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Most physics students know little about energy flow distributions. The example shows the 
unexpected path of the energy in a familiar situation. 

Every physics student acquires competence in predicting 
the distribution of various vector fields: He or she is able to 
draw electric field lines of some simple but typical charge 
distributions; he or she becomes acquainted with some typ
ical magnetic field distributions. The student also gets a 
good qualitative understanding of the distribution of cur
rent densities of electric currents and of mass currents in a 
flowing liquid. However, the student learns much less 
about energy flow fields, i.e., the flow of that quantity 
which is considered to be one of the fundamental quantities 
of modern physics. In the past. the American Journal of 
Physics has contributed a lot to alleviating this shortcom
ing. 1-1 

In the present article, we will explore the energy flow in 
a charged moving capacitor. Since the electric and the 
magnetic fields between the plates of the capacitor are ho
mogeneous, the problem is mathematically very simple. It 
is, however, conceptually interesting since it displays a sur
prising peculiarity. We will limit ourselves to the discus
sion of two special cases: (i) the movement in a direction 
perpendicular to the plates and (ii) the movement parallel 
to the plates. 

Let us call the distance between the plates d and the two 
lateral dimensions of the plates s and /, respectively, see 
Fig. l. The space between the plates is filled with electric 
field of strength E. There are two spacers to keep the plates 
apart. The energy contained within the field between the 
plates is 

A. Movement perpendicular to the plates 

Let the capacitor of Fig. l move with velocity v 1 per
pendicularly to its plates, i.e., in the positive z direction. 
Consider a reference surface A z that is parallel to the plates 
and halfway between them. and calculate the rate of 
change d WI dt of the energy on the upper side of this sur
face: 

( l ) 

The rate of change of the energy on the lower side of the 
reference surface is the negative of this expression. One 
might now suspect that the energy simply moves together 
with the plates, just like water moves together with the 
walls of its container when the container is moving. Thus 
d WI dt should be equal to the flow of the energy within the 
electromagnetic field through the surface A, 

Whenever energy is flowing within the electromagnetic 
field, the energy current density can be identified with the 
Poynting vector ExH. Multiplying the z component of 
EX H by the area /s of our horizontal reference surface 
yields the energy current flowing in the field from below to 
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above the reference surface. This current should. according 
to our expectations, be equal to the rate of change of the 
energy above the reference surface. Eq. ( l ) . 

Let us do the calculation. First we need to know the 
strength of the magnetic field between the plates. The 
movement of the capacitor can be considered the result of 
a change of the reference frame. A capacitor at rest in 
reference frame S' is moving at velocity v in a reference 
frame S, if Sis moving at velocity -v against S'. To get 
the magnetic field strength in the moving cafacitor one can 
use the corresponding transformation law: 

H=EovXE. (2) 

Using 

we get 

H=€0V1 XE=O. 

Since the velocity is parallel to the electric field strength 
vector, there is no magnetic field. Consequently, the Poyn
ting vector is zero everywhere on our reference surface 
and, therefore, no energy flows across it. Thus we are left 
with the question: How does the energy get from the lower 
to the upper part of the capacitor? 

Until now, we didn't take into account that there is yet 
another connection crossing the reference surface A:: the 
spacers. The spacers are under compressional stress and 
they are moving upward. As a result they transmit energy 
from the lower to the upper part of the system just as we 
would transmit energy to a wagon when pushing against it 
from behind by means of a rod. The energy flow in the 
spacers is obtained by the expression 

(3) 

Here, F is the force exerted by the lower plate on the upper 
plate via the spacers. It is equal and opposite to the force 
F 1 fidd which is exerted by the lower plate onto the upper 
one via the field, and which is due to the tensile stress m 
the direction of the field lines: 

F= -F1 field· 

The force F1 field is obtained by multiplying the negative 
of the zz component a, of the stress tensor of the field by 
the vectorial surface area /se. ( e. being the unit vector in z 
direction). 9 - • 

F1 field= -a)sez · 

The minus sign in this expression is due to the convention 
that tensile stress is associated to a positive value of the 
diagonal components of the stress tensor. 

Since the stress is 

a,=(Eo/2) IEl2, 
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Fig. I. When the capacitor is moving upward, energy is flowing through 
the spacers from the lower to the upper plate. When the capacitor is 
moving to the right. energy is flowing through the plates from right to left. 

we get 

F = ( Eo/2 ) I E 12 lsez , 

and with Eq. (3), 

P= ( Eo/2) I E 12 I v 1 I ls, 

i.e., the value required by Eq. ( 1 ). We see that the transfer 
of the energy from the lower to the upper part of the field 
between the plates of the capacitor does not take place via 
the field itself. The energy is "collected" by the lower plate 
while this plate is moving towards the region that contains 
the field. From there the energy flows through the material 
parts of the system to the upper plate. The upper plate 
"deposits" the energy in the region below it, whereby new 
field is formed. 

We got this result by establishing a global energy bal
ance: The rate of change of the energy above our reference 
surface must be equal to the energy flow through this sur
face. Thus we have taken advantage of the global energy 
conservation. This kind of argument has the advantage of 
being mathematically simple because we don't need to 
know the whole energy flow distribution. However, if we 
are interested in these details we have to apply the local 
continuity equation of the energy: 10 

au 
ar +div S= -j · E'. 

Here, u represents the energy density in the electromag
netic field. In the term j · E', j is the current density due to 
the movement of the upper plate, and E' is the electric field 
due to the charge of the lower plate alone. Thus, E' is not 
the field of the whole capacitor but half of it: E' = E/2. 

The energy density between the plates (not including the 
inner surfaces of the plates) doesn't change with the time. 
The Poynting vector's divergence is zero and there is no 
electric current. Thus the local continuity equation is sat
isfied in a trivial manner. The only place where it tells us 
something interesting is at the capacitor's plates. Here, too, 
div S is zero. However, the time derivative of u as well as 
the term j • E' is nonzero. It is a straight-forward calculus 
to show that au1a1 and -j · E' are equal. There is a point, 
however, that one must pay attention to: If the surface 
charge of the capacitor's plates is supposed to have zero 
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thickness, au; at as well as -j · E' become infinite. Thus 
the charge should be distributed on a layer of finite thick
ness. 

B. Movement parallel to the plates 

Let the capacitor in Fig. 1 now move parallel to its 
plates, i.e., in the positive x direction. Its velocity is v11 . We 
now choose a reference surface Ax perpendicular to the 
plates. Consider the rate of change d WI dt of the energy on 
the right side of the reference surface: 

dW Ea 
2 

dt =1 IEI iv 11 lld. (4) 

The rate of change of the energy on the left side of the 
reference surface is the negative of expression ( 4) : 

Again we compare this rate of change of the energy with 
the energy flow within the field-if there is any. Applying 
the transformation law ( 2) to this case, we get a nonzero 
magnetic field since the direction of movement is perpen
dicular to the direction of the electric field: 

H=EoV11 xE. 
Thus the Poynting vector at any point within the homoge
neous field between the plates is 

S=EXH=c0 IEl2v11 , 

and the energy current strength turns out to be 

P'= ISl/d=c0 IEl 2 1v!t lld. (5) 

Comparing this expression with Eq. ( 4), we see that the 
energy flow in the field from left to right is twice the rate of 
change of the energy on the right side. Again there is dis
agreement. And again we ask ourselves how the energy 
balance can be restored. In other words: Where does the 
excess energy which flows through the field go? 

Here too, besides the field, we have an additional con
nection crossing Ax= the plates of the capacitor. The plates 
are under tensile stress and they are moving to the right. 
Thus they transmit energy from right to left just like a 
drive belt would do, according to the equation 

P''=v11 •F. (6) 

The force F in Eq. ( 6) equals the sum of the forces in both 
plates acting in the x direction. It must be equal and op
posite to the force F 11 field within the field in x direction 
which is due to the compressional stress perpendicular to 
the field lines: 

F=-F11 field· 

The force F 11 field is obtained by multiplying the negative of 
the xx component ax of the stress tensor of the field by the 
vectorial surface area ldex (ex being the unit vector in x 
direction) : 9 

F11 field= -a)dex · 

Since the stress is 

ax= -(Eo/2) IE 12
, 

we get 

F= - (Eo/2) IE I 2/dex. (7) 

This is the force within the plates at our perpendicular 
cross section: the force which the part left of the cross 
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Fig. 2. Half of the energy which is moving within the field from left to 
right flows back to the left through the plates of the capacitor. 

section exerts on the part right of it. One might ask, how
ever, where this force originates: How is the field able to 
exert a force on the left side of the plates, and how can the 
right part of the plates exert a force on the field? The 
answer can only be: By means of the stray field. Indeed, 
only the stray field at both ends of the plates has compo
nents parallel to the plate direction and is therefore able to 
pull outwards. 11 

Inserting ( 7) in ( 6) we get the energy flow within the 
plates: 

P'' = - ( Eo/2) IE I 21 vn I Id. ( 8) 

Now the energy balance is restored. Indeed, by using 
Eqs. (4), (5), and (8) it can be seen that 

dW 
--=P'+P''. 
dt 

Half of the total energy current which goes from left to 
right in the field flows back through the plates and the 

other half serves to transfer the electrostatic field from left 
to right, see Fig. 2. That part of the energy current within 
the field which goes back through the plates has to make 
180° turns within the stray field on the right side of the 
capacitor in order to get into the plates, and it must make 
additional turns when it leaves the plates on the left side of 
the capacitor. Here again, one recognizes the importance of 
the often neglected stray field. 
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