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I
Physical Foundations



1. KPK-specific features
The chapters about „Oscillations and waves“ of the present volume 
is again characterized by some KPK-specific features. This is 
particularly apparent in the chapters on oscillations. When 
mechanical vibrations are treated not the movement is in the focus, 
but the balance of energy and momentum. In this way, the 
correspondence between mechanical and electrical vibrations 
becomes particularly clear.
The description of forced mechanical oscillations becomes more 
coherent if the average energy flow from the exciter to the oscillator 
is plotted over the frequency instead of the amplitude of the position 
of the oscillating body. 

2. Harmonic analysis
For the description of vibrations and waves, we use what in the 
context of university physics is called Fourier analysis. The 
corresponding procedure used to be considered difficult and 
unsuitable for the school. Since there are fast computers, the 
situation has changed. Composing a periodic function out of sine 
functions can easily be shown with a spreadsheet program. For the 
decomposition with an FFT (Fast Fourier Transform), numerous 
easy-to-use programs are available.
In favor of a treatment of the Fourier decomposition is the fact that it 
is not only omnipresent in physics but also beyond. Sunlight is said 
to consist of light of different wavelengths, or that a tone contains 
certain frequencies. These types of speech are based on the fact 
that one decomposes the light or sound signal into harmonic parts.
Thanks to the Fourier analysis tool a consistent treatment of the 
concept of coherence is also possible.
The treatment of the harmonic analysis is a good opportunity to 
present an important mathematical method and physical tool by 
means of a simple example without beginning with the mathematical 
details which would only obscure the simple basic idea of the 
method. Actually, we are faced with decompositions into other basic 
functions in the teaching of physics and mathematics:
The electric fields of a point charge and of an electrical dipole are 
the first two terms in the decomposition of an arbitrary field into 
multipole contributions. The s-, p-, d-orbitals, etc., are the first terms 
of the decomposition of the electron wave-function into spherical 
harmonics. Mean and variance are the first terms of the moment 
analysis of a distribution function.



II
Remarks



1. Oscillations
Definition of the term „oscillation“
When dealing with oscillations, one would like to write a definition on 
the board: „An oscillations is …“.
However, a clear definition of the term is hardly possible. There are 
numerous phenomena on a scale ranging from processes that 
everybody would call an oscillation up to those that nobody would 
consider an oscillation. Where is the border between them?
We would like that, according to the definition, a „damped oscilla-
tion“ is an oscillation, although it is not periodic and although its en-
ergy is not constant.
We wish that the process with the two rotating axes (Fig. 1.4 in the 
student’s text) is no longer a oscillation, although it is periodic and 
even sinusoidal.
A glider on the air track, which travels back and forth between two 
spring buffers, should not be an oscillation according to the defini-
tion.
We did not find a definition that meets these requirements. Finally, 
one realizes that one can live well without such a definition.
The same problem occurs later on, if one should be tempted to de-
fine what is a wave. 

Relaxation and resonance oscillations
In the lower secondary version of the KPK, 
we had used a broader definition of oscilla-
tion. There, the device of Fig. 1 was pre-
sented as an example of an oscillator. The 
system has only one energy storage. The 
corresponding vibrations are sometimes re-
ferred to as „relaxation oscillations“ to distin-
guish them from the normal „resonance os-
cillations". Among them are the oscillation of 
the string of a violin, which is excited with 
the bow, as well as the known chemical os-
cillations. There is a continuous transition 
between resonance and relaxation oscilla-
tions.

Why only mechanical and electrical oscillations?
Anyone who is accustomed to the KPK may wonder why the analo-
gy, which is usually so much in the foreground, is limited to the 
quantities of momentum, angular momentum, and electric charge. 
The reason is that, as regards the oscillations, it does not apply to 
other quantities.
In order to realize an oscillating system (a resonant oscillator), two 
energy storage devices of different nature are required. In the elec-
trical case these are the capacitor and coil, characterized by a ca-
pacitance and an inductance. In a mechanical system, it can be a 
(inertial) body and a spring, characterized by mass (= „momentum 
capacity“) and spring constant.
Now there exists the analogue of the capacitor with the correspond-
ing „entropy capacitor“ in thermodynamics, but there is no „induc-
tance“ for entropy currents. The same applies to the amount of sub-
stance.
Mechanical and electrical quantities, which correspond to each oth-
er, are summarized in Table 1.
The fact that the oscillating systems can be realized only with those 
quantities which satisfy a conservation law is probably to be regard-
ed as a coincidence. 

Table 1 

Choice of systems
In the student’s text, certain systems are treated or addressed. We 
want to justify our choice:
1. Two bodies of equal weight are connected by a spring, Fig. 1.3 in 
the student’s text. Conceptually, it is the simplest mechanical oscilla-
tor. One clearly sees the two subsystems between which the mo-
mentum flows back and forth. It is also the perfect analog to the 
simple electric resonant circuit. We accept that it is a somewhat un-
realistic system. A disadvantage is that in the realization on the air 
track it is difficult to prevent a translational movement of the whole 
oscillator.
2. A body is attached to the wall by a spring, Fig. 1.9 in the student’s 
text. This oscillator is even easier to set up, and one does not have 
the problem of the translational movement of the whole system. 
Here, the momentum oscillates between body and „Earth“. The 
heavier body, the Earth, does not participate in the energy ex-
change. A disadvantage of the system is that the second momentum 
reservoir is not easy to recognize, because one cannot see that the 
momentum of the Earth is changing. However, students who have 
learned the mechanics according to the KPK are accustomed to this 
property of the Earth. The system is more realistic than the system 
with bodies of equal weight, as in most practical applications one of 
the bodies has a much larger mass than the other. In each of these 
cases, the heavier does not contribute to the energy budget. Exam-
ples are the braking car, the ball flying against a wall, the system 
Earth-Moon, the system Sun-Earth, the system atomic nucleus.
3. The pendulum. From a formal point of view, it is a rather unaes-
thetic system: the force is not proportional to the deflection, and the 
system is not one-dimensional, that is, momentum, momentum cur-
rent and velocity must be treated as vectors. Because of the om-
nipresence of such oscillations, however, it has to be treated.
4. Rotational vibrations. They are not treated because they can be 
so beautifully realized with Pohl’s wheel, but firstly because the me-
chanical clocks that have been used for centuries have taken ad-
vantage of these oscillation, and secondly because the analogy to 
the translational oscillations can be shown so easily.
5. The electric resonant circuit. It is an important component of the 
radio and TV set. However, as with the pendulum clocks, it might be 
a species endangered with extinction. 

The restoring force
The fact that the „restoring force“ is proportional to the elongation for 
a mechanical harmonic oscillation is often formulated in the form of 
a rule. Apparently the statement is considered important. We do not 
formulate such a rule. First of all, the linear force law does not guar-
antee a harmonic oscillation (because to get one other ingredients 
are required), and secondly, one should also formulate the corre-
sponding rules for electrical oscillations, which no one would surely 
do. 

The restoring force
What is interesting about damped oscillations? It is hardly worth 
mentioning that an oscillations slowly dies away. This is also true for 
others, e.g. translational movements.
There is, however, an interesting phenomenon associated with the 
damping which occurs with oscillations and not with other move-
ments: For a certain value of the damping constant, which is neither 
zero nor infinite, the system returns to the equilibrium position in a 
minimum time.
The most obvious and important application of such an optimum 
damping is the shock absorber of vehicles. Therefore, we believe 
that it is justified to treat damped oscillations at school. 

The terms amplitude, angular frequency and phase
In the case of a harmonic oscillation, the time behavior of the most 
important variables is described by a „general sine function“
�
One calls �  the amplitude, ω the angular frequency, and φ the ini-
tial phase. Obviously, different variables corresponding to one and 
the same oscillation have different amplitudes, and they generally 
have different initial phases. On the other hand, the angular fre-
quency is the same for all quantities, which can be described by an 
equation of this type.
Therefore, whenever one speaks of the amplitude or the phase, one 
must mention the physical quantity to which these concepts refer: 
position, momentum, pressure, electric charge, magnetic field 
strength ... So there is no amplitude par excellence. Actually, in the 
case of mechanical oscillations one often refers to „the“ amplitude 
while meaning the position amplitude. (This also corresponds to the 
etymology of the word.) We avoid this form of speaking because it 
gives too much importance to the position variable. Thus, we never 
speak of the „amplitude of the oscillation“ but only of the amplitude 
of the position, the amplitude of the momentum, and so on. But 
there is no objection to speak of the „frequency of oscillation“. 

Shock absorbers as mechanical resistors
The shock absorber is the mechanical analogue of the ohmic elec-
trical resistor. The linear U-I characteristic of the ohmic resistor cor-
responds to the linear v-F characteristic for the shock absorber.
It is customary to treat the ohmic resistor in detail in electricity. The 
characteristic is recorded, the linear U-I relationship is introduced as 
an important law. Rules on the parallel and series circuits of ohmic 
resistors are formulated. However, the mechanical analogue is hard-
ly addressed. The characteristic is not recorded and no applications 
are discussed. The mechanical resistor (the analogue to the electri-
cal resistor) does not get a graphical symbol. Presumably, this „de-
privation“ of mechanical friction is due to the fact that friction often 
occurs as a disturbing, undesired phenomenon. The fact that it is 
just as useful and indispensable as electrical resistance is hardly 
apparent.
For this reason, we give the shock absorber in the classroom more 
space than usual.

y (t ) = ŷ ·sin(ωt +φ)

ŷ

Fig. 1
 Relaxation oscillator

 

Mechanics Electricity

momentum p
momentum current F
velocity v
displacement s
mass m
1/spring constant 1/D
mechanical resistance Rp

viscosity (momentum conductivity) η

electric charge Q
electric current I
electric potential φ
magnetic flux NΦ
capacitance C
inductance L
electric resistance R
electric conductivity σ



2. Resonance
Which variables should be plotted as a function  
of frequency?
An oscillating system is excited to „forced oscillations“. The re-
sponse of the oscillator to the excitation depends on the frequency 
of the exciter. If this frequency is equal to the natural frequency of 
the oscillator, the reaction is maximal, that is, the oscillator oscillates 
most violently. At this frequency, its energy dissipation or entropy 
production is greatest, and therefore the energy flow from the exciter 
to the oscillator is maximal.
The energy dissipation occurs through friction, in Fig. 2 represented 
by the damper. The energy, which flows mechanically on the aver-
age into the damper (and thermally out again) can be calculated by 
�  

Here �  is the velocity amplitude of the right „link-up“ of the damper 
(that of the left link-up is zero). k characterizes the damper: The 
grater k, the harder it is.

The energy dissipated in the damper is supplied to the system by 
the exciter. Therefore it is possible to calculate the time-averaged 
energy current from the quantities that characterize the exciter:
�

Here v is the velocity of the energy output of the exciter (its right 
„terminal“), and F is the momentum current through this connection. 
When calculating the average value of the right side of the equation, 
notice that v and F are generally not in phase. With the phase differ-
ence φ we get:

�

The factor cos φ is known from electricity. Just like there it tells us 
how great the „reactive power“ is, i.e. the part of the energy that 
flows from the load back to the source. For cos φ = 0, the net ener-
gy flow from the energy source to the load is zero. Between source 
and load (in our case between exciter and oscillator), the energy 
only flows back and forth. For cos φ = 1, the net energy flow to the 
oscillator is optimal. This case corresponds to the resonance.
It follows from the foregoing considerations which quantities are best 
represented graphically as a function of the frequency so that the 
phenomenon of resonance is as clear as possible:
1. The time rate of the average of the dissipated energy (which is 
equal to the average of the energy flow from the exciter to the oscil-
lator). As expected, this energy current has its maximum at the nat-
ural frequency of the oscillator and becomes zero for both ω →  0 
and ω →  ∞. Since this energy flow is proportional to the square of 
the velocity of the oscillating body, we can alternatively draw the ve-
locity amplitude over the frequency. This curve also has the maxi-
mum at the right place and the correct asymptotic behavior for ω → 
0 and for ω → ∞. It is less convenient to discuss the resonance on a 
graph showing the position amplitude of the oscillator as a function 
of the frequency. In such a graph, the maximum is not „in the right 
place“.
2. The phase shift between momentum flow and velocity at the out-
put of the exciter. As expected it is zero at the natural frequency of 
the oscillator, and different from zero for smaller and larger frequen-
cies.
Often, the phase shift between the position amplitude of the exciter 
and the position amplitude of the oscillator is plotted as a function of 
the frequency. This curve is more difficult to interpret. 

Parallel and series resonant circuit
We address a problem encountered in connection with forced me-
chanical oscillations. However, since it is easier to discuss the elec-
trical resonant circuit, we first consider an electrical resonant circuit.
The resonant circuit consists of a capacitor, a coil, a resistor and an 
excitation energy source. There are several ways to combine these 
4 components: all four in parallel; all four in series; three parallel and 
the fourth in series ... Which of these circuits should we choose? 
First, we exclude those in which parallel and series connections ap-
pear mixed, we limit ourselves to the candidates with the simplest 
circuit diagrams, Fig. 3.

We want to record a resonance 
curve, i.e we change the frequency 
of the exciter source and observe 
the reaction of the resonant circuit. 
But we still have to decide which 
variable of the source we keep 
constant. The most reasonable 
candidates for this are 1. the cur-
rent amplitude or 2. the voltage 
amplitude. Of course one could 
also consider other options. So 
one might also keep the energy 
flow constant. However, in this 
case one can no longer recognize 
the resonance by looking at the 
energy current. Therefore, we re-
strict ourselves to the considera-
tion of the electric current and the 
voltage.
We want to investigate how the 
resonant circuit reacts to a stimu-
lus. If, in the case of the parallel 
resonant circuit, we would apply a 
given (alternating) voltage, this 
voltage would be present at every 
moment on all three other compo-
nents. The „resonant circuit“ would 

no longer be a resonant circuit. We could just as well have connect-
ed the three components independently to three AC sources. That is 
why we make sure that the current amplitude has a given value, and 
we will examine how the resonant circuit distributes the current be-
tween the three components.
Similar arguments are valid for keeping the voltage amplitude con-
stant in the case of the series resonant circuit.
Now the question is clearer. We have to decide between a parallel 
resonant circuit with a constant current amplitude exciter and a se-
ries resonant circuit with a constant voltage amplitude exciter. Both 
options are equivalent in many ways. The corresponding resonance 
curves look absolutely the same.
As with the mechanical oscillator of Fig. 2, instead of the energy cur-
rent, one can also plot the velocity over the frequency, so in the case 
of the electrical parallel resonant circuit, the voltage instead of the 
energy current can be plotted over the frequency, or the current in-
tensity in the case of the series resonant circuit. In both cases, one 
obtains the behavior expected from a resonance curve: the maxi-
mum is at the natural frequency, and an amplitude (voltage or cur-
rent) that approaches zero for ω → 0 and ω → ∞.
So what should we decide for?
In an advanced course, one might treat both versions and empha-
size the analogy or equivalence as an interesting learning goal. But 
even if we have to limit ourselves, the decision is not difficult. We 
have considered the exciter as the cause and the behavior of the 
resonant circuit as an effect. Since we are accustomed to the idea 
that the voltage plays the role of the cause of the current, we choose 
the series resonant circuit with an exciter of a constant voltage am-
plitude.
The decision was easy in the case of the electric oscillating circuit, it 
becomes difficult in the case of the mechanical oscillator.
One might think that one only needs to translate the electrical series 
resonant circuit into a mechanical arrangement. After all, we know 
the translation rules. Electrical charge transforms into momentum, 
electric current into momentum current, a coil into a spring, a mas-
sive body into a capacitor.
If we do so, we get the oscillator of Fig. 4. (The translation of the 
parallel resonant circuit gives the oscillator of Fig. 2.) This mechani-
cal oscillator works in principle, and is described by the same math-
ematics as its electrical analogue. It has only one small flaw: We 
need a drive or exciter, which provides a constant velocity amplitude 
regardless of the frequency. This is awkward in two ways.

1. While we are accustomed to conceiving an electrical voltage as 
the cause of an electric current, our feeling for mechanical process-
es tells us that the force, i.e, the momentum current is the cause of 
the velocity, and not vice versa.
2. It is not easy to find a mechanical drive that provides a periodic 
motion with a constant velocity amplitude. It is easy to construct a 
device with constant amplitude of displacement. That’s what a crank 
does. Actually, one could realize a drive with a constant velocity am-
plitude. However, this would look so unnatural as to make the whole 
experiment suspect.
So we are forced to make a different choice in the electrical and me-
chanical case.
Thus, the matter seems to be settled: One takes the mechanical os-
cillator of Fig. 2, which corresponds to the electrical parallel resonant 
circuit: spring, body, damper and exciter are mechanically connected 
in parallel. In university books in which the mechanical oscillator is 
calculated, one refers almost always to this type of oscillator.

In practice, however, another problem arises here: also this type of 
oscillator is difficult to realize, because one needs a drive that pro-
vides a constant force amplitude. While it is not too difficult to build 
such a device, it does not exist in school collections.
What one uses for school experiments is a drive with a crank that 
rotates at a given angular velocity. The excitation of the oscillation 
does not occur with a constant velocity amplitude, nor with constant 
force amplitude, but with constant amplitude of displacement, Fig. 5. 
The method works because the resulting differential equation is the 
same as that of a „parallel oscillator“, which is driven with a constant 
force amplitude.

P = k
2
·v̂ 2

v̂

P =v ·F

P = v̂ · F̂
2

· cosφ

 

Fig. 2
(a) Parallel resonant circuit; (b) Series res-
onant circuit

 Fig. 2
Symbolic representation of an 
arrangement for the creation of 
forced oscillations

 

Fig. 4
Mechanical analogue of the electric series resonant circuit

 

Fig. 5
Mechanical oscillator with an ex-
citer of constant amplitude of dis-
placement



3. Spectra
A minimum version of the Fourier decomposition
Our treatment of the decomposition of functions into a Fourier series 
is a compromise in which we had to balance between mathematical 
rigor on the one hand and brevity of the derivations and slenderness 
of the results on the other hand.
The shortest version would have been that we simply claim, „Any 
function can be decomposed into sine components“. Then, however, 
we would have missed some interesting phenomena of acoustics. 
So we decided to give the periodic functions a special meaning.
The statement that any function that is defined only in an interval of 
the independent variable can be periodically continued has fallen 
prey to our efforts of simplification. 

Fourier decomposition everywhere
It may be thought that decomposing a function of time into harmonic 
components is too difficult for the school. We do not believe so. We 
even believe that it is a prerequisite for understanding many of the 
statements and claims that we make in class anyway, such as, 
„Sunlight is made up of light of many wavelengths between …“. (It 
would be more accurate to say, „One can decompose sunlight into 
…“) Or: „Our hearing is sensitive to sound with frequencies between 
20 Hz and 20 kHz.“
What should we do with such statements if we do not assume that 
every light, every noise and every sound can be decomposed into 
sine parts?  

Spectra
When introducing the term „spectrum“ one would have to differenti-
ate between discrete spectra, which can be represented by a bar 
graph, and continuous spectra, where the ordinate is the derivative 
of an amplitude or energy flux density with respect to the frequency.
We have refrained from a mathematically rigorous presentation for 
two reasons. First, we can not assume that differential calculus has 
already been treated in the mathematics lessons, and secondly, the 
mathematical effort would be somewhat disproportionate. 

Coupled oscillations
We have avoided the terms „coupled oscillations“ and „coupled os-
cillators“. In its original meaning, the expressions should certainly be 
reminiscent of the two pendulums that have been „coupled“ together 
by a soft spring or a thread with a small weight. One starts out from 
two initially independent oscillators, which are then weakly coupled 
to each other. Now, with the systems we are aiming at later, the sin-
gle oscillators are no longer recognizable. We can not take away 
any springs in a way that the result is two uncoupled oscillators.
A clearer alternative would have been to characterize the various 
oscillators by the number of degrees of freedom. But that would 
have required a lengthy formal discussion that would be inappropri-
ate for our needs. We have therefore opted for a mode of expres-
sion, which is based more on the colloquial language: a oscillator 
with two, three, etc. degrees of freedom is called a double oscillator, 
triple oscillator, etc. 

Resonance curves of oscillators with several degrees  
of freedom
We were reluctant to give up this topic. It is not difficult to record 
such resonance curves. It is rather a marginal problem that prevents 
us from treating the subject in the classroom. While we had as-
sumed both dampers and exciters as parallel to the spring in the 
treatment of resonance in the simple oscillator, there are a large 
number of alternatives for multiple oscillators. This would have re-
quired a cumbersome and not very productive discussion of the rela-
tionship between the resonance curve and the spectral function.



4. Waves
Their creation is not the main subject 
There is a tendency in physics books to explain a phenomenon by 
describing how it is created or produced. The electric field is ex-
plained by the electric charge that is the cause of the field. Coher-
ence is explained by describing light sources that produce coherent 
light. Electromagnetic waves are explained by the Hertzian oscilla-
tor. We think that such an approach is unnecessarily cumbersome, 
because often the process of creation is more complicated than the 
phenomenon itself. Somewhat exaggerating one could say: To ex-
plain to someone what a bicycle is, it is best to describe the bike it-
self and not the manufacturing process in the bicycle factory.
Also with the waves, we tried to get straight to the phenomenon it-
self. We describe what a wave is and what different types of waves 
exist. 

Energy transport with waves 
We have formulated the rule that the time-averaged energy flow 
density of a wave is proportional to the square of the amplitude of 
one of the quantities by which we describe the wave. Even if it is not 
addressed in class, the teacher should know that when two waves 
intersect, the respective wave variables add up, but not the energy 
flows. Also, one should not lose sight of the fact that in the places 
where „the waves compensate by interference“ only one of the wave 
variables is constantly (and not only its time average) zero, but an-
other variable does not become zero. You can see it clearly with 
standing waves. With a standing electromagnetic wave, where the 
electric field strength distribution has its nodes, the magnetic field 
strength just has an anti-node. Similarly with a standing sound wave: 
The speed nodes are at the same position as the pressure anti-
nodes.
The figures in the text that show the square of the wave function – 
you can see it from the fact that the background is white and not 
gray – are in general neither images of the energy density nor of the 
energy flow density. They represent these quantities only where 
there is a pure sine wave, but not in the interference areas. 

Destructive interference is usually not complete
In the discussion of the phenomenon of interference we committed 
(with a somewhat uneasy feeling) an inaccuracy that is consistently 
committed in the textbook literature, and which seems to be hardly 
considered worth mentioning.
It is said that two plane waves of the same frequency and amplitude, 
which intersect at a certain angle, cancel each other at certain posi-
tions. These are the places where the quantity used to describe the 
waves adds up to zero, not only in the time average, but in every 
moment. In fact, that does not mean that the two waves extinguish 
each other. Only one of the quantities that describe the wave is zero 
at these points. The complementary quantity is generally not.
Fig. 6 shows the intersection of two plane electromagnetic waves. 
Suppose the electric field strength vectors are perpendicular to the 
plane of the drawing. The gray scale stands for the absolute value 
the of electric field strength. In the interference area horizontal lines 
can be seen, where the electric field strength adds up to zero. If the 
electric field strength vectors are perpendicular to the drawing plane 
o, the magnetic field strength vectors lie in the plane of the drawing, 
for the two individual waves perpendicular to the direction of travel of 
the respective wave. But this means that the magnetic field strength 
vectors of the two single waves cannot add up to zero, because they 
are never antiparallel. Where the electric field strength contributions 
add up to zero, the magnetic field strength do not.

Therefore, the energy density of the wave is not zero there either. In 
contrast, the energy flux density given by the vector product E × H is 
zero because one factor, E, is zero. 

Diffraction
Diffraction is treated independently from the phenomenon of inter-
ference. In our experience, students easily confuse the two con-
cepts. Therefore, we first discuss interference in a situation where 
no diffraction is involved: two sinusoidal waves passing through 
each other at an acute angle. One can think of these waves gener-
ated by two independent sources. The fact that this type of interfer-
ence experiment causes problems in light is only due to a technical 
problem: there are no light sources that are sufficiently phase-stable. 

More sophisticated interference experiments
An unbiased person who wants to study the interference of light 
would probably not begin with the diffraction phenomenon at a dou-
ble slit or at a grating. The more obvious idea is that one generates 
two sine waves with two independent light sources. (One would in a 
corresponding experiment proceed to show the interference of 
sound waves.)
Therefore, before we come to the well-working, sophisticated inter-
ference experiments with a double slit or a grating, we try to under-
stand why the manifest method fails. 

Coherence
We discuss it in the context of the theorem of the decomposability of 
a wave in sine waves. This theorem is one of the most important 
learning objectives of this volume. 

Huygens-Fresnel principle
In our opinion the Huygens-Fresnel principle is somewhat abused in 
the textbook literature.
To explain that from a small source emanates a circular or spherical 
wave, one does not need such a principle.
In the form in which Fresnel had formulated it, it says nothing else 
than that you can decompose a given wave into circular or spherical 
waves. Decompositions tell us nothing about a deeper truth. They 
are just a mathematical tool. They are used when they simplify the 
work, and they are not used when there is no benefit.
Splitting a wave field into spherical waves is useful if the problem is 
spherically symmetric or nearly spherically symmetric. To decom-
pose a plane wave into spherical waves, as one does to „explain“ 
refraction and reflection with the Huygens-Fresnel principle, howev-
er, means to explain a simple matter in a complicated way.

 Fig. 6
If the electric field strength vectors 
are perpendicular to the plane of 
the drawing, the magnetic field 
strength lies in the plane of the 
drawing.



5. Interference of light and X-rays 
Diffractions grating and X-ray diffraction on crystals
The decision to include the diffraction grating as a subject of teach-
ing was difficult for us. After all, it is just one of countless tools used 
in atomic and solid-state physics research.
The diffraction grating for visible light is especially important in the 
grating spectrometer, the diffraction of X-ray light for the X-ray struc-
ture analysis. Are these two methods of analysis so much more im-
portant than the many other techniques, that they should be treated 
in the classroom, and not the other methods? In one sense, they ac-
tually are. We owe the largest part of our knowledge of the atom and 
thus the experimental foundations of quantum physics to the optical 
spectroscopy. Historically, it was certainly more important than mass 
spectroscopy, electron loss spectroscopy, electron microscopy, 
Fourier spectroscopy, and many more. X-ray diffraction played a 
similar key role, namely in the elucidation of the structure of solid 
matter. It has been and continues to be more important than X-ray 
fluorescence analysis, neutron diffraction, transmission electron mi-
croscopy, scanning electron microscopy, scanning tunneling mi-
croscopy, scanning near field optical microscopy (SNOM), low ener-
gy electron diffraction (LEED), electron spin resonance, nuclear 
magnetic resonance (NMR), Secondary Ion Mass Spectroscopy 
(SIMS), and many other techniques.



6. Data transfer and storage
The amount of data in optical and acoustical perception
We start the topic by supposing that images and sounds have no 
redundancy. Thus, at first we do not consider the possibility of data 
compression. In fact, there are always sections of the path of the 
data flow over which this uncompressed data stream flows. 

The sampling theorem
It appears in our approach in the context of acoustic data transports, 
but without being called by name. 

Redundancy
We have not introduced a quantitative measure of redundancy. It 
would be easy to define such a measure:
R = 1 – H0/H.

(H0 = actual amount of data, H = apparent amount of data.) Howev-
er, practically it would be rather useless. The problem is to deter-
mine the actual amount of data. 

Games and probabilities
Dice and urn experiments play an important role in textbooks on in-
formation theory. The reason is that in this case probabilities can be 
easily specified. In this way we can easily show the working of 
Shannon’s formula. Hence the section „Games“.



III
Solutions to Problems



1. Oscillations
1.1 Provisional description
1. No characteristic period
2. Momentum flows over the two shafts: over the left into the bar, 
over the right out of the bar. If the bar is in the symmetrical middle 
position, it gets just as much momentum over the left shaft as it los-
es through the right  one. If it lies to the left of the middle position, it 
gets more than it looses, if it lies further to the right, it gives off more 
than it receives.
If at the beginning the bar is placed at the left of the middle position, 
it gets more momentum than it loses, until it reaches the middle po-
sition. Thus, momentum accumulates first, it moves with increasing 
speed to the right. As soon as it is beyond the middle position, its 
momentum decreases again. It comes to a standstill but continues 
to loose momentum; so it moves faster and faster to the left, etc.
The process is not an oscillation according to our definition because 
it only runs when there is a steady supply of energy.
3. No oscillation, since there is no characteristic period. 

1.2 Momentum and energy
The momentum still flows back and forth between the two bodies. 
The total amount of the momentum of the two bodies is still the 
same at every moment. The absolute value of the velocity of the 
light one is greater at any time than that of the heavy one. The ener-
gy is no longer evenly distributed between the two bodies. 

1.3 The Earth as a partner
Momentum: from the body simultaneously over both springs into the 
Earth and back again. (If the springs are tended from the beginning, 
a momentum current to the left is superimposed.)
Energy: from the body simultaneously in the two springs and back 
again. 

1.4 Harmonic oscillations 
1. See Fig. 9.

s(t ) = ŝ · sin(ωt ) 
F(t ) = – D · s(t ) = – D · ŝ · sin(ωt )
v(t ) = ω ŝ · cos(ωt ) 
p(t ) = m · v(t ) = m · ω ŝ · cos(ωt )

At the beginning (t = 0) the body has momentum. Then a current of 
negative momentum flows into the body, i.e. (positive) momentum 
flows out of it. As a result, the momentum of the body decreases and 
becomes negative. The momentum current decreases again. If it is 
zero, p does not change anymore. The momentum current reverses 
its sign, i.e. momentum flows into the body. The momentum in-
creases and becomes positive again.

2. 
P(t) = v(t) · F(t)
F(t) = – D · s(t) = – D · ŝ · sin(ωt)  
v(t) = ωŝ cos(ωt)
P(t) = –ωŝ · cos(ωt) · D · ŝ · sin(ωt)

With  2sin(α) · cos(α) = sin(2α) we obtain:
P(t) = – (ω/2) · D · ŝ 2 · sin(2ωt)

The energy flow also follows a sine function. Like the energy in the 
two energy storage devices, it changes at twice the oscillation fre-
quency. 

3. 
sA(t) = ŝ · sin(ωt) 
pA(t) = m · ωŝ · cos(ωt)
sB(t) = s0 – ŝ · sin(ωt) 
pB(t) = – m · ωŝ · cos(ωt)
FAB = – D [sB(t) – sA(t) – s0] = 2D · ŝ · sin(ωt)
EF = 2D · ŝ 2 · sin2(ωt )
EA = EB = (m/2) · (ŝ · ω)2 · cos2(ωt)
E = EF + EA + EB  
= 2D · ŝ2 · sin2(ωt ) + m · (ŝ · ω)2 · cos2(ωt)

For E to be independent of time, the factor preceding sin2 must be 
equal to that of cos2:

2D · ŝ 2  = m · (ŝ · ω)2.
The equation can be simplified:

D  = (m/2) · ω 2

and we obtain the angular frequency 

�
PAF = PBF = vA · FAB  
      = ωŝ · cos(ωt) · 2D ·  ŝ  · sin(ωt ) 
      = ωD ŝ 2  · sin(2ωt )  

1.5 What the period length depends on 
1. 

�

�

�  

m = 0.25 kg  
T = 2 s

(a) 
T’ = 3 s

�

(b) 
T’ = 10 s

�

2. Two springs: D doubles, T decreases by a factor of � .
    Four springs: D quadruples, T decreases to one half. 

3. The center of the spring does not move. Therefore, one body + 
half of the spring can be considered as an independent oscillator. 
For half of the spring D’ = 2D. Thus, we obtain

�

4. The springs are equivalent to two springs that are connected in 
parallel. The total spring constant  is D’ = 2D, thus we get

�

 

1.6 The pendulum 
1.
Earth:

�

Moon:

�

Neutron star:

�  

2. 

�  

3. It has to be vertical.
4. Probably the weights are not sufficient for the drive, so you have 
to increase their mass by about a factor of 6 (the ratio of the field 
strengths on the earth and on the moon).
The clock is now running, but much slower (compare with exercise 
1). This error can be corrected by shortening the pendulum.
5.

�

�

The height depends neither on the pendulum length, nor on the 
mass of the body. 

1.7 Angular oscillations: angular momentum flowing back  
and forth 
1. Two flywheels are arranged side by side so that the axis of one 
lies in the prolongation of the axis of the other. They are connected 
by a spiral spring: The inner end of the spiral spring is attached to 
one wheel, the outer to the other.
2. You can orient it as you want. It always oscillates with the same 
period. 

1.8 Electric oscillations: electric charge flowing back  
and forth 
1. The capacitance of a capacitor is greater, the larger the plate area 
and the smaller the plate spacing. The inductance of a coil is 
greater, the greater the cross-sectional area of the coil, the greater 
the number of turns per length and the greater the total number of 
turns. Accordingly, one can influence the period of a resonant circuit. 

2. With
�

we obtain

�

and get

�

and

�  

1.9 The damping of oscillations 
2. See figures 8 and 9.
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 Fig. 7
Section 1.4, exercise 1
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Section 1.9, exercise 2: momen-
tum current

 Fig. 9
Section 1.9, exercise 2: energy 
current



2. Resonance
2.2 Resonance of a mechanical oscillator 
1.5 Hz: The energy current is greatest for strong damping and 
smallest for weak damping.
1.7 Hz: The energy current is greatest for medium damping and 
smallest for weak damping.
1.5 Hz: The energy current is greatest for weak damping and small-
est for strong damping. 

2.3 How to draw a resonance curve 
To each of the curve sections above the 0.5 straight line there is an-
other one that is obtained by mirroring this section on this straight 
line. Thus, the deviations in the upwards direction compensate those 
in the downwards direction.



3. Spectra
3.1 Some mathematical results 
2. The rule for obtaining the terms is

�  

(It must not be given in analytical form.) Conjecture: the more terms 
the sum contains, the more the graph resembles a zig-zag line (Fig. 
12).

3. The rule for obtaining the terms is

�  

Conjecture: the more terms the sum contains, the more the graph 
resembles that of Fig. 13.

3.2 Spectra 
See Fig. 12

 
3.3 Double oscillators 
1. For the first natural oscillation, the length of the middle spring 
does not change. Each of the two bodies oscillates as if it were only 
hanging on the adjacent outer spring. For the second oscillation, 
every body feels the middle one in addition to the outer spring. It is 
as if another spring was „connected in parallel“ to the outer spring. 
The resulting spring constant is thereby increased, and thus the fre-
quency becomes larger.
2. (a) The relative difference between the two frequencies is small.
(b) The first natural frequency is small compared to the second one. 
3. One can consider this oscillator as a double oscillator, in which 
the outer springs are „infinitely soft“. Therefore the frequency of the 
second natural oscillation is zero.
4. One connects the oscillating bodies by a soft spring.

(−1)n+1 ⋅ 1
(2n −1)2

⋅sin (2n −1)x[ ]

d2 =
a1

a2

⋅d1 =
32 cm
48 cm

⋅0.0033 mm = 0.0022 mm

 Fig. 10
Section 3.1, exercise 2
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 Fig. 11
Section 3.1, exercise 3
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4. Waves
4.2 The velocity of waves
Here, too, a change of a state runs through or over a „carrier“. How-
ever, the change of state is permanent. You can not send a second 
wave through the carrier.
Like a real wave, the domino wave also has a carrier and its own ve-
locity. 

4.4 Sine waves
1. If the new direction of the wave is the z-direction, x must be re-
placed by z in equation (4.1).
2. From a few centimeters to a few tens of meters.
3. All four snapshots look the same. Between two shots, the wave 
advances just one wavelength.
4. The wave runs in the negative x-direction. 

4.5 The relationship between velocity, frequency  
and wavelength
1. λ = v/f = (300 m/s)/440 Hz = 0.7 m 
2. λ = v/f = (300 000 km/s)/98.4 MHz = 3 m 

4.6 Sound waves
1. Speaker, voice, musical instruments, thunderstorm, explosion
2. 150 Hz
3. 15 m and 15 mm
4. The frequency remains the same, the wavelength increases.
5. About 3000 m 

4.7 Electromagnetic waves
1. In the lightning, a very strong current flows for a very short time. 
The magnetic field of this current changes very fast. It detaches it-
self from the lightning, runs away as a wave and induces an electric 
current in the TV aerials.
2. Transmitting antennas of radio and television transmitters, par-
abolic antennas of telecommunications towers, hot stove, light 
sources, X-ray tubes, radioactive materials.
3. For equal values of x and t, the sine term of the electric field 
strength has the same value as that of the magnetic field strength.
4. See Fig. 13.

4.8 Energy transport with waves
1. Energy of a moving body:

�

Energy of a tensioned spring:

�

Energy of a charged capacitor:

�

Energy of a coil, in which an electric current is flowing:

�  

2. See the exercise of section 2.3  

4.9 Two waves at the same place
1. Wind is not a wave. Two „winds“ can not flow through each other.
2. If there are two „sources“ of an electric or magnetic field, the total 
field strength is obtained by vectorial addition of the field strengths 
of the fields of the individual sources. 

4.10 Two sine waves – interference
1. An „intermediate“ between standing and normal wave: On the one 
hand one recognizes a progressive movement, as with a normal 
wave; on the other hand, a periodic becoming small and large of the 
whole wave, as in the case of a standing wave.
2. When the waves oscillate „in time“: a wave whose amplitude is 
twice as large as that of a single wave. When they oscillate in „push-
pull“: complete, permanent extinction. 

4.12 Natural oscillations of wave carriers
2. Given: l = 1 m 

v = 6 m/s
λmax = 2l = 2 m
In order to obtain two nodes, we must have l = 3/2λ, or  
λ = 2/3l = 2/3 m. 
With v = λ f it follows
f = v /λ = 9 Hz  

4.13 The interference of waves
1. Here, the angle α is 180°. Using
sin (90°) = 1
we obtain with the equation

�

as expected
a = λ /2.
2.

�  

 
4.14 The diffraction of waves
The wavelengths of the waves for normal television reception from a 
transmitting antenna on the Earth are about 1 m. They are still bent 
pretty well. The wavelength of the satellite programs are in the range 
of centimeters. The diffraction is very small here.
Clouds are „transparent“ to the waves of satellite television.
Mobile phones operate at 900 MHz and 1800 MHz. The wavelength 
is therefore 20 cm, and the diffraction is still quite effective. Also the 
cordless phone works in this frequency range.
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 Section 4.7, exercise 4



5. Interference of light and X-rays
5.1 Coherence
1.

�  

2.

�  

3. To the frequencies
f1 = 105.65 MHz  
f2 = 105.75 MHz 

correspond the wavelengths:
λ1 = 2.83957 m  
λ2 = 2.83688 m

We thus obtain

�  

5.3 Even laser light is not sufficient
1.(a) The wavelength is not needed. The interference pattern jumps 
after the time it takes the light to cover the 15 cm:

�

(b) s = v · t = 3 · 108 m/s · 1 s = 300 000 km
2. It may be that you have the same problems, namely, when the 
two speakers are connected to independent sine generators. To 
avoid them, connect them to the same generator. 

5.4 Diffraction by pinholes and slits
1. (a)

�

d(1°) = 0.015 %  
d(5°) = 0.38 %  
d(10°) = 1.5 %
(b) For small angles the adjacent has almost the same length as the 
hypotenuse.
2.

�  

 3.

�  

5.5 Diffraction grating – the grating spectrometer
1. You need a light source that appears at a small angle: a lamp or 
also the sun. You orient the CD so that you can see the mirror image 
of the light source. (Attention: the sun is dazzling!) Then you tilt the 
CD slowly out of this position. You can see the spectrum of the light 
source pass by twice in succession.
2. (a)

d = 1/300 mm = 0.0033 mm 
l = 2 m 
a = 32 cm

�

(b)

�  

5.6 Two- and three-dimensional gratings
1. One obtains an interference image, namely a dot pattern, be-
cause for any wavelengths the condition is
2d · sin φ = k · λ with k = 1, 2, 3, ...
fulfilled, and that for each of the sets of layers.
2. One obtains the largest occurring distance between the sets of 
layers. At these layers, the density of the diffraction centers is great-
est compared to all other layers.
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6. Data transfer and storage
6.2 Examples for amounts of data and data currents
1. 100 000 ≈ 65 536 = 216. A post code carries about 16 bit.
2. A little more than 13 bits
3. Almost 11 bits
4. 25 = 32 signs
5. The tree has 27 ends at its lower side.  
Since 24 = 16 < 27 < 32 = 25, it follows that with three signs one re-
ceives between 4 and 5 bits. 
6. A sign from source B carries 1 bit more than a sign from source A.
7. The magician needs 4 bits to identify the card. Each time the par-
ticipant points to one of four piles, the magician gets 2 bits. The ma-
gician places the stack pointed to by the participant in the second 
position from above. After the first packing together of the piles, the 
card you are looking for is the 5th, 6th, 7th, or 8th card from the top. 
After the second round, it is the 6th from the top.
8. The beam balance can be charged with 5 kg. The smallest weight 
of the weight set is a 1 g weight. When asked „How heavy is the 
item?“, the scale can give 5000 different answers. So we have z = 
5000. It follows H = 12.3 bits. 
9. Image files generally have larger amounts of data than text files. 
11. (a) Amount of data of one disc: 4 bit; Amount of data of a picture: 
60 · 80 · 4 Bit = 19 200 bit  
(b) There are z =1660·80 = 164800 different pictures. From this follows 
the amount o data: 
H = ld 164800  bit = 4800 · ld 16 bit = 19 200 bit.
12. A typical key has 5 notches, seen from the side. These have a 
different depths depending on the individual key. There are 16 dif-
ferent depths. Each notch contains 4 bits, all 5 notches together 20 
bits. In addition, different keys still have different longitudinal pro-
files. From the locksmith we learn that there are 500 different longi-
tudinal profiles. The longitudinal profile therefore contains another 9 
bit. Thus, the key carries a total of 29 bit. 

6.6 A few frequently used encodings
1. For example, the following sequence of numbers was generated:
1011100011111100101100011001011101100101
It corresponds to the sequence of letters: 
abaadaaaaaacbadaacbaabacb
2. An uncompressed binary encoding is shown in the third column of 
the table. The amount of data per character is 3 bits. In column 4 
there is an encoding which is compressed compared to that in col-
umn 3. The amount of data per character is:

H = 0.6 · 1 bits + 0.2 · 2 bits + 0.1 · 3 bits  
+ 0.06 · 4 bits + 0.02 · 5 bits + 0.014 · 6 bits 
+ 0.005 · 7 bits + 0.005 · 7 bits = 1.77 bits

3. By encoding the text word by word: for each word in the dictionary 
there is a sign (which in turn can consist of different binary charac-
ters).
4. On a CD, music is stored for about 80 minutes. With

IH = 1 Mbits/s
we obtain

H = IH · t = 1 Mbits/s · 4800 s ≈ 5 Gbit
8. It just doubles the apparent amount of data, the actual amount of 
data remains the same. The redundancy is thus increased. Some-
one who gets the copy in addition to the CD will not learn anything 
new from the copy, no further uncertainty will be eliminated. 

6.7 Games
1. For the answer to carry one bit, the possible answers must be 
equally probable. So the questions might be „Is it an even number?“ 
Or „Is it one of the numbers 1, 2, and 3?“
The answer to the question „is it the six?“ carries less than 1 bit, 
since the possible answers occur with different probabilities.
2. We assume that Lilly can select one word out of 30 000 (about 
the number of nouns in a dictionary). With 30,000 ≈ 215, Willy needs 
15 yes-no questions when using the optimal strategy. For the an-
swers to be equally probable, Willy will not begin with a question 
like: „Is the word ‚pencil’?“ but for instance with: „Is it alive?“, or „Can 
it be seen from here?“.
3. The apparent amount of data is 1 bit every morning. No insecurity 
is eliminated at all. Thus, the true amount of data is 0 bit. The prob-
abilities of the two responses are 1 and 0, i.e. the most different they 
could be.
4. What he tells is redundant, the apparent amount of data is much 
larger than the actual one. 

6.8 Data reduction
1. The addition reduces the amount of data. One can not conclude 
from the sum on the summands. The same applies to subtraction, 
multiplication and division. Even squaring reduces the amount of 
data, because you can not deduce the sign of the two equal factors 
from the square. When calculating the square root (from a square 
number), the amount of data is not reduced. However, if the result of 
the operation is rounded, the amount of data is reduced again.
3. No, because the information about the sign of x is not lost.
4. The grandfather often repeats, the grandmother talks about unim-
portant details. 

6.10 Data transmission with electromagnetic waves  
 – modulation
1. In 1 s: 77 500 oscillations 
    in 0.1s: 7750 oscillations 

in 0.9 s: 69 750 oscillations
If you want to see the individual oscillations in the representation, 
you can not see the end of a 1-second interval, and vice versa.

binary encoding
sign probability without compression with compression

a 0.6 000 1

b 0.2 001 01

c 0.1 010 001

d 0.06 100 0001

e 0.02 011 00001

f 0.01 101 000001

g 0.005 110 0000001

h 0.005 111 0000000
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