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The Poynting vector field of a transformer with two separated coils and long, parallel arms has the 
same distribution as that of a pair of parallel electric conductors. The magnetic field between the 
arms of a transformer plays the same important role for the energy transport in a transformer as 
does the electric field for the transport of energy between the conductors of a conductor pair. In 
the latter case, the energy current ( = power) Pis given by the familiar expression P = UJ, where 
U is the electric tension between the conductors and I the electric charge current through them. 
In the former case, we find an analogous expression P = Umlm for the energy current in a 
transformer. Here Um is the magnetic tension Um = S dr H between the arms of the transformer 
(H =magnetic field vector) and Im = - S d AB is the Hertz magnetic current (B =the time 
derivative of the magnetic induction B) through them. An experiment will be described which 
shows that the energy Joss in a transformer is related to a magnetic potential drop within each of 
the two arms of the transformer. 

I. INTRODUCTION 

When energy is transmitted via an electromagnetic field, 
the energy current P can be calculated according to 

P= f dAS, 

where S is the cross product of the electric and magnetic 
field vectors 

S=EXH. (1) 

It is helpful to distinguish between several distinct cases 
of energy transport in the electromagnetic field depending 
upon the boundary conditions: 

( 1) The electric and magnetic fields are not coupled to 
sources, i.e., V • E = 0 and V • H = 0. In this case, one 
speaks of electromagnetic waves. This is the most frequent
ly discussed example for applications of the Poynting vec
tor. I-4 

(2) The electric field has sources, i.e., V • E#O and the 
magnetic field does not, i.e., V • H = 0. This case is real
ized, e.g., when the fields are guided by conductors, e.g., by 
a waveguide. The Poynting vector field is also discussed in 
some textbooks4 for this example. An extreme example of a 
waveguide is the familiar two-wire electric cable. Such a 
"waveguide" is useful ifthe frequency of the fields is zero or 
small. Since, later in this paper, we will discuss the Poynt
ing vector field of a two-wire resistance-free cable, qualita
tive sketches of the E, H, and S fields for such a case are 
given in Fig. 1. Energy flows in the immediate vicinity out
side the conductors and parallel to them. 

( 3) The magnetic field has sources, i.e., V • H # 0, and 
the electric field does not, i.e., V · E = 0. In this case, the 
fields are guided by magnetized material. 

( 4) The electric and magnetic fields are both coupled to 
sources, i.e., V • E#O and V • H#O. (And there are no 
electric or magnetic fields present without sources.) In this 
case, the energy current density results from the crossed 
electric and magnetic fields of charged bodies and, say, per
manent magnets, respectively. Because one now has closed 
S-field lines, this case is of the least interest for practical 
applications, but of some pedagogic interest regarding the 
validity of expression ( 1 ) . 
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In this paper, we are concerned exclusively with case ( 3) 
above. This case shows up when discussing electric devices 
comprising a soft iron core, e.g., generators, electric mo
tors, and transformers. In particular, we will discuss the 
transport of energy in an arrangement with an especially 
simple geometry: a long, stretched-out transformer (see 
Fig. 2). The separation between the primary and secondary 
coils is taken to be much larger than the separation between 
the "upper" and "lower" arms of the iron core. 

It will be shown that there is a far-reaching analogy 
between the long upper and lower arms of such a core and 
the two wires of a typical electric cable (see Fig. 1 ) . 

In Sec. II the configuration of the electric, magnetic, and 
Poynting vector fields of a transformer are given qualita
tively. In Sec. III, the integral quantities, magnetic tension 
Um, and magnetic current Im are introduced and the power 
of the transformer is expressed as a function of these quan
tities. Finally, in Sec. IV, two experiments will be de
scribed. The first experiment allows one to measure the 
physical quantities characteristic of the energy current in a 
transformer as a function of the load on the transformer. 
The second experiment shows that the energy loss in a 
transformer is related to the magnetic potential drop along 
each of the two arms of the transformer. 

In preparing the final draft of this manuscript, the paper 
by Newcomb5 came to our attention. This paper is a reply 
to an earlier Letter to the Editor by Siegmann6 asking 

Fig. I. Qualitative sketch of the E, H, and S fields for a two-wire resis
tance-free cable. 
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Fig. 2. Sketch of a transformer with elongated arms between the two 
separated coils. The separation between the primary and secondary coils 
is much larger than the separation between the upper and lower arms of 
the core. S and S' label two different paths of integration. 

about the Poynting vector field of an ideal transformer. 
Our paper differs from Newcomb's response insofar as we 
introduce the analogy between the energy transport ac
companied by the flow of electric or magnetic currents. 

II. THE ELECTRIC, MAGNETIC, AND POYNTING 
VECTOR FIELDS OF AN ELONGATED 
TRANSFORMER 

Consider a transformer of the shape illustrated in Fig. 2. 
We label those quantities which refer to the primary circuit 
with a number ( 1) and those which refer to the secondary 
circuit with the number (2). 

For an ideal transformer under a load,7 the electric cur
rent is in phase with the electric tension both in the primary 
as well as in the secondary winding. (For this reason, all 
symbols given below refer, where appropriate, to the in
stantaneous values of the corresponding quantities.) We 
then have 

U(l)/N(l) = U(2)/N(2) 

and 

N(l) ·l(l)~N(2) ·1(2) 

(2) 

(3) 

Here U(i), N(i), and/(i) are the electric tension, the num
ber of turns, and the electric current, respectively, in the 
winding i. 

The electric current which flows at no load (sometimes 
called the "exciting current") and which produces the 
magnetic flux within the iron core linking both windings 
(sometimes called the "mutual flux") is small compared to 
a typical current in the primary under load. The mutual 
flux is nearly the same with or without a load although, 
under load, the current in the primary is increased. The 
effect of the additional load current in the primary on the 
mutual flux is nearly exactly compensated by the load cur
rent in the secondary, i.e., the load currents in the primary 
and secondary windings create magnetic fluxes of opposite 
direction in the core such that the mutual flux remains 
essentially constant. 

Applying Ampere's law to the paths Sand S' sketched in 
Fig. 2: 

fdrH=N(l)·l(l), (4) 

f, dr H = N (1 ) · I (1 ) - N ( 2) · I ( 2) . ( 5 ) 

In view of Eq. ( 3), the integral in Eq. ( 5) is much smaller 
than the integral in Eq. ( 4). Furthermore, since the magni
tude of the H field within the core of the transformer is very 
much smaller than in the region between the arms of the 
transformer, the integral in Eq. ( 4) is practically equal to 
the integral ofH along the path between the points P and Q 
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Fig. 3. Qualitative sketch of the E, H, and S fields between the arms of the 
transformer. 

in Fig. 2, so that 

N(l)· 1(1) ~ LQ dr H. (6) 

The H field in the region between the transformer arms has 
sources ( V • H = - V • M, M = magnetization of the 
core) on one arm and sinks on the other. (See Fig. 3. ) The 
direction of the H field changes in phase with the current 
1(1 ). 

Let us now apply Faraday's law to an arbitrary area A 
penetrated by one arm of the transformer: 

f drE= - l dAB= U(l)/N(l). (7) 

Here Bis the time rate of change of the magnetic induction 
B. According to Eq. (7), each arm of the transformer is 
surrounded by closed E field lines. (See Fig. 3.) 

Since the current and tension in the coils of the trans
former are in phase, the E and H fields are also in phase. 

Notice that the E and H fields in the transformer have 
the same configuration as the Hand E fields, respectively, 
of a pair of current-carrying conductors with the same ge
ometry (up to the sign of either field). Thus the question 
about the Poynting vector field can be immediately an
swered: The Poyntingfield of the transformer has the same 
configuration as that of a pair of current-carrying conduc
tors with the same geometry. 

It is noteworthy that the H field outside the iron core of a 
transformer (which one might be inclined to regard as an 
undesirable side effect) is responsible for energy transport 
within the transformer-just as necessary for energy trans
port as is the electric field between the conductors of a 
charge-carrying conductor pair. 

III. MAGNETIC TENSION AND MAGNETIC 
CURRENT STRENGTH 

It is convenient to express the energy current (or "pow
er") provided by an electric network in terms of the inte
gral q uan ti ties U (electric tension) and I (electric current) 
as 

P= U·l. (8) 

For the same reason, we would also like to express the 
energy current flowing through a transformer in terms of 
integral quantities. Since we assume our transformer oper
ates without losses, the energy current flowing through the 
transformer must be equal to the energy currents flowing 
into as well as out of the device: 

P= U(l) ·1(1) = U(2) ·1(2). (9) 
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[The second equality in Eq. (9) also follows directly from 
Eqs. (2) and (3).] 

With the help ofEqs. (6) and (7), !( 1) and U( 1) can be 
replaced in Eq. (9), resulting in 

P = (LQ dr H) · (- f d AB) . (10) 

Equation ( 10) allows for a simple interpretation: The first 
factor represents the magnetic tension um between the two 
arms of the transformer 

Um = LQ dr H (11 ) 

and the second integral is identified as the magnetic current 
strength Im : 

Im= - f dAB. (12) 

This concept is introduce~ in analogy to Maxwell's dis
placement current f d A D, where D is the time rate of 
change of the electric displacement D. It has already been 
introduced by Hertz8 and was later used by Born. 9 How
ever, as opposed to the concept of magnetic tension, the 
idea of magnetic current strength did not establish itself. 
One reason for this might be that Im is not associated with 
the motion of free-magnetic charge. Of course, the con
struction of a current is not logically dependent upon 
whether or not there exists a microscopic mechanism 
whereby some kind of particles move with a well-defined 
velocity. 

Inserting Eqs. (11) and (12) in Eq. (10), we obtain the 
following expression for the energy current flowing in a 
transformer: 

(13) 

The analogy to Eq. (8) for the energy current flowing in a 
two-wire electric cable is obvious. Accordingly, it is sugges
tive to call the two arms of a transformer "magnetic con
ductors." A good magnetic conductor is a "magnetically 
soft" material with a high permeability, e.g., iron. In terms 
of this analogy, Eq. ( 13) can be expressed in the following 
way: The energy current flowing between a pair of magnet
ic conductors is equal to the product of the magnetic ten
sion between the conductors times the strength of the mag
netic current flowing through them. 

Recapitulating Eqs. ( 3), ( 6), and ( 11 ) , as well as Eqs. 
( 2), ( 7) , and ( 12) , 

N(l) ·1(1) =Um =N(2) ·1(2), (14) 

U(l)/N(l) =Im= U(2)/N(2). (15) 

From these equations, one can recognize two interesting 
characteristics of a transformer: The magnetic tension de
pends only upon the strength of the electric current and the 
strength of the magnetic current depends only upon the 
electric tension. If the transformer is connected to a voltage 
stabilized alternating current source, e.g., to a commercial 
network, then the magnetic current in the iron core is inde
pendent of the load. A change in load results simply in a 
change in the magnetic tension between the upper and low
er magnetic conductors. On the other hand, if the ampli
tude of the electric current is stabilized in the primary 
winding, then the magnetic tension is independent of the 
load. A change in the resistance provided by the load 
causes a change only in the magnetic current strength. 
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IV. DEMONSTRATION EXPERIMENTS 

The apparatus used in the following experiments can be 
found in stock at most schools or universities. For the sake 
of clarity, we give specific data about the number of wind
ings, inductivity, and ohmic resistance although, of course, 
these need not be followed exactly to carry out a successful 
experiment. 

A. Demonstration 

The first thing to demonstrate is the validity ofEqs. ( 14) 
and ( 15): ( 1 ) The relation between the magnetic tension 
Um between the upper and lower arms of the transformer 
and the electric currents I ( 1 ) and I ( 2) in the primary and 
secondary windings, respectively; and (2) the relation 
between the magnetic current Im in the iron core of the 
transformer and the electric tensions U ( 1 ) and U ( 2) in the 
primary and secondary windings, respectively. 

A transformer is constructed with the following materi
als: (1) One U-shaped piece oflaminated iron (cross sec
tion 4 X 4 cm), ( 2) one straight piece of laminated iron, 
and (3) two coils with N(l) = N(2) = 500 and 
R ( 1 ) = R ( 2) (see Fig. 4). A variable resistor is connected 
to the secondary winding as the load. A voltmeter and am
peremeter are connected into both the primary and secon
dary circuits. 

In addition to the electric quantities, we also want to 
measure the magnetic quantities Um and Im. Of course, we 
are only interested in the changes of these quantities under 
changes in the load and not, however, in their absolute 
values. Therefore, it suffices to determine the values of Um. 
and Im up to a constant factor. 

For the measurement of Im, a small coil with N = 10 
windings is wrapped around one of the magnetic conduc
tors and connected to a voltmeter. The reading on the volt
meter is proportional to Im according to the relation 
U= -NfdAB=N·lm. 

Um is measured with a commercial Hall probe. The de
vice must be able to register alternating fields. The most 
sensitive setting should correspond to a full range of 10 mT 
(such devices are typically normed in T and not in A/m). 
If the Hall probe is installed somewhere in the region 
between the magnetic conductors, the reading is propor
tional to the magnetic field strength Hat the location of the 
probe and, therefore, is proportional to Um = S dr H. 

An alternating tension of U = 50 V is now applied to the 
primary winding of the transformer. If the transformer 
were to have an efficiency of 100%, the instruments would 
indicate U(l) = U(2) and 1(1) =1(2). Measurements 
show that U(2) is almost as large as U(l ), whereas 1(2) is 

Fig. 4. Sketch of the experimental setup for demonstrating the validity of 
Eqs. (14) and (15). 
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Fig. 5. Sketch of the experimental setup for demonstrating the existence of 
a magnetic potential drop along the magnetic conductors of a transform
er. 

clearly smaller than l(l ). One must, in fact, be satisfied 
with a maximum efficiency of around 80%. 

We now vary R between 100 and 300 n (we should not 
come too close to a short) and notice, as expected, that 
U(l) and U(2) remain constant while l(l) and /(2) 
change in proportion to one another. The behavior of the 
Um and Im readings is more interesting: The magnetic cur
rent Im, like U(l) and U( 2), remains virtually constant 
under changes of R while the magnetic tension Um changes 
to the same extent as the electric current. This confirms 
relations (14) and (15). 
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B. Demonstration 

We construct a long transformer with the same coils as 
above and six straight laminated iron pieces. (See Fig. 5.) 
So that we do not need to attach the iron pieces together, we 
place them vertically and lengthwise, one on top of the 
other. We again connect the load resistance, build the mea
suring devices into the circuit, and apply an alternating 
tension of 50 V to the primary winding. 

The difference between U(l) and U( 2), as well as 
between l(l) and /(2), is much greater than in the first 
demonstration. The efficiency is now only about 40%. 
With the help of the Hall probe, we can determine very well 
where the lost energy goes. By moving the Hall probe in the 
middle between the two arms from the lower to the upper 
winding, we see that the value of the magnetic tension de
creases by approximately 50%. Accordingly, there is a 
magnetic potential drop within each of the two magnetic 
conductors. The existence of such a magnetic potential 
drop is not surprising since, of course, any nonideal mag
netic conductor has a nonzero (magnetic) resistance. This 
loss of energy along the magnetic conductors of a trans
former is completely analogous to the energy loss along.the 
( nonsuperconducting) electric conductors of an electric 
circuit: The dissipation of energy in an electric conductor 
leads to a drop in the (electric) tension along the conduc
tor. 
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