t)〉 . (249)

The appearance of the induction-derived force −〈eȦ(r, t)〉 is a consequence
of Eq.(111).
We perform an integration by parts on the first integral and obtain

〈F 〉 =

∫ [
∇ψ†(r, t)

]
{V (r) + µB B}ψ(r, t) d3r +∫

ψ†(r, t) {V (r) + µB B}∇ψ(r, t) d3r − 〈eȦ(r, t)〉 . (250)

From Eq.(114) we have

d

dt
〈p〉 =

d

dt

∫
ψ†(r, t) [−i~∇− eA(r, t)]ψ(r, t) d3r

which we rewrite

d

dt
〈p〉 =

∫ (
−i~ ∂

∂t
ψ†
)
∇ψ d3r +

∫
ψ†∇

(
−i~ ∂

∂t
ψ

)
d3r︸ ︷︷ ︸

=−
∫
∇ψ†(−i~ ∂∂tψ) d3r

−
∫
ψ† ψ e Ȧ d3r .

On forming 〈F 〉 − 〈ṗ〉 = 0 (Ehrenfest’s First Theorem) we obtain∫ (
∇ψ†

) {
V + µB B − i~

∂

∂t

}
ψ d3r +∫ [(

+i~
∂

∂t
ψ†
)
∇ψ + ψ†{V + µB B}∇ψ

]
d3r = 0 . (251)

If we here eliminate the time-derivatives using Eqs.(248) and equate D with
µB B this equation takes the form:

−
∫ [

(∇ψ†) Ĥ0 ψ + (Ĥ0 ψ
†)∇ψ

]
d3r +∫ [

(∇ψ†(r, t))ψ(r, t) + ψ†(r, t)∇ψ(r, t)
]
× {V (r)− F (r, t)} d3r = 0 .
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We temporarily assume that A(r, t) ≡ 0. One recognizes then that the first
integral vanishes. Thus∫

∇ρ(r, t){V (r)− F (r, t)} d3r = 0 ∀ t . (252)

We first consider the possibility that the expression in curly brackets does not
vanish, but the integral does. As we have emphasized in defining probability
densities ρ(r, t) and average velocities v(r, t) through Eqs.(22) and (23),
non-stationary states require a certain sample-time T of the particle under
study to allow its time-derived probability density ρ(r, t) to become quasi-
stationary. Hence, if we introduce at t = t0 a small perturbational potential
V (r)→ V (r)+δv(r, t) where t0 ≤ t� T , the probability density ρ(r, t), and
thus its gradient remain practically unaffected, but the bracketed expression
is now definitely different. We are hence led to conclude that Eq.(252) can
only be satisfied if F (r, t) ≡ V (r) holds for any time. That means - because
of Eq.(248) - that the spinor function ψ(r, t) solves[

Ĥ0 + V (r) + µB B
]
ψ(r, t) = i ~

∂

∂t
ψ(r, t) (253)

as Eq.(248) holds also for A(r, t) 6= 0. Eq.(253) constitutes the time-
dependent non-relativistic Pauli equation.

30 The Cayley-Klein parameters and Pauli spin
matrices

We want to adapt Eq.(253) to a situation where the direction of the magnetic
field no longer coincides with the z-axis of the coordinate system. This can
be achieved by exploiting a surprising alternative to the standard form of
rotating the coordinate system by applying orthogonal 3×3 matrices. The
idea goes back to Felix Klein (see e. g. H. Goldstein [78]) and is related to
earlier work of Cayley. He considers the rotation of the coordinate system
(x, y, z → x′, y′, z′) to be performed in three steps described by the Euler
angles φ, θ and ψ shown in Fig.13.
Instead of representing the position vector r by a column matrix he uses a
2×2-matrix P (r) of the form

P (x, y, z) :=

(
z x− i y

x+ i y −z

)
. (254)

In place of the standard 3×3-rotation matrix one now has a 2×2-unimodular
matrix

Q(θ, φ, ψ) =

(
α β
γ δ

)
(255)
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Figure 13: Euler angles

whose elements - the so-called Cayley-Klein parameters - are connected with
the Euler angles through

α = e
i
2

(ψ+φ) cos
θ

2

β = ie
i
2

(ψ−φ) sin
θ

2

γ = ie−
i
2

(ψ−φ) sin
θ

2

δ = e−
i
2

(ψ+φ) cos
θ

2
. (256)

After the three steps of the rotation have been performed the original posi-
tion vector r = (x, y, z) is now associated with the new coordinates x′, y′, z′

that may be obtained from the transform

QP Q+ = P ′(x′, y′, z′) =

(
z′ x′ − i y′

x′ + i y′ −z′
)

(257)

where Q+ denotes the adjoint of Q, and we have

Q+Q = QQ+ = 1 (258)
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The matrix B had been defined in Eq.(243) as

B =

(
Bz 0
0 −Bz

)
= Bz

(
1 0
0 −1

)
. (259)

In Klein’s representation the point r = (0, 0, z) attains the analogous form

P (r) = z

(
1 0
0 −1

)
.

Hence, B has to be required to transform under coordinate rotation as P :

B′ = QBQ+ . (260)

For a general orientation the magnetic field B has the form analogous to P
in Eq.(254), viz.

B =

(
Bz Bx − i By

Bx + i By −Bz

)
. (261)

This matrix can be decomposed

B = Bx σ x +By σ y +Bz σ z , (262)

where the three matrices on the right-hand side are just the Pauli spin
matrices

σ
x

=

(
0 1
1 0

)
σ
y

=

(
0 −i
i 0

)
σ
z

=

(
1 0
0 −1

)
. (263)

They are commonly lumped together in the form of a vector

~σ = σ
x
ex + σ

y
ey + σ

z
ez . (264)

The matrix B in Eq.(262) may therefore be cast as

B = ~σ ·B . (265)

The Pauli equation (253) then attains the familiar form[
Ĥ0 + V (r) + µB ~σ ·B

]
ψ(r, t) = i~

∂

∂t
ψ(r, t) . (266)

Actually, the spinor in this equation should be marked by a prime because
it has changed under the transform as well. We have dropped the prime for
simplicity. Since the density of the magnetic interaction energy is, of course,
invariant under rotation of the coordinate system

umagn.(r) = u′magn.(r
′) ,
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it can be shown then that the new ψ′ is connected to the original ψ through

ψ′ = Qψ (267)

and correspondingly

ψ′† =
(
Qψ

)†
= ψ†Q+ .

This becomes obvious from forming

ψ′†B′ ψ′ (=: u′mag(r
′, t)) = ψ†Q+B′Qψ .

If we insert Eq.(260) on the right-hand side we obtain

ψ†Q+B′Qψ = ψ† Q+Q︸ ︷︷ ︸
=1

B Q+Q︸ ︷︷ ︸
=1

ψ = umag(r, t) .

Because of
ψ′† ψ′ = ψ†Q+Qψ = ψ† ψ = ρ(r, t)

the probability density is also invariant under rotation of the coordinate
system which is consistent with our idea of a spin-defining motion decompo-
sition at the beginning of our considerations. Moreover, if the state of the
particle in the original coordinate system has the form

ψ↑(r)

(
1

0

)
or ψ↓(r)

(
0

1

)
, (268)

it becomes after coordinate rotation

ψ′↑(r) = ψ↑(r)Q(r)

(
1

0

)
= ψ↑(r)

[
α(r)

(
1

0

)
− β∗(r)

(
0

1

)]
or

ψ′↓(r) = ψ↓(r)Q(r)

(
0

1

)
= ψ↓(r)

[
β(r)

(
0

1

)
+ α∗(r)

(
1

0

)]
,

where α(r) and β(r) are the Cayley-Klein parameters describing the rotation
which we have allowed here to be different at different positions r.
The spin orientation with respect to the direction of a magnetic field is
already uniquely defined by the two angles θ and φ. Hence one is at liberty to
choose ψ at will without loss of generality. It is convenient to set ψ = −π/2.
We consider the projection of the unit vector e′z onto the original x/y-plane
where it makes an angle ϕ with the x-axis. This angle and the Euler-angle
φ are interrelated

φ = ϕ+
π

2
.

If one inserts this relation into Eqs.(255) and (256), Q takes the familiar form
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Q(r) =

(
exp[ i2ϕ(r)] cos θ(r)

2 exp[− i
2ϕ(r)] sin θ(r)

2

− exp[ i2ϕ(r)] sin θ(r)
2 exp[− i

2ϕ(r)] cos θ(r)
2

)
.

(269)

The above considerations on the magnetic interaction energy starting with
the expression (242) carry over to the spin momentum

〈Sz〉 =
~
2

∫ [
|a|2 |ψ↑(r)|2 − |b|2 |ψ↓(r)|2

]
d3r . (270)

The symbol Sz refers to the effective spin moment in the z-direction with
respect to which the functions ψ↑(↓)(r) have been defined. By analogy with
(259) this expression can be compactified by introducing

S
z

=
~
2

(
1 0
0 −1

)
(271)

so that

〈Sz〉 =

∫
ψ+(r)S

z
ψ(r) d3r . (272)

In anticipation of Section 31 we have already introduced the prefactor ~
2 .

In case that the functions ψ↑(↓)(r) refer to a z′-direction that belongs to a
rotated coordinate system x′, y′, z′, we have in analogy to Eq.(260)

S
z′

= QS
z
Q+ .

If we use the analogous relations pertaining to Eqs.(261) up to (265) we may
cast S

z′
as

S
z′

=
~
2

[α̂x σ x + α̂y σ y + α̂z σ z] (273)

with α̂x, α̂y, α̂z denoting the component of the unit vector ez′ in the z′-
direction

α̂x = cosϕ sin θ

α̂y = sinϕ sin θ

α̂z = cos θ .

It is convenient to introduce a vector ~S (commonly referred to as “spin
operator”), which is analogous to ~σ, by setting

~S =
~
2
~σ . (274)
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Eq.(273) may then be cast

S
z′

= ez′ · ~S ,

and hence we have

〈Sz′〉 =

∫
ψ+(r)S

z′
ψ(r) d3r = ez′ · 〈~S〉

where

〈~S〉 =

∫
ψ+(r) ~S ψ(r) d3r . (275)

If ψ(r, t) has the form (268), Eq.(275) yields 〈~S〉 = ±~
2 ez. On the other

hand, if ψ(r, t) possesses two non-vanishing components, there will always
be a coordinate system that is rotated with respect to the present one, in
which 〈~S〉 becomes ±~

2 ez′ . One only has to turn the pertinent z′-axis in the

plane spanned by the original direction of 〈~S〉 and the original z-axis until
ez′ is parallel or anti-parallel to 〈~S〉.

31 Spin precession in a magnetic field

Commonly one assumes the magnetic field and the spin direction to be
collinear. As an example for a non-collinear situation we consider an electron
that is bound within an atom where it is initially exposed to a magnetic
field along some direction. We omit here discussing the details of its spin
alignment due to some minute time dependent perturbations and simply
assume that it has eventually attained a stationary spinor state in which
its spin momentum points parallel or anti-parallel to the direction of the
magnetic field. If one now changes non-adiabatically the direction (and
in general inevitably also the magnitude) of the magnetic field, the spin
momentum can - without an appropriate external torque - not adjust to the
new field direction, and hence the previously existing collinearity no longer
obtains. As we shall show by discussing the pertinent solution to the time-
dependent Pauli equation (266), the spin momentum now precesses about
the new direction of the magnetic field in a completely classical way.
We equate the initial direction of the magnetic field with the z′-axis of a
“primed” coordinate system in which the spin-aligned state of the electron
has the form

ψ′(r′) = ψ′0(r′)

(
1

0

)
(276)

where ψ′0(r′) is the energetically lowest lying solution to the Schrödinger
equation of the one-particle system under study. We denote this solution by

124



ψ0(r) in the unprimed coordinate system in which the new magnetic field
lies along the z-direction and in which the spinor (276) can be cast as

ψ(r) = Q+ ψ′(r′) = ψ0(r) e−i
ϕ
2 cos

θ

2

(
1

0

)
︸ ︷︷ ︸

=ψ
0↑(r)

+ψ0(r) ei
ϕ
2 sin

θ

2

(
0

1

)
︸ ︷︷ ︸

=ψ
0↓(r)

, (277)

where θ, ϕ, ψ(= 0) are the Euler angles that refer to the interrelation (x′, y′, z′)→
(x, y, z)). Hence we have

ψ(r) = ψ
0↑(r) + ψ

0↓(r) . (278)

Note that the unit spinors in Eq.(277) are now referenced to the new z-axis!
We now consider the Pauli equation (266)

i~
∂

∂t
ψ(r, t) =

[
Ĥ0 + V (r) + µB σz Bz

]
ψ(r, t)

for the time-independent case and in the absence of a magnetic field in which
case ψ

0↑(↓)(r) are independent degenerate solutions and ψ0(r) satisfies the

associated Schrödinger equation

Ĥ0(r)ψ0(r) = E0 ψ0(r) .

For Bz 6= 0 the two spinors belong to different energies E0↑(↓) = E0±µB Bz
and their sum does not satisfy the time-independent Pauli equation any
more. However

ψ(r, t) = ψ
0↑(r) e−

i
~E0↑ t + ψ

0↓(r) e−
i
~E0↓ t (279)

solves the above time-dependent Pauli equation if we disregard effects of
second and higher order in the magnetic field which arise from the appear-
ance of A(r) in Ĥ0 (s. Eq.(244)). We now insert the definitions of ψ

0↑(↓)(r)

defined in (277) and obtain

ψ(r, t) = ψ0(r)

[
e−i

(ϕ−ωL t)
2 cos

θ

2

(
1

0

)
+ ei

(ϕ−ωL t)
2 sin

θ

2

(
0

1

)]
e−

i
~E0 t. (280)

Here we have made use of E0↑(↓) = E0±µB Bz and introduced the frequency
ωL which is defined through

E0↑ − E0↓ = 2µBBz = ~ωL . (281)

The spin-vector ~S had been defined as

~S =
~
2
~σ , (282)
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where ~σ is short-hand for the three matrices

σ
x

=

(
0 1
1 0

)
σ
y

=

(
0 −i
i 0

)
σ
z

=

(
1 0
0 −1

)
.

We pause here for a moment and recall that the prefactor ~
2 has not yet

been justified. But it is clear from its physical meaning and its physical
dimension that the expectation value of ~S will definitely be proportional to
~. For that reason we rewrite Eq.(282) alternatively, introducing a scalar
dimensionless factor a

~S = a ~~σ , (283)

to which we shall come back below.
If one forms the expectation value of ~S using (280) one obtains

〈~S〉 =

∫
ψ+(r, t) ~S ψ(r, t) d3r =

=
~
2

[cos(ϕ− ωLt) sin θ ex+ sin(ϕ− ωLt) sin θ ey + cos θ ez] . (284)

Thus, the vector 〈~S〉 of the spin momentum moves on a circular cone with
an apex angle of 2 θ about the direction of the magnetic field and its pro-
jection onto the x/y-plane rotates at an angular frequency ωL, the “Larmor
frequency”, about the z-axis. According to Eq.(281) this frequency is given
by

ωL =
µBBz
~/2

. (285)

The spin precession is completely analogous to that of a classical spinning

Figure 14: Quantum mechanical spin precession in a magnetic field

top which rotates about its symmetry axis at an angular frequency ω and
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is exposed to the gravitational field of the earth. The precession frequency
ωP is in this case given by

ωP =
F rs
L

,

where L denotes the absolute value of the angular momentum, F is the
absolute value of the gravitational force acting on the top’s center of mass,
and rs is the distance of the center of mass from the point of support. In
other words, F rs corresponds to µBBz for the precessing spin momentum.
If one would define ~S by Eq.(283) rather than by Eq.(282), one would have
instead of Eq.(285)

ωL =
µBBz
a~

where a~ has to be interpreted as the angular spin momentum because of
the equivalence of classical and spin precession just revealed. Because of
Eq.(281 )we have ~ωL = 2µBBz, and hence the above equation yields

a =
1

2
and therefore ~S =

~
2
~σ . (286)

The completely classical behavior of a precessing spin moment in a magnetic
field can also be made evident by the following consideration.
Using Eqs.(234) and (284) we may express the spin-derived magnetic mo-
ment ~MSpin as

~MSpin = µB [cos(ϕ− ωLt) sin θ ex+ sin(ϕ− ωLt) sin θ ey + cos θ ez] .

The time derivative of Eq.(284) can be written

d

dt
< ~S >= µB Bz [sin(ϕ− ωLt) sin θ ex− cos(ϕ− ωLt) sin θ ey] , (287)

where we have used ωL = 2µBz/~. We observe that B = Bz ez and

ex × ez = −ey ; ey × ez = ex ; ez × ez = 0 .

Hence, the right-hand side of Eq.(287) can be cast as

µB Bz [sin(ϕ− ωLt) sin θ ex − cos(ϕ− ωLt) sin θ ey] = ~MSpin ×B .

The result may be written

d

dt
< ~S >= ~MSpin ×B . (288)

This is identical with the classical equation of motion describing the tem-
poral behavior of a spinning top that is acted upon by a torque ~MSpin×B.
It corresponds to Ehrenfest’s First Theorem, and it is this equation (288)
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which governs the phenomena encountered in electron and nuclear spin res-
onance. (S. e. g. Slichter [79].) In applying magnetic resonance techniques
one has to supplement Eq.(288) by perturbational terms that cause a change
of the precession cone. An equation of this kind was put forward by Bloch
[80] in 1945. If the atom is not exposed to a time-dependent perturbation
the spin keeps precessing on the cone without changing its apex angle even
when the strength of the magnetic field adiabatically increases or decreases.
A change of the absolute value of B only changes the Larmor frequency
ωL. However, as with the magnetic spin resonance, the apex angle changes
continuously when one applies a small time-dependent magnet field across
the strong stationary field B = Bz ez and when this smaller field oscillates
at the angular frequency ωL. This will be outlined in the following section.

Spin precession in a magnetic field exhibits a peculiar feature that relates to
the occurrence of the argument ϕ

2 in the exponential functions of Eq.(277).
To see that we assume ψ(r) to represent a wavepacket of a free particle that
traverses a homogeneous magnetic field in an orthogonal direction. When
the wavepacket enters the magnetic field the spin component perpendicular
to the field may point in the x-direction which is also the direction of flight.
We then have

ϕ = 0 and hence e±i
ϕ
2 = 1 .

During the flight θ stays constant. When the wavepacket leaves the magnetic
field after a full precession period we have

ϕ = 2π which means e±i
ϕ
2 = −1 .

Hence ψ(r) has changed its sign, or one may just as well say, its phase has

been shifted by π. However, as can be seen from Eq.(284), 〈~S〉 points in
the same direction as at the beginning of the precession. This phase shift
is well detectable in double-beam experiments with spin-polarized neutrons
(s. e. g. Rauch [81], Werner et al. [82]).

32 Magnetic spin resonance

A so-called magnetic spin resonance occurs when one applies a considerably
smaller magnetic field, e. g. Bx(t) in the x-direction. If this field oscillates
at an angular frequency ωL the precession cone widens or shrinks continu-
ously depending on the relation between the phase of the oscillation and the
position of the spin.
In the following we use a short-hand notation for the “precessing spinor”
(280) :

ψ(r, t) = ψ0(r)
[
e−i

(ϕ−ωL t)
2 c↑ χ↑ + ei

(ϕ−ωL t)
2 c↓ χ↓

]
e−

i
~E0 t (289)
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where

|c↑|2 + |c↓|2 = 1 and χ↑ =

(
0

1

)
; χ†↑ = (1 0) χ↓ =

(
1

0

)
; χ†↓ = (0 1) .

If c↑ and c↓ are time-independent constants the spinor (289) fulfills the time-
dependent Pauli equation (266)

i~
∂

∂t
ψ(r, t) =

[
Ĥ0 + V (r) + µB σz Bz

]
ψ(r, t)

in the presence of a magnetic field Bz in the z-direction.
As will immediately become apparent, the perturbed Pauli equation

i~
∂

∂t
ψ(r, t) =

[
Ĥ0 + V (r) + µB σz Bz + µB σxBx(t)

]
ψ(r, t) (290)

is satisfied if one allows the coefficients c↑ and c↓ in (289) to become time-
dependent. Inserting (289) thus modified into Eq(290) one can cast the
result as

e−i
(ϕ−ωL t)

2 i~ ċ↑ χ↑ + ei
(ϕ−ωL t)

2 i~ ċ↓ χ↓ =

µB Bx(t) ei
(ϕ−ωL t)

2 c↓ χ↑ + µB Bx(t) e−i
(ϕ−ωL t)

2 c↑ χ↓ .

Multiplying this equation by c↑ e
i
(ϕ−ωL t)

2 χ†↑ from the left one obtains

i~ c↑ ċ↑ = ei(ϕ−ωL t) c↑ c↓ µB Bx(t) .

Subtraction of the complex-conjugate of this equation yields

∂

∂t
c2
↑ = c↑(t) c↓(t)

2µB
~

Bx(t) sin(ϕ− ωL t) . (291)

Likewise, one gets

∂

∂t
c2
↓ = −c↓(t) c↑(t)

2µB
~

Bx(t) sin(ϕ− ωL t) ,

thus
∂

∂t

[
c2
↑ + c2

↓
]
≡ 0 ,

as has to be required.
If one observes

Bx(t) = Bx 0 cosωl t

and
sin(ϕ− ωL t) = sinϕ cos(ωL t)− cosϕ sin(ωL t)
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Eq.(291) takes the form

∂

∂t
c2
↑ = c↑(t) c↓(t)

2µB
~

Bx0︸ ︷︷ ︸
=ωL q

[
sinϕ cos2(ωL t)− cosϕ cos(ωL t) sin(ωL t)

]
,(292)

where

q
def
=

Bx0

Bz

has been introduced for brevity.
As q = Bx0

Bz
is presupposed to be very small compared to unity, the time

average of this equation over one precession period does not sizably affect
the time dependence of c↑(t) and thus of c↓(t) as well. Performing this
averaging and omitting to denote the small effect on c↑(↓)(t) explicitly one
obtains

∂

∂t
c2
↑ = c↑(t) c↓(t)ωL

q

2
sinϕ .

Here ϕ represents the azimuth position of 〈~S〉 when Bx(t) has reached its
maximum. In view of Eq.(280) we make an educated guess on the solution
of this equation by setting

c↑(t) = cos
θ(t)

2
; c↓(t) = sin

θ(t)

2
↪→ c2

↑(t) + c2
↓(t) = 1

∂

∂t
cos2 θ(t)

2
= cos

θ(t)

2
sin

θ(t)

2
θ̇ .

We thus arrive at

θ̇ = ωL
q

2
sinϕ ; θ = [ωL

q
2 sinϕ] t .

That means that depending on sinϕ the apex angle 2 θ widens or shrinks
linearly in time and proportional to the amplitude of the perturbing mag-
netic field Bx(t). This is exactly the behavior of a classical spinning top.
As opposed to the impression that is commonly invited by even the most
recent literature, Eqs.(280, (288) and (292) constitute purely quantum me-
chanical results and they are in no way “semi-classical” or “macroscopical”.
The fact that from our derivation 〈~S〉z may lie anywhere between +~

2~ez
and −~

2~ez, seems to contradict the principle of “orientation quantization”

according to which 〈~S〉z may only be equal to ±~
2~ez. Clearly, if 〈~S〉 is not

parallel or anti-parallel to B but rather precesses about the direction of the
latter, the electron emits magnetic dipole radiation until its spin is aligned.
But this is a weak electromagnetic interaction, and therefore the state of
non-alignment may well be regarded as meta-stable in certain experimen-
tal situations. This is exploited in spin-echo experiments where one starts
with an ensemble of (nuclear) spins which, in the beginning, are all aligned
along the z-direction of the magnetic field. As discussed above, these spins
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are then additionally exposed to a weaker oscillating magnetic field in the
x-direction for a certain time T such that θ̇ T = π

2 . As T is long compared
to the precession time, this way of applying an oscillating magnetic field
is commonly referred to as subjecting the spin system to a “rectangular π

2
puls of frequency ωL”. After the puls has been applied all spins precess in
a plane perpendicular to the Bz ez This is the situation alluded to above:
The spins are no longer in one of their Zeeman eigenstates, but rather in
a metastable state of an enormous life time if it were not for dissipative
processes caused by the environment. Further, when the spin precesses in a
plane perpendicular to the magnetic field, it has only absorbed the energy
µB Bz, that is ~ωL

2 . That fraction is even less, when one cuts the oscillating
magnetic field off some time earlier. For that reason, any attempt to bring
spin resonance phenomena and the absorption of photons (coming from the
oscillating magnet) in a meaningful physical relation is doomed to fail.
As for the spin-echo effect, one first realizes that the directions of the spins
fan apart once they start precessing in that plane perpendicular to Bz ez.
This is due to the unavoidable inhomogeneities of the magnetic field. If
one now applies a rectangular π-puls the spins spiral down until they have
reached anti-parallel orientation with respect to Bz ez and, further, spiral up
until they precess again in the plane perpendicular to z. But this time the
“slow spins” are in front of the faster ones in the group of spins all of which
are precessing in the same direction. Hence, after some time the faster ones
have caught up and the group is closer together again which can be detected
as an “echo” by an electromagnetic pick-up coil.

33 A theory of the Stern-Gerlach experiment

“...Phenomena of this kind made physicists despair of finding any consistent
space-time picture of what goes on the atomic and subatomic scale...many
came to hold not only that it is difficult to find a coherent picture but that
it is wrong to look for one...”

John Bell [83]

Quite a few attempts have already been made on a theory of the Stern-
Gerlach (SG-) experiment [84]. For a recent rather complete update of the
pertinent literature see Home et al.[85]. But a coherent picture of the fun-
damental mechanism is still missing. Most physicists seem to favor the idea
that the electronic state of the atom on entering the magnet constitutes a
linear combination of spin states “up“ and “down”, and the modulus square
of the associated coefficients defines the probability of the atom for either
being pulled up or down, that is, parallel or anti-parallel to the magnetic
field gradient. On detection of the atom in the “up”- or “down”-beam the
atomic wave function collapses onto the respective component of the linear
combination. From our point of view this is unjustifiably associating the
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process of detection with some mystical influence of “observing”, based on
pure claim: the atomic beam would behave differently if it would not be
detected. In the standard literature this experiment is even elevated to rep-
resent the prime example of measurement in quantum mechanics.
By contrast, we believe that the outcome of the experiment is completely
determined by the time-dependent Pauli equation and is hence a result of a
“quantum mechanics without observer”.
Our approach implies a linear combination of spin states as well, that is, we
describe the electronic 1s-state of the atom that we shall consider below by

ψ
atom

(r, t) = ψ1s(r − v t)

[
a↑

(
1

0

)
+ a↓

(
0

1

)]
where v denotes the velocity of the atom, and the coefficients a↑, a↓ have the
property |a↑|2 + |a↓|2 = 1. The unit spinors are referenced to the direction of
the field gradient ∂Bz

∂z ez. Hence, the expectation value of the force acting on
the atom in the SG-magnet is given by Eq.(249) if we neglect the induction
derived term and assume electrostatic forces being absent

〈Fatom〉 = µB

∫
ψ†
atom

(r, t)
∂Bz
∂z

ψ
atom

(r, t) d3r ez .

For simplicity we equate the field gradient to a constant so that 〈Fatom〉
reduces to

〈Fatom〉 = µB
∂Bz
∂z

[|a↑|2 − |a↓|2] ez .

It can obviously attain any value between −µB ∂Bz
∂z ez and +µB

∂Bz
∂z ez de-

pending on the value of the coefficients when the atom enters the magnet.
Therefore a splitting into two well separated beams cannot possibly occur
as long as there is no particular mechanism which inhibits a random distri-
bution. In the following we shall outline such a possible mechanism.
We assume that the reader is sufficiently familiar with the essential features
of the experimental setup. To simplify the line of argument we content our-
selves with considering the experiment by Wrede [86] who used a primary
beam of hydrogen atoms in a setup that was practically identical with that
of Stern and Gerlach. Hydrogen offers the advantage of reducing the spin-
orientation problem to that of a single electron. The standpoint we take
here is akin to that of Mott and Massey [87] who remark: “From these argu-
ments we must conclude that it is meaningless to assign to the free electron
a magnetic moment. It is a property of the electron that when it is bound in
an S state in an atom, the atom has a magnetic moment.”7

The hydrogen atoms effuse from some source where they are (almost un-
avoidably) exposed to the terrestrial magnetic field or at least to the weak

7However, we want to modify this debatable statement by saying that also free electrons
display a magnetic moment when they are exposed to a magnetic field where their motion
perpendicular to the field becomes confined to a circular area of a certain diameter.
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fringe field of the SG-magnet. That field causes a weak Zeeman-splitting of
the spin up and spin down level of the electronic 1s-state. Because of the
weakness of the splitting the two Zeeman-levels are at the temperature of
the source equally occupied, that is, 50% of the effusing atoms have their
electronic spins oriented parallel to the weak external field, the spins of the
remaining 50% atoms are anti-parallel. As the atoms approach the SG-
magnet they feel in a co-moving coordinate system a magnetic field whose
field strength increases continuously and will in general change its direction.
We assume for simplicity that the spin orientation is transverse and that
the atom moves along the x-axis of a laboratory-fixed coordinate system
so that changes of the spin orientation will only take place in the y/z-plane
parallel to the respective plane of the co-moving coordinate system. As soon
as the field direction in the co-moving coordinate system departs by a small
angle δθ from the original direction of ~B = Bz ez at the onset of the atom’s
trajectory, a small y-component ~By = Bz sin δθ ey of the field appears as
a consequence of which the magnetic moment of the atom experiences a
torque −µB Bz sin δθ eϕ, where eϕ denotes the unit vector in the direction
of increasing azimuth angle ϕ in the x/y-plane. This torque causes a change
L̇ of the spin angular momentum

L̇ = −~
2

sin δθ ωL eϕ ,

where we have used 2µB Bz = ~ωL (Eq.(281)). Hence, the spin momentum
starts precessing about the new direction of the magnetic field. We ignore
the slight tilt of the co-moving new x/y-plane perpendicular the new field
direction.
We envisage a short time span for which we assume the changes of θ to be
small so that

sin δθ ≈ δθ = θ̇ t , (293)

where t = 0 coincides with the beginning of the rotation of the field. The
following considerations exploit the typical experimental condition that the
precession frequency ωL is some orders of magnitude larger than the speed of
the field rotation. (In the terrestrial magnetic field of magnitude ≈ 5·10−5 T
the precession frequency of the electronic spin is about 106 s−1. At an atomic
speed of 105cm s−1, a distance of about 10 cm and a maximum rotation angle
of π/2 one has θ̇ ≈104 s−1.) As will become apparent from the following
calculations we may limit ourselves to a short time span comprising only
few precession periods during which the magnetic field rotates only by a
small angle (θ � 2π) so that one is justified in assuming θ̇ to be constant:

θ̇ = const.

The unit vector eϕ may be decomposed

eϕ = −ex sinϕ+ ey cosϕ . (294)
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At t = 0 we have ϕ(t = 0) = −π
2 , that is eϕ = ex. Thus, it is advisable to

replace ϕ with ϕ+π
2 , but we omit denoting the new azimuth angle differently.

Hence we have ϕ = 0 for t = 0, and we obtain instead of Eq.(294)

eϕ = ex cosϕ+ ey sinϕ .

The spin precession that now occurs is anti-clockwise

ϕ̇ = −ωL that is ϕ = −ωL t .

Thus

L̇ =
~
2
θ̇ ωL [ex t cosωL t− ey t sinωL t] .

This results in a change of the angular momentum after one precession
period T = 2π/ωL

∆L =
~
2
θ̇

[
ωL ex

∫ T

0
t cosωL t dt− ey ωL

∫ T

0
t sinωL t dt

]
.

Hence, using ∫ 2π

0
ξ sin ξ dξ = −2π and

∫ 2π

0
ξ cos ξ dξ = 0 ,

we may ∆L(T ) cast as

∆L(T ) =
~
2
θ̇ T︸︷︷︸
≡∆θ

ey

that is in the spirit of our approximation (293)

∆L(T ) =
~
2

sin ∆θ ey .

The y-component of the magnetic field which equaled zero at the beginning
of the rotation is now given by ~By = Bz sin ∆θ ey. That means: after one
precession period T the magnetic field and the atomic spin angular momen-
tum have turned by the same angle ∆θ. The spin orientation follows the
magnetic field - within the present approximation - without slip, that is adi-
abatically. (This is similar to the physics of a spinning artillery shell whose
spin axis follows the course of the shell’s bending trajectory leaving only
a small precession angle.) Thus, the atoms enter the SG-magnet (almost)
fully oriented with respect to the SG-magnetic field. This applies to the
atoms with anti-parallel spin orientation accordingly. Hence, the two beams
leaving the SG-magnet reflect merely the two kinds of atoms associated with
the two Zeeman levels before they leave the reservoir.
It is worth mentioning that Leu [88] carried out Stern-Gerlach-type experi-
ments using beams of Na-, K-, Zn-, Cd- and Tl-atoms instead of Ag-atoms.
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The Zn- and Cd-atoms possess two s-valence electrons which results in a zero
net spin momentum of the atoms and consequently one does not observe a
beam splitting in the Stern-Gerlach magnet. On the other hand, Tl-atoms
possess a 6p-valence electron that is subjected to spin-orbit coupling. This
gives rise to a Landé factor g = 2

3 as a result of which the effective magnetic
moment is for Mj = 1

2 given by

µeff = µB gMj =
1

3
µB .

This is, in fact, confirmed by the experiments.
If one were dealing with atoms that possess a total angular momenta J =
(l ± 1

2) ~ associated with 2l + 2 different magnetic quantum numbers Mj ,
one would have 2l+ 2 different states in the initial weak field and therefore
as many different sorts of atoms entering the Stern-Gerlach magnet where
they are deflected according to their magmetic moment. That means one
would have 2l + 2 different beams instead of 2.
Our explanation of the SG-experiment is much in the spirit of Stern’s con-
jecture that the spin of an atom follows adiabatically the directional change
of the magnetic field within a co-moving coordinate system from the start-
ing point where the atomic spin has originally been aligned. In cooperation
with Phipps [89] he devised an experiment where one of the beams at the
exit of a first SG-magnet was focused into a linear array of three succes-
sive magnets whose weaker, essentially homogeneous fields pointed in three
different directions perpendicular to the atomic trajectory. The difference
between these directions was 120◦. If the spin of the selected beam was
pointing up after leaving the first SG-magnet and assuming that the spin
would adiabatically adjust to the local magnetic field on its passage through
the three magnets, it was thus to be expected that it would be finally back
to its previous “up”-orientation. To test this the beam was sent into a sec-
ond SG-magnet identically oriented as the first. There was only one beam
coming out of this magnet indicating that the spin was pointing again in
the same direction as on entering the three “turn magnets”. In other words:
even after a turn of 360◦ no slip between spin orientation and the direction of
the magnetic field had occurred. We mention here only in passing that our
result on the Phipps-Stern experiment agrees with that of Rosen and Zener
[90] published already in 1932. Different from our more summary analysis
these authors attempt to stay close to explicitly solving the time-dependent
Pauli equation.
Surprisingly, the interpretation of the SG-experiment as demonstrating a
coherent splitting of the de Broglie-wave of the incoming atom into two
beams has become the most popular view on which a host of considera-
tions on “measurement” is based. Proponents of this view argue that the
forked de Broglie-wave collapses onto one of the two detector sites when
either the “up” or “down”-detector of the SG-setup has monitored the atom
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(“performed the measurement on it”). Papers on the so-called “Humpty-
Dumpty-problem” (s. e. g. Englert et al. [91]) deal explicitly with a possible
reconstruction of the original single wave by appropriately merging the two
coherent beams within some space reached later. We believe that such
thought experiments are without substance. As we have clearly demon-
strated, the SG-magnet does not cause a splitting of the incoming matter
wave. The SG-situation is distinctly different from that in neutron spin-flip
experiments by Rauch and coworkers [92] where a transverse spin polarized
beam of neutrons hits a plate of a Si single crystal such that each matter
wave packet splits up into two widely separated beams of packets due to
dynamical diffraction within the crystal. This diffraction process is spin-
independent. The two beams are coherently merged then by dynamical
diffraction at a second Si-plate.

Many authors give the impression as if it would be beyond all question
that Stern-Gerlach experiments with charged free particles (like electrons)
are just as feasible as with spin-carrying neutral atoms. Bohr had very
early pointed out (s. Wheeler and Zurek [93]) that such experiments could
not possibly succeed because “the Lorentz force would inevitably blur any
Stern-Gerlach pattern”. Nevertheless, the literature on EPRB- (Einstein-
Podolsky-Rosen-Bohm) correlation with pairs of fermions in a singlet state
(s. e. g. Einstein et al. [54], Bohm [55]) abounds with allusions to “mea-
suring separately the x/y/z-spin components” of the particles by means of
Stern-Gerlach magnets. (S. e. g. Wigner [98].) Even when one were dealing
with neutral fermions what kind of mechanism should yield such information
on those spin components? How would the time evolution of the respective
solution to the time-dependent Pauli equation look like in this case?

34 The time-dependent Dirac equation

In extending the theory to relativistic systems we retain the following two
fundamental assumptions which characterize the non-relativistic quantum
mechanics we have been dealing with so far:

1. The universal existence of stochastic forces that necessitate an ensem-
ble description of the one-particle system under study. The fundamen-
tal constituents of this approach are: ρ(r, t) for the occurrence of the
particle at r and time t and p(r, t) for the associated ensemble average
of the particle momentum

2. Lumping together the two real-valued functions ρ(r, t) und p(r, t) in
the form of a complex-valued function ψ(r, t)

ψ(r, t) =
√
ρ(r, t) ei ϕ(r,t) (295)
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where

p(r, t) = ~∇ϕ(r, t) . (296)

From ψ(r, t) = |ψ(r, t)| ei ϕ(r,t) one then obtains the momentum cur-
rent density

jp(r, t) = ρ(r, t)p(r, t) =
1

2
[ψ∗(r, t) p̂ψ(r, t)− ψ(r, t) p̂ψ∗(r, t)](297)

where

p̂
def
= −i ~∇.

Eq.(296) implies that p(r, t) is irrotational, that is, the stochastic forces do
not cause friction.
From Eq.(325) follows for the expectation value of the particle momentum

< p(t) >=

∫
jp(r, t) d

3r =

∫
ψ∗(r, t) p̂ ψ(r, t) d3r . (298)

If one replaces ψ(r, t) with its Fourier integral

ψ(r, t) = (2π)−
3
2

∫
C(k, t) eik·r d3k ,

one obtains on insertion into Eq.(326)

< p(t) >=

∫
ψ∗(r, t) p̂ ψ(r, t) d3r =

∫
C∗(k, t) ~k C(k, t) d3k , (299)

and analogously∫
ψ∗(r, t)

p̂2

2m0
ψ(r, t) d3r =

∫
C∗(k, t)

~2 k2

2m0
C(k, t) d3k . (300)

Newton’s modified second law (41) which we have derived for the non-
relativistic case, contains an additional “quantum force” FQP = −∇VQP
whose expectation value equals zero. As a result one arrives at Ehrenfest’s
two theorems.

< v >=
d

dt
< r >=< ∇pE(p) > (301)

and

d

dt
< p >=< F >=< −∇V > . (302)

The salient point here is that these two equations apply to the non-relativistic
case, and we require them to persist unaffected in the relativistic case if the
particle is assumed - as before - to perform a dissipationless motion under
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stochastic extra forces.

Conversely, one can derive the time-dependent Schrödinger equation just by
starting from Eqs.(329) and(330) and going along the same line of argument
used in our derivation of the time-dependent Pauli equation in Section 29.
In the following we shall refer to the latter. However, instead of

E(p) =
p2

2m0
+m0 c

2 + V (r)

we now have

E(p) =
√

p2 c2 +m2
0 c

4︸ ︷︷ ︸
=Ekin+m0 c2

+V (r) (303)

with c denoting the velocity of light in vacuo.
Hence < ∇pE(p) >=< v > in Eq.(329) has to be dealt with differently in
the relativistic case. Following Dirac [94] we construct a Fourier-transform
H

0
(k) that corresponds to the sought-for energy-operator Ĥ

0
just as ~2 k2/2m0

in Eq.(327) relates to the expression p̂2

2m0
. If one rewrites Ekin(k) + m0 c

2

in Eq.(303) in the form

Ekin(k) +m0 c
2 = ~ c

√∑3
µ=0 k

2
µ where pµ = ~ kµ

and k0 = m0 c
~

and replaces the right-hand side with a 4×4-matrix H
0
(k) defined by

H
0
(k) = ~ c

3∑
µ=0

α
µ
kµ ,

where α
µ

denotes constant dimensionless 4×4 matrices, H
0
(k) must obvi-

ously possess the property

H2
0
(k) = ~2 c2

3∑
µ=0

3∑
µ′=0

kµ kµ′ δµµ′ 1

=
~2 c2

2

3∑
µ=0

3∑
µ′=0

kµ kµ′
[
α
µ
α
µ′

+ α
µ′
α
µ

]
.

That means that the matrices α
µ

have to comply with the requirement

1

2

[
α
µ
α
µ′

+ α
µ′
α
µ

]
= δµµ′ 1 .

As can be verified by just performing the multiplications, the matrices α
µ

meet this requirement if they have the form

α
0

=

(
1 0

0 −1

)
and α

µ
=

(
0 σ

µ

σ
µ

0

)
for µ = 1, 2, 3 .
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Here σ
µ

denotes 2×2-matrices which are identical with the Pauli matrices

(263). Similar to the latter one can lump the 4×4-matrices α
µ

together by

forming a vector α so that H
0
(k) may be cast as

H
0
(k) = c α · ~k + α

0
m0 c

2 . (304)

The feasibility of the above line of thought requires a consistent extension
of the hitherto discussed spinor function to a bispinor function

ψ(r, t) =


ψ1
↑(r, t)

ψ1
↓(r, t)

ψ2
↑(r, t)

ψ2
↓(r, t)

 and ψ†(r, t) =
(
ψ1
↑(r, t), ψ

1
↓(r, t), ψ

2
↑(r, t), ψ

2
↓(r, t)

)

where

ψ
(j)
↑(↓)(r, t) = |ψ(j)

↑(↓)(r, t)| e
iϕ

(j)
↑(↓)(r,t) , j = 1, 2 .

The associated phases ϕ
(j)
↑(↓)(r, t) represent as in Eq.(296) potentials of en-

semble averages of momenta which means

p(r, t) =
∑
j=1,2

(↑,↓ )

|ψ(j)
↑(↓)(r, t)|

2

ρ(r, t)
p

(j)
↑(↓)(r, t)

where p
(j)
↑(↓)(r, t) = ~∇ϕ(j)

↑(↓)(r, t) .

The quantities p
(j)
↑(↓) are now different for “spin up” and “spin down” if the

particle in question moves in a spatially varying potential. Only in the
strictly non-relativistic case the spin generating component of the quivering
motion and the orbital motion remain unaffected on superposition. In this
case we have ψ↑(↓)(r, t) = |ψ↑(↓)(r, t)| ei ϕ(r,t).
If one performs a Fourier transform one obtains completely analogous to
Eq.(327) also in the relativistic case

< p(t) >=

∫
C†(k, t) ~k C(k, t) d3k . (305)

Correspondingly one gets∫
C†(k, t)H

0
(k) C(k, t) d3k =

∫
ψ†(r, t) [c α · p̂ + α

0
m0 c

2]︸ ︷︷ ︸
def
= Ĥ

0

ψ(r, t) d3r .

We now form < v > according to

< v >=< ∇pE(p) >=

∫
C†(k, t) [~−1∇kH 0

(k)] C(k, t) d3k . (306)
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If we substitute C(k) for its Fourier transform we obtain from Eq.(305)

< p(t) >=

∫
ψ†(r, t) p̂ ψ(r, t) d3r .

and from Eq.(306)

< v(t) >=

∫
ψ†(r, t) c α ψ(r, t) d3r .

Exploiting the identity

Ĥ
0
r − r Ĥ

0
= −i c ~α ,

and going through the same set of arguments as with deriving the Pauli
equation, we arrive at the time-dependent Dirac equation

[Ĥ
0

+ V (r)]ψ(r, t) = i ~
∂

∂t
ψ(r, t) . (307)

The derivation can be extended by including electromagnetic fields, again
completely analogous to the derivation of the Pauli equation. In so doing
one recovers Eq.(307) with

Ĥ
0

Dirac

def
= c α · (p̂− eA(r, t)) + α

0
m0 c

2 standing in place of Ĥ
0
.(308)

The ensuing two sections follow largely the conventional line of thought and
are merely for the sake of completeness.

35 Covariant form of the Dirac equation

One can rewrite the Dirac equation in a particularly compact form by in-
troducing Dirac’s fundamental matrices

γ
0
, ~γ = (γ

1
, γ

2
, γ

3
)

which are defined
γ

0
= α

0
and ~γ = α

0
~α .

These 4 matrices may be lumped together to yield formally a 4-dimensional
vector

~̂γ = (γ
0
, ~γ) .

One rewrites Eqs.(307), (308) in the form[
−i~ ∂

∂t
+ c (~α · (p̂− eA(r, t)) + V (r) + α

0
m0c

2

]
ψ(r, t) (309)
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If this equation is multiplied from the left by −1
c α

0 and if one observes that

α2
0

= γ2

0
= 1 ,

one gets[
i ~α

0
∂0 − α0

3∑
n=1

α
n

(
−i~ ∂

∂xn
− eAn(r, t)

)
−m0 c− α0

V (r)

c

]
ψ(r, t) = 0 .

(310)

Here we have introduced the abbrevations ∂n for n = 0, 1, 2, 3, by setting

∂

∂t
= c

∂

∂c t

def
= c

∂

∂x0
= c ∂0 and

∂

∂xn

def
= ∂n for n = 1, 2, 3 .

In the following we make use of a particular short-hand notation introduced
by Feynman for a four-vector b = (b0, b1, b2, b3):

b̂
def
=

3∑
n=0

γ
n
bn = γ

0
b0 −

3∑
n=1

γ
n
bn .

Recalling the definition of the fundamental matrices we have for the first
terms on the left-hand side of Eq.(310)

i~α
0
∂0 − α 0

3∑
n=1

α
n

(
−i~ ∂

∂xn

)
︸ ︷︷ ︸

=~α·p̂

= γ
0
i~∂0 − ~γ · p̂ .

If we equate b with i~(∂0, ∂1, ∂2, ∂3), this may be cast as

γ
0
i~∂0 − ~γ · p̂ =

3∑
n=0

γ
n

(
i ~

∂

∂xn

)
def
= p̂ .

By analogy equating b with the four-vector (φc , A1, A2, A3) one obtains

Â
def
=

3∑
n=0

γ
n
An = γ

0

φ

c
− ~γ ·A

where the particle’s potential energy V (r) has been replaced with eφ. The
time-dependent Dirac equation (310) thus takes the compact form[

p̂− e Â−m0 c
]
ψ(r, t) = 0 .

which is Lorentz-covariant.

141



36 Recovering Bohr’s magneton

Although the salient point of deriving the Dirac equation seems to differ
from that of its non-relativistic counterpart, the Pauli equation, merely by
the energy/momentum relation, the outcome yields unexpected quantitative
information on the particle’s magnetic moment.
One starts from the time-independent version of Eq.(309) which may be cast(

E − α
0
m0c

2 − V (r)
)
ψ(r)− c (~α · (p̂− eA(r))ψ(r) = 0 . (311)

This bispinor equation may be decomposed into two spinor eqations equa-
tions by lumping together the first two and, alternatively, the following two
components of the bispinor equation

(
E′ − V (r)

)( ψ1
↑(r)

ψ1
↓(r)

)
= c ~σ · P̂

(
ψ2
↑(r)

ψ2
↓(r)

)
(312)

and (
E′ + 2m0c

2 − V (r)
)( ψ2

↑(r)

ψ2
↓(r)

)
= c ~σ · P̂

(
ψ1
↑(r)

ψ1
↓(r)

)
, (313)

where ~σ represents the three Pauli matrices. Further, E′ stands for E−m0c
2,

and P̂ for P̂ = p̂− eA(r) which had already been introduced earlier.
The following discussion confines itself to an approxmation that applies to
a particle with kinetic energy well below twice its rest energy m0c

2, that is

2m0c
2 ≈ 2m0c

2+E′ − V (r)︸ ︷︷ ︸
=Ekin

= 2m0c
2(1+β

4

2
) ; β

4

2 � 1 where β
4

2
=

Ekin
2m0c2

.

In the non-relativistic limit when Ekin ≈ m0
2 v

2 the quantity β becomes v
c .

The expression β
4

2
will be neglected in the following.

Hence, within this approximation one obtains from Eq.(313)(
ψ2
↑(r)

ψ2
↓(r)

)
=

1

2m0c
~σ · P̂

(
ψ1
↑(r)

ψ1
↓(r)

)
.

If this is inserted into Eq.(312) one gets

(
E′ − V (r)

)( ψ1
↑(r)

ψ1
↓(r)

)
=

1

2m0

(
~σ · P̂

)(
~σ · P̂

)( ψ1
↑(r)

ψ1
↓(r)

)
. (314)

The prefactor
(
~σ · P̂

)(
~σ · P̂

)
on the right-hand side contains the sought-for

information on the particle’s magnetic moment, but its discussion requires
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particular care. In further analyzing this expression one has to resort to a
sophisticated identity:

(~σ · ~a) (~σ ·~b) = 1 (~a ·~b) + i ~σ(~a×~b) (315)

which applies to any two vectors ~a and ~b. It can be verified by just perform-
ing the multiplications. A less laborious verification consists in choosing an
appropriate coordinate system for the two vectors such that the x/z-plane of
this system coincides with the plane spanned by these two vectors. Further,
one chooses ~a parallel to the z-axis. The vector~b cannot have a y-component
then. Hence

~a = az ez ; ~b = bx ex + bz ez .

One obtains then by performing the multiplications

(~σ · ~a) (~σ ·~b) = σ
z
az(σz bz + σ

x
bx) = 1 azbz + iσ

y
azbx︸︷︷︸

=(~a×~b)y

= 1(~a ·~b) + i ~σ(~a×~b) .

σ
z
σ
x

= iσ
y

which can be verified by performing the multiplication.
If one equates the vectors ~a and ~b with P̂ , Eq.(315) attains the form

(~σ · P̂ )(~σ · P̂ ) = 1P̂ 2 + i ~σ(P̂ × P̂ ) . (316)

In the following one has to observe that all operators in the equations are
meant to apply on a spinor ψ(r) on the right, but it is left out for simplicity.
However, its presence has to be paid attention to when one applies the chain
rule.
The second term on the right-hand side of the equation above represents the
most interesting constituent:

(P̂ × P̂ ) = (p̂− eA)× (p̂− eA) = p̂× p̂︸ ︷︷ ︸
=0

−eA× p̂− ep̂×A + e2 A×A︸ ︷︷ ︸
=0

On invoking the chain rule

−ep̂×A = eA× p̂− eA× p̂ ,

and observing that
−e(p̂×A) = ie~( ∇×A)︸ ︷︷ ︸

=curlA=B

Eq.(316) can be recast

1
2m0

(
~σ · P̂

)
(~σ · P̂ ) = 1

P̂ 2

2m0
− e~

2m0︸︷︷︸
def
= µB

~σ ·B .
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Inserting this result into Eq.(314) one recovers the time-independent version
of the Pauli equation (266)[

P̂ 2

2m0
+ V (r)− µB~σ ·B

]
ψ(r) = E′ ψ(r) where ψ(r) =

(
ψ1
↑(r)

ψ1
↓(r)

)
.

37 Spatial particle correlation beyond the limit of
entanglement. Spooky action at a distance

As discussed in Section 24 the electrons of two hydrogen atoms will respond
independently to local perturbations once the inter-atomic distance has be-
come macroscopically large. The electronic wave function factorizes then
and becomes the product of two one-particle wave functions. One would
therefore expect two free fermions that have moved sufficiently far away in
opposite directions with their spins being transverse and anti-parallel, to
display the same features. If they were still described by an anti-symmetric
wave function the particle properties would remain non-locally intertwined
in that each of the particles would appear at distant detectors with only
half of the total probability. Therefore a realistic description can only be
ensured by a product of two one-particle wave functions, wavepackets mov-
ing in opposite directions, one for spin up and the other one for spin down
or vice versa, the choice randomly distributed among the pairs generated
in succession. Consequently, there will be a complete loss of the “common-
cause”-spin correlation of the particles when they hit differently oriented
spin detectors. The latter scatter the incoming fermion depending on the
angle which the fermion’s spin direction encloses with the scattering plane.
To be as concrete as possible we refer in this section to the fundamental
experiment by Lamehi-Rachti and Mittig [95] who were able to generate
pairs of protons of about 8 MeV with spins paired anti-parallel and moving
apart such that the proton’s velocities in the center of mass system have
the same absolute value but opposite directions. The spin orientation was
analyzed by letting each of the protons impinge on a device akin to a Mott
detector familiar from polarized electron detection. The incoming proton is
scattered at some carbon atom of a carbon foil. Each Mott-type detector
is associated with two particle detectors whose axes point to the scattering
center and enclose an angle ±α with the flight direction of the incoming
proton. Together with that direction these axes form the scattering plane.
The differential cross section of the carbon scatterer for a proton with spin
up perpendicular to the scattering plane is given by

σ(α, β) = (|f(α)|2 + |g(α)|2) [1− S(α) sinβ] (317)

where S(α) represents the Sherman function for carbon/proton scattering, β
stands for the azimuthal angle in the plane perpendicular to the proton flight
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direction and f(α) and g(α) denote the scattering and spin-flip amplitude.
The latter is associated with spin-orbit coupling 8 which determines also
the magnitude of S(α). In view of the objective of this article, we wish
to emphasize at this point that Eq.(317) is a consequence of solving the
relativistic Pauli equation, and the experimentally verifiable results that will
be discussed below, are another objective consequence which is definitely not
affected by the process of particle detection (the “measurement”).
In accordance with the notation familiar from EPRB-experiments we denote
the Mott-type analyzer at the end of the left proton track by A and that at
the end of the right track by B. Furthermore, the detector on the right side
of the scattering plane will be characterized by a “+”-sign, that on the left
side by a “-”-sign. The two particle detectors of each Mott-type analyzer are
located at β = ∓π/2, and α was set ≈ 50◦. Hence the difference between the
respective differential cross sections (the “left-right asymmetry”) is given by
∆σ = σ+−σ− = (|f |2 + |g|2) 2S. If the spin of the incoming proton encloses
an angle ∆ with the normal of the scattering plane, the sin-factor in Eq.(317)
becomes sin(∆∓π/2) = ∓ cos ∆ with β = ∓π/2 denoting the positions of the
two particle detectors as before. Thus one has ∆σ = (|f |2 + |g|2) 2S cos ∆.
In order to capture the general case, we introduce an orthogonal Cartesian
coordinate system whose x/y-plane is spanned by the two proton tracks
before they enter the Mott-type analyzers. The axis of alignment of the
proton spins encloses in general an angle ϕ with the z-axis thus introduced.
The pertinent orientation angles of the scattering planes with respect to
that z-axis are denoted by θ and φ for the normals of the A and B-plane,
respectively. That means: ∆A = θ − ϕ and ∆B = φ − ϕ. To make contact
to the familiar notation, we define a quantity P±A(B) through

σ±A(B)

2 [|f |2 + |g|2]
= P±A(B) = S [ 1

2S ±
1
2 cos ∆A(B)] (318)

which has the property
P+
A(B) + P−A(B) = 1 .

Obviously, P±A(B) is proportional to the count rate of the respective detector,

and 1
S (P+

A(B)−P
−
A(B)) = cos ∆A(B) describes the degree of spin orientation of

the incoming proton with respect to the normal of the associated scattering
plane. If the spin of the proton impinging on the analyzer at A is parallel
to that normal, that is perpendicular to the associated scattering plane,
we have ∆A = 0 and hence 1

S (P+
A − P−A ) = 1. The joint probability of

finding the proton pair with one of the protons at A and orientation angle
∆A = θ−ϕ and the other proton at B with orientation angle ∆B = φ−ϕ−π

8Although spin-orbit coupling represents a constituent of the relativistic Pauli approx-
imation to the Dirac equation, we consider it here as given.
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is given by

Pjoint = (P+
A − P

−
A ) (P+

B − P
−
B ) = P++ + P−− − P+− − P−+ (319)

where P±± = P±A P±B and P±∓ = P±A P∓B . Because of the definition (318)
we have

P++ + P−− + P+− + P−+ = 1 .

To make sure that the count rates refer definitely to proton pairs, the counts
associated with P±± and P±∓ are filtered by coincidence electronics.
Since for principal reasons one has in general S < 0 (in the case under study
S ≈ 0.7), P+−P− = S cos ∆ can never become unity even when the particle
enters the analyzer with its spin perpendicular to the scattering plane, that
is when ∆ = 0. It is therefore suggestive to introduce an S-independent
joint count rate P̂joint = 1

S2 Pjoint which, on combining Eqs.(318) and (319),
takes the form

P̂joint(θ, φ, ϕ) = − cos(θ − ϕ) cos(φ− ϕ) . (320)

In practice the experiments have been carried out with the scattering plane
of the B-analyzer lying in the x/y-plane, which means φ = 0. Since all
proton pairs are prepared 100% polarized, that is with their spins aligned
parallel and antiparallel with respect to the z-axis, we have also ϕ = 0 so
that Eq.(320) simplifies to

P̂joint = − cos θ , (321)

and this is in agreement with the experimental results.
We emphasize again that this equation has been obtained by assuming a
factorization of the two-proton wave function which means that the mo-
tion of the “A”-proton is controlled only by the potentials specifying the
“A”-analyzer. There is no influence of the potentials that belong to ”‘B”.
Analogous statements apply to the “B”-proton. Hence, for each pair of pro-
tons there is no correlation between their respective “A” and “B”- scattering
processes. However, it has been the objective of the experiments, as the au-
thors expressly state, to demonstrate that there is such a correlation. Yet
in order to prove that point, the experiments should have allowed a prepa-
ration of proton pairs with an axis of spin alignment that encloses an angle
ϕ with the z-axis as originally assumed above. According to the established
terminology that angle has to be regarded as a “hidden variable”. The val-
ues of ϕ associated with the various pairs should have random character.
One can form then a new expression from P̂joint(θ, φ, ϕ) by averaging over
ϕ:

P̂av(θ, φ) =

∫ π
2

−π
2

ρ(ϕ) P̂joint(θ, φ, ϕ) dϕ . (322)
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where ρ(ϕ) denotes a weight function normalized to unity. Clearly, in the
experiment the averaging occurs automatically and unavoidably.
If one assumes a uniform distribution of ϕ over the interval π, that is ρ(ϕ) =
1
π , and inserts here P̂joint(θ, φ, ϕ) from Eq.(320), one obtains

P̂av(θ, φ) = −1
2 cos(θ − φ) , (323)

where

cos(θ − ϕ) cos(φ− ϕ) = 1
2 cos(θ − φ) + 1

2 cos(θ + φ− 2ϕ)

has been used. Hence, for φ = 0 as specified in the experiment, Eq.(323)
yields

P̂av(θ, φ) = −1
2 cos θ

which differs from (321) by a factor of 1
2 .

At this point it is instructive to contemplate the change that would occur
if there would be a non-local correlation between the two analyzers in the
following sense:
If the “B”-proton has been specified by the “B”-analyzer as polarized per-
pendicular to the associated scattering plane, that is if ϕ = φ, and if this
property is by some “spooky action at a distance” transferred to the “A”-
proton, ϕ attains the same value for the “A”-proton. The measurement on
the “A”-proton would then become “contextual”: it would depend on the
result obtained for the “B”-proton. Consequently, the detection rate (320)
would take the form

P̂joint = − cos(θ − φ) = − cos(~a,~b) = −~a ·~b . (324)

where we have introduced the quantities ~a and ~b as normal vectors for the
“A“- and “B”-scattering plane, respectively, which enclose angles θ and φ
with the z-axis. For the situation specified by the experiment (viz. φ = 0),
this result becomes identical with (321). Thus, a distinction between the two
mechanisms is not possible within the given limitations. One might argue
that a derivation based on a “spooky-action-at-a-distance”-hypothesis has
to be rejected anyway. But the same hypothesis works perfectly for the
analogous experiment with pairs of linearly polarized photons where that
particular limitation does not exist. (S. Aspect et al. [96].)
By referring to the expectation value

〈Ψ|~σA · ~a⊗ ~σB ·~b|Ψ〉 = − cos(~a,~b)

where Ψ denotes the anti-symmetric singlet-state two-proton wave function
and ~σA/B the spin operators, Eq.(324) is commonly discussed as “the quan-
tum mechanical prediction” for the experiment in question. Considering all
the details of our analysis it is hard to see how this expectation value can
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have anything to do with the experiment except that it happens to yield the
same − cos(~a,~b).
We shortly return to the idea pursued by Lamehi-Rachti and Mittig in their
paper. In order to exclude the possibility that their result might acciden-
tally coincide with the prediction of a hidden parameter model, they resort
to Bell’s theorem [97]. It refers to quantities of the type P̂av(~a,~b) in Eq.(322)
which - according to Eq.(323) - becomes equal to −1

2 cos(~a,~b) if ϕ is uni-
formly distributed. In general the weight function ρ(ϕ) will be unknown, and
hence a complete lack of correlation between the “A”- and “B”-scattering
processes, as implied by our treatment, will not show up simply as a nu-
merical correction factor of the “correlated result”. Bell [97] could show
that in performing an EPRB-type experiment one is definitely dealing with
a non-classical (i. e. non-local) particle correlation if - irrespective of the
form of the weight function and irrespective of the kind of hidden variable -
the following inequality is violated:

|P̂av(~a,~b)− P̂av(~a,~b′)| ≤ 2 |P̂av(~a′,~b′) + P̂av(~a
′,~b)| ,

where ~a,~a′,~b,~b′ denote different analyzer settings. In fact, the authors suc-
ceeded in verifying this violation, but it appears to us, because of the limi-
tations discussed above, that this result is absolutely not convincing.

38 Concluding remarks

In summarizing the essence of quantum mechanics Wigner states in a fun-
damental article [98] under the headline “What is the state vector?”: “We
recognize ....that the state vector is only a shorthand expression of that part
of information concerning the past of the system which is relevant for pre-
dicting (as far as possible) the future behavior thereof.”
In our view the most impressive success of quantum mechanics in under-
standing the stability, composition and properties of the building blocks of
nature consists in predicting the systematic order in the periodic table, the
phenomenon of chemical valency and the groundstate properties of molecules
and solids. The state vector of these systems, the groundstate wave func-
tion Ψ(r1, r2, . . . rN ), is a function of the particle coordinates r1, r2, . . . rN
in terms of which their Coulomb interaction enters the calculation of the
system’s total energy. But for every experimentalist there is no doubt that
these coordinates are fundamentally inaccessible to measurement, and hence
cannot possibly be regarded as “information gained from measurements”.
As is amply demonstrated by modern ab initio-calculations, the wave func-
tion allows one to determine the total energy as a function of nuclear po-
sitions, bond angles, vibrational frequencies, lattice constants, elastic mod-
uli, phonon spectra, saturation magnetizations, electric conductivities etc..
These quantities are in common-sensible terms true observables whereas the
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particle coordinates remain definitely hidden parameters. As we have re-
peatedly explained, this applies to the eigenvalues of Hermitian operators
as well, thus putting a serious question mark behind “Kochen-Specker”-
type [99] and “no-go” theorems (s. e. g.[46]) which are all based on the
exasperatingly artificial assumption that “measurements” yield eigenvalues
or “probabilities for eigenvalues”. Occasionally a certain awareness of this
puzzling inconsistency surfaces as in the revealing statement of Wigner’s
[37] that we have already alluded to in Section 17.

It is deplorable to notice the impropriety with which certain advocates of
the Copenhagen school of thought dismiss supporters of Nelson’s attempt
to develop a “quantum mechanics without observer” as “stranded enthusi-
asts”(s. Streater [16]), and ironically base their criticism on the old, actually
absurd, arguments how indeterminacy enters the theory through measure-
ment and how commuting “observables” correlate with the result of simul-
taneous measurements. All this has been iterated umpteen times although
it is well known to every experimentalist that exactly these “measurements”
are inexecutable altogether. With the same insensitivity to reality castiga-
tors of the proponents of Nelson’s approach think it fully justified to equate
the physics of photon-correlation experiments with analogous, but actually
extremely scarce experiments with massive particles. In the optical experi-
ments the correlated photons are guided by an electromagnetic wave which
- in vacuo - propagates at the velocity of light and obeys the laws of classical
electrodynamics when it hits optical objects. In analogous experiments with
massive particles the guiding wave is defined by an ensemble whose propa-
gation in real-space is to a large extent dictated by Newtonian mechanics.
This becomes particularly evident in our derivation.
We believe we have presented ample evidence that quantum mechanics is in
detail derivable from classical mechanics plus a modified physical vacuum by
allowing the latter to undergo energy fluctuations. Their action on massive
particles is calibrated by Planck’s constant, and despite their presence the
conservation of energy (and with free particles: the conservation of particle
momentum) is ensured on average. We hope that the present article can
contribute to an unbiased reassessment of present-day quantum mechanics
concerning these two questions:

• Which elements of the old doctrine are obsolete and dispensable?

• Does “measurement” really play a particular role in quantum mechan-
ics or is its alleged importance simply a misunderstanding?
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39 Appendix A: Brownian motion and the Navier-
Stokes equation

As Brownian motion is evidently fundamental to the entire concept of the
present exposition we think it necessary to give a short account on its theory.
According to Section 5 we describe the effect of the vacuum on the j-th
particle of the ensemble by a stochastic force

FB
sj (t) = FB

rj (t)−
m0

τ
vj(t) (325)

where vj is the particle’s velocity and FB
r = (Fr1, Fr2, Fr3) denotes a random

force with a Gaussian distribution

P (FBrk) =
1√
π Fr0

e−(FBrk/Fr0)2
(k = 1, 2, 3) .

The quantity Fr0 is defined

Fr0 =
1

τcoll.

√
m0 kB T (326)

where it has been assumed that the “vacuum” can be associated with an
effective temperature T . The quantity kB denotes the Boltzmann constant,
and τcoll. describes a mean time of momentum transfer. Hence Eq.(326) can
alternatively be cast as

∆p2
k

2m0
=

1

2
kB T −→

∆p2

2m0
=

3

2
kB T (327)

where ∆p2
k is the mean square of the momentum transfer in the xk-direction.

At this point we want to emphasize that the ensuing considerations which
provide a description of Brownian motion do not by necessity presuppose an
embedding medium which is gas-like and thermal. The only requirement is
that the embedding acts on the particle under study with stochastic forces
whose components underly a normal distribution.
To avoid gaps in the understanding of our considerations we restate some
essential steps in the derivation of Einstein’s law [29] on the mean square
displacement of the particle.
We assume the particle motion in the ensemble, specifically the motion of
the j-th particle, to be controlled by Langevin’s equation [100]

m0 σ̈j k +
m0

τ
σ̇j k = Fj k + FBrj k(t) (328)

where σj = (σ1, σ2, σ3) describes the shift of the particle’s position and

Fj = −∇V (rj) (329)
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is the external classical force acting on the particle, V (r) the associated
potential. The shift σj may be subdivided into a portion σrj that is caused
by the random force, and a portion σc that occurs when the random force is
absent. The subscript “c” stands for “convection”. Hence, these shifts obey
equations

σ̈rj k +
1

τ
σ̇rj k = frj k (330)

and

σ̈cj k +
1

τ
σ̇cj k = fj k (331)

where

fBrj k =
1

m0
FBrj k ; fj k =

1

m0
Fj k

Obviously, the sum of Eqs.(330) and (331) yields Eq.(328).
Muliplication of Eq.(330) by σrj l gives

d

dt
(σrj l σ̇rj k)− σ̇rj l σ̇rj k = −1

τ
σrj l σ̇rj k + σrj l f

B
rj k (332)

where we have observed that

d

dt
(σrj l σ̇rj k) = σrj l σ̈rj k + σ̇rj l σrj k .

We now form the ensemble average of Eq.(332) by analogy with Eq.(21) in
Section 4. As there is no correlation between σrj l and fBrj k including l = k,
we have

1

n(r, t)

n(r,t)∑
j

σrj l f
B
rj k = 0 .

The sum runs over the products σrj l f
B
rj k that belong to the n(r, t) different

particles in the elementary volume about r at time t.
There is also no correlation between σ̇rj l and σ̇rj k for l 6= k, and hence

1

n(r, t)

n(r,t)∑
j

σ̇rj l σ̇rj k = δl k [σ̇rk(r, t)]
2 .

Because of Eq.(327) we thus have

[σ̇rk(r, t)]
2 =

kB T

m0
. (333)
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As a result, the ensemble average of Eq.(332) takes the form

∂

∂t
(σr l σ̇r k) +

1

τ
(σr l σ̇r k) = δl k

kB T

m0
. (334)

The solution of this equation can be cast as

σr l σ̇r k = δl k
kB T τ

m0

[
1− C e−

(t−t0)
τ

]
where C is some constant. Without loss of generality σr may be defined
such that σr(r, t0) = 0. In that case C becomes equal to one.
For a time interval

∆t = t− t0 � τ (335)

the second term in the above equation may be neglected, and we arrive at

σr l σ̇r k = δl k ν (336)

where

ν =
kB T τ

m0
(337)

denotes the kinematic viscosity which the particle experiences in the embed-
ding medium.
We observe that

σr k σ̇r k =
1

2

∂

∂t
σ2
r k

and integrate Eq.(336) over the time interval [t0, t0 + ∆t]. The result may
be written

σr l σr k = δl k 2ν∆t (338)

where we have set σ2
r k(r, t0) = 0 in agreement with our assumption on

σr(r, t0) above.
Eq.(338) represents Einstein’s famous law on the time dependence of the
mean square diplacement of a particle driven by a random force with a
Gaussian distribution in a viscous medium.
The total displacement of the particle, σj , is given by σrj + σcj . When we
form the ensemble average of σj l σj k and exploit the fact that σcj l and σrj k
are definitely uncorrelated, we may write the result

σl σk =
1

n(r, t)

n(r,t)∑
j=1

(σcj l + σrj l) (σcj k + σrj k) =

σcl σck + σr l σr k . (339)
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Below we shall be concerned with time-dependencies within intervals ∆t
that are small but still large enough to comply with the requirement (335).
Without loss of generality we may also set σc k(r, t0) = 0 and then expand
σc k(r, t0 + ∆t) only to linear order in ∆t:

σc k(r, t0) = σ̇c k(r, t0) ∆t . (340)

As σc l and σc k are uncorrelated for l 6= k, Eq.(339) may be given the form

σl σk = δl k
(
2ν∆t+ σ̇2

c k ∆t2
)

(341)

where Eqs.(338) and (340) have been used. This result may be cast in a
form that will prove particularly suited for the ensuing considerations.
Let PM (r, σ, t,∆t) d3σ be the (transition)-probability of finding a particle
after a time span of ∆t in the elementary volume d3σ about a position r+σ
if it was definitely at r and time t. If one sums over all displacements σ
which the particle may undergo, one obtains certainty for a displacement.
Hence, the probability density PM (r, σ, t,∆t) is normalized:∫

PM (r, σ, t,∆t) d3σ = 1 . (342)

The superscript “M” stands for “Markov process”.(S. remarks in Section
16.)
Using these properties we obtain

1

n(r, t)

n(r,t)∑
j=1

σj l(t+ ∆t)σj k(t+ ∆t) =

σl(r, t+ ∆t)σk(r, t+ ∆t) =

∫
σl σk P

M (r, t,∆t) d3σ ,

and hence Eq.(341) can be cast as∫
σl σk P

M (r, σ, t,∆t) d3σ = δl k
(
2ν∆t+ σ̇2

c k ∆t2
)
. (343)

Here ν = η/m0 n0 denotes, as already stated, the “kinematic viscosity” of
the embedding system, η represents the common “dynamical viscosity” and
n0 is the particle density of the embedding system. The kinematic viscosity
ν happens to agree with the coefficient of diffusion D.
As follows immediately from the definition of PM (r, σ, t,∆t), the following
equation holds

ρ(r, t+ ∆t) =

∫
ρ(r − σ, t)PM (r − σ, σ, t,∆t)d3σ (344)

which is known as the Smoluchowski equation [101]. Here ρ(r, t+∆t) denotes
the probability density of finding the particle within the elementary cube
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about r at time t + ∆t. This density is normalized to unity within the
fundamental volume V .
We approximate the σ-dependence of the function

G(r − σ, σ, t,∆t) = ρ(r − σ, t)PM (r − σ, σ, t,∆t)

by a Taylor polynomial of second degree

G(r − σ, σ, t,∆t) = G(r, σ, t,∆t)−
3∑

k=1

σk
∂

∂xk
G(r, σ, t,∆t) +

+
1

2

∑
l,k

σl σk
∂2

∂xl ∂xk
G(r, σ, t,∆t)

and insert this expression under the integral in Eq.(??). We thus obtain

ρ(r, t+ ∆t) = ρ(r, t)−
3∑

k=1

∂

∂xk

[
ρ(r, t)

∫
σk P

M (r, σ, t,∆t) d3σ

]
+

+
1

2

∑
l,k

∂2

∂xl ∂xk

[
ρ(r, t)

∫
σl σk P

M (r, σ, t,∆t) d3σ

]
(345)

where we have used the normalization (342).
Because of

σk = σr k + σc k

and ∫
σr k P

M (r, σ, t,∆t) d3σ = 0 ,

the first integral on the rhs yields∫
σc k P

M (r, σ, t,∆t) d3σ = vc k(r, t̄) ∆t

where vc is the convective velocity associated with σc, and t̄ is a suitably
chosen time from the interval [t, t+ ∆t].
The third expression on the rhs of Eq.(345) contains the integral (343).
Dividing by ∆t we obtain in the limit ∆t→ 0

∂ ρ

∂ t
+∇ · (ρvc)− ν∆ρ = 0 . (346)

This represents the so-called Fokker-Planck equation [102] which is a special
case of Kolmogorov’s second differential equation [103] derived considerably
later. For vc = 0 Eq.(346) reduces to the equation of diffusion

∂ ρ

∂ t
= ν∆ ρ .
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In deriving Eq.(346) one should keep in mind that it is actually inadmissible
to let ∆t go to zero because it conflicts with the coarse graining requirement
(335). Eq.(346) and everything that follows should therefore be taken with
caution. It is exactly this point which will prove crucial in combining the
behavior of the A-and the B-system to accomplish a modification of particle
motion by reversible scattering.
Apart from Eq.(346) the temporal changes of ρ(r, t) must also obey the
continuity equation

∂ ρ

∂ t
+∇ · j = 0 (347)

which preserves the number of particles of the ensemble.
We define a diffusive (or “osmotic”) current density by

jd = j − jc (348)

connected with an osmotic velocity u

jd = ρu (349)

in analogy to

j = ρv . (350)

Eqs.(346) and (347) are simultaneously satisfied if

jd = −ν∇ρ (351)

which is Fick’s law.
From Eqs.(346) to (351) we thus obtain

v = vc + u (352)

which is just Eq.(24) used in advance in Section 5. Furthermore, we have

u(r, t) = −ν 1

ρ(r, t)
∇ρ(r, t) “osmotic velocity” . (353)

Replacing ρ(r, t) in Eq.(344) with ρ vc k, one obtains

∂ρ vc k
∂t
|scatter = −∇ · (ρ vc k vc) + ν∆(ρ vc k) ,

There is an additional (local) change in time of the momentum current
density effected by the external force

∂ρ vc k
∂t
|force = f̂k(r) ≡ 1

m0
ρ(r)Fk(r) .
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Summing up we thus have

∂ρ vc k
∂t

=
∂ρ vc k
∂t
|scatter +

∂ρ vc k
∂t
|force .

Adding the right-hand sides of the equations for ∂ρ vc k
∂t |scatter and ∂ρ vc k

∂t |force
we obtain

vc k
∂ρ

∂t
+ ρ

∂vc k
∂t

= −vc k
(
∂ρ vc x
∂x

+
∂ρ vc y
∂y

+
∂ρ vc z
∂z

)
︸ ︷︷ ︸

=−vc k∇·ρvc︸︷︷︸
=jc

−

(
ρ vc x

∂

∂x
vc k + ρ vc y

∂

∂y
vc k + ρ vc z

∂

∂z
vc k

)
︸ ︷︷ ︸

=−ρvc·∇vc k

+

ν∆(ρ vc k) +
1

m0
ρFk .

Further, one has

ν∆(ρ vc k) = ∇ · (∇ν ρ vc k) = ∇ · (vc k ν∇ρ) +∇ · (ν ρ∇vc k)

where
∇ · (vc k ν∇ρ) = vc k(ν∆ρ) + ν∇ρ︸ ︷︷ ︸

=−ρu

·∇vc k

and
∇ · (ν ρ∇ vc k) = ν ρ∆vc k +∇ vc k · ν∇ ρ︸ ︷︷ ︸

=−ρu

.

One can now reorder the various expressions by collecting those which con-
tain vc k as a factor and another group which has the factor ρ in common:

vc k

[
∂ρ

∂t
+∇ · jc − ν∆ρ

]
︸ ︷︷ ︸
=0 ↪→Fokker−Planck−Eq.

+

ρ

[
∂vc k
∂t

+ (vc · ∇)vc k + 2u · ∇vc k − ν∆vc k −
1

m0
Fk

]
︸ ︷︷ ︸

=0 ↪→Eq.(354)

= 0 .

Thus we have

∂vc
∂t

+ (vc + 2u) · ∇vc − ν∆vc =
1

m0
F (r) . (354)

Substituting here vc with v − u we arrive at our Eq.(25):

∂

∂t
(v − u) + [(v + u)∇(v − u)]− ν∆(v − u) = 1

m0
F (r) .
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In hydrodynamics |u| is usually neglected compared to |v| and 1
m0

F (r) is

given by the internal mass-referenced force − 1
ρ̂(r,t) ∇p (r, t) with ρ̂(r, t) =

m0 ρ(r, t) denoting the massive density and p (r, t) the pressure. Under these
circumstances the above equation takes the familiar Navier-Stokes-form:

ρ̂(r, t)

(
∂ v

∂t
+ v · ∇v

)
︸ ︷︷ ︸

dv(r,t)
dt

−µ∆v +∇p (r, t) = 0 where µ = ν ρ̂ .

The derivation of this equation is due to Gebelein [19].

40 Appendix B: The origin of quantized electro-
magnetic fields

As already mentioned earlier, electromagnetic waves owe their occurrence
generally to charged oscillating massive particles which obey the time-dependent
Schrödingerequation (neglecting relativistic effects). Therefore, they come
about in energy portions. We want to demonstrate this for the more general
case of an N -electron system that represents the complete electronic por-
tion of an atom, molecule or solid. Again, we suppress spin coordinates and
assume the Nn nuclei (or the nucleus (Nn = 1) being clamped at positions
Rα. The associated Hamiltonian operator of the system reads

Ĥ =

N∑
j=1

[
(p̂j − eA(rj , t))

2

2m0
−

Nn∑
α=1

Zα e
2

4π ε0|rj −Rα|

]
+ 1

2

∑
j,κ

j 6=κ

e2

4π ε0|rj − rκ|

where p̂j = −i~∇j .

Here e denotes the fundamental charge, m0 the rest mass of the electron,
and Zα the atomic number.
For A(r, t) ≡ 0 we assume the time-independent Schrödingerequation

Ĥ Ψ(x1,x2, . . .xN ) = EΨ(x1,x2, . . .xN )

being solved for the groundstate Ψ0(x1,x2, . . .xN ) and for some excited
state Ψk(x1,x2, . . .xN ) with eigenvalues E0 and Ek, respectively. To keep
the argument simple we presuppose the excited state to be a real-valued
function. A linear combination of the two solutions

Ψ(r1, r2, . . . rN , t) = c0Ψ0(r1, r2, . . . rN )e−i
E0
~ t + ckΨk(r1, r2, . . . rN )e−i

Ek
~ t

satisfies the associated time-dependent Schrödingerequation with constant
coefficients c0 and ck as long as A(r, t) remains zero. However, the linear
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combination gives rise to an oscillating current density

j(r, t) =
e ~
m0
|c∗k c0|N [

∫
. . .

∫
[Ψ0(r, r2, . . . rN )∇Ψk(r, r2, . . . rN )d3r2 . . . d

3rN −∫
. . .

∫
[Ψk(r, r2, . . . rN )∇Ψ0(r, r2, . . . rN ) d3r2 . . . d

3rN ] sin(ω t+ ϕ) .

where

ω =
Ek − E0

~
↪→ ~ω = Ek − E0 . (355)

Because of Eq.(154) this gives rise to an outgoing electromagnetic wave
which causes a “radiation feedback” since A(r, t) now appears in the Hamil-
tonian as in the previous section. The coefficients c0 and ck become time-
dependent as shown in Fig.11 . That means, within a certain transition time
τ the energy Ek − E0 has left the system and has been transferred to the
outgoing wave packet with angular frequency ω. Because of Eq.(355) the
energy of that wave packet now appears as “quantized”.

41 Suggested Reading

There is already a rich literature on attempts that have been made at de-
riving non-relativistic quantum mechanics from a concept of dissipationless
stochastic point mechanics. A precursor of the idea of correlating the prob-
abilistic character of quantum mechanics with the action of a stochastic
background field may be seen in the paper by Bohm and Vigier [104]. The
present contribution draws on later work on this subject but avoids cer-
tain implications that have often been criticized during the past 30 years.
See e.g. W. Weizel [105], E. Nelson [106], [107], Guerra and Morato, [108],
M. Baublitz [109], L. de la Peña and A. H. Cetto [110], Petroni and Morato
[111], T. C. Wallstrom [20] and numerous references therein. For a rather
complete review see R.F. Streater [16]. An earlier review covering work up
to 1986 is given in a book by Namsrai [112].) More recent contributions are
due to Fritsche and Haugk [113] and Xiao-Song Wang [114]
Another approach that also relates to vacuum fluctuations, but draws on
non-equilibrium thermodynamics has recently been put forward by Grössing
[115],[116].
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