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Abstract The theorem of minimum entropy production 
governs the distribution of a voltage on two resistors 
connected in series and the distribution of an electric current 
on two resistors connected in parallel. It is suggested that 
this important theorem be used in introductory physics 
courses. 

An important thermodynamic theorem claims that, in 
a steady state, the entropy production has i~s 
minimum value if the system is not too far from 
equilibrium. Usually, this theorem is formulated in a 
very general way (de Groot 19 5 2, Prigogine 1962, 
Lavenda 1979, Landau and Lifshitz 1960). Thus, one 
might have the impression that it can only be 
understood in the context of an advanced physics 
course. However, there are some very elementary 
manifestations of this theorem, so that it is possible to 
teach it to students with almost no background in 
thermodynamics. It could be introduced, for example, 
in an introductory course on electricity. 

Let U0 be the potential difference of a voltage
stabilised power supply and R 1 and R 2 two resistors, 
figure l(a). When the switch S is closed V0 distributes 
in a particular way on R 1 and R 2 , namely such that 

Vo+V1+V2=0 (I) 
and 

-=-. 
R1 Ri 

(2) 

Equations (I) and (2) together determine the values of 
Vi and V2: 

Vi= 
R1 

Vo (3a) 
R1 +R2 

Vi= 
Ri 

Vo. (3b) 
R1 +R2 

This distribution of V0 can be considered as a process. 

Zusammenfassung Die Verteilung einer elektrischen 
Spannung auf zwei in Serie geschaltete Widerstiinde und 
eines elektrischen Stroms auf zwei parallelgeschaltete 
Widerstiinde wird <lurch den Satz iiber die minimale 
Entropieproduktion bestimmt. Es wird vorgeschlagen. diesen 
wichtigen Satz bereits in einer Anfangervorlesung zu 
behandeln. 

In a real circuit the capacitances between the various 
parts of the circuit are not zero, and we can draw a 
more accurate picture of our circuit by taking into 
account two of them, figure l(b). Now, the distribution 
of Vo over R 1 and R 2 depends on time: 

(4) 

Generally, V 1 (t) and V2(t) will not satisfy equation (2). 
Immediately after closing the switch (t = 0) the 
distribution is determined by the capacitances C 1 and 
C2 alone: 

C1 Vi (t=O)= C2 Vi(t= 0). 

With a time constant (C1 + C 2)(1/R 1 + l/R 2)- 1 the 
definite voltages, determined by (2), will establish 
themselves: 

V1(l= oo) V2(t= oo) 

R1 Ri 

This state of the circuit is called a steady state. The 
system will not leave it without an exterior influence. 

The steady state is distinguished from all other 
states with V 1(t) and V2(!) from equation (4) by the 
smallest value of the entropy production a. If the 
concept of entropy is not known to the students, one 
may consider instead the dissipated power Pd.ss· If 
the temperature T has a fixed value, e.g. ambient 
temperature, the dissipated power has a minimum 
whenever the entropy production has one, since 

Pdiss =Ta. 

0143-0807 /86/020130 + 02 $02.50 © 1986 The lnatitute of Physics &; the European Physical Society 



Theorem of minimum entropy production 

s 

(a) (b) 

Figure I When the switch Sis closed U0 distributes on R 1 

and R 2 according to equation (2). (b) is a more realistic 
representation than (a) because it shows two of the 
capacitances existing in a real circuit. In (b) it is seen that 
the distribution of U0 is the result of the establishment of a 
steady state. 

The dissipated power in our example is: 

u; u? 
PdJSs=-+-. 

R1 Ri 

With U1 + U2 + Uo =0 we get 

u; (Uo + U1)2 

pdiss=-+----
R1 Ri 

To get the particular value U;"'" of the voltage over R 1 

for which Pctiss is a minimum we put dPctJSs/d U1 = 0: 

2U;"'" 2(Uo + U;"'") 
--+ 0 

R 1 R2 

Thus, we obtain 

and with (1) 

Umin_ 
I -

Umm_ 
2 -
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i.e. the same values as those given by equations (3a) 
and (3b). 

It is easy to show that the theorem equally applies 
to the distribution of a current / 0 on two resistors R 1 

and R 2 connected in parallel. States which are different 
from the steady state can be obtained in this case when 
an inductance is connected in series with each resistor. 
A calculation analogous to the one above shows that 
the power dissipation is at a minimum if R 1/ 1 =R 2/ 2 • 

/1 and 12 being the electric currents through R 1 and R2 
respectively. 
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