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Which way does the light go?
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Pictures of the energy density and the energy flow in distributions of incoherent light for various
two-dimensional situations are shown and discussed. Rules are introduced that allow one to sketch
and to interpret such pictures. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

Consider the light in a room. The light is emitted by light
sources, for example, the sun, lamps, or a television screen
and is eventually absorbed by other bodies. Because light
carries energy, energy flows from the sources to the absorb-
ers. Now ask a student for the distribution of this energy
flow. There is a good chance that he or she will be embar-
rassed.

This question is similar to questions about the nature of
the electric field lines in electrostatics. In the latter case,
physics students are expected to be able to draw a qualitative
field line diagram, but they would have only a poor feeling
for the energy flow in a standard light field. There are at least
two reasons for this deficiency: they never have seen such
diagrams, and they do not know the methods or rules for
sketching them.

Our goal is to remedy this situation in both respects. Pic-
tures of the energy and energy flow distributions will be
shown and discussed for several common situations, and
rules will be introduced that allow us to sketch and interpret
such pictures.

The energy flow in a light field plays an important part in
many technical applications and is of interest in nonimaging
optics.1 For example, nonimaging optics asks for the flow of
light from area A to area B without requiring a point-to-point
imaging of A on B. The objective may be to get the light
from A onto the smallest area B that is allowed by the second
law of thermodynamics.2 The corresponding device is called
a light concentrator, and is used, for example, in connection
with solar collectors and the collection of the light from a
Cerenkov counter.3 Another application of nonimaging optics
is to obtain a homogeneous distribution of the light on area
B, as might be required for room or floodlight illumination.
The quality of such a device can be judged by means of an
energy flow diagram. Energy flow distributions are also
needed for ultrahigh frequency applications. An example is
channeling ultrahigh frequency electromagnetic radiation
into a street or railway tunnel in order to communicate with
the vehicles.4 Finally, the energy flow is important for com-
puter graphics in order to create photo-realistic pictures.5

Although these applications are sufficiently interesting to
give some attention to the question of the energy flow, our
object is provide insight into the nature of light. In our opin-
ion, this consideration could be a natural complement to geo-
metrical and wave optics.

We begin in Sec. II by introducing the radiance and two
relations that enable us to calculate the energy density and
the energy flow density when the radiance is known. In Sec.
III, rules will be formulated for drawing qualitative energy
flow diagrams. The most important part of the article is in

Sec. IV, where diagrams of the energy flow in standard situ-
ations are shown and discussed. In Sec. V we discuss the
question in the title of the article, Which way does the light
go?

II. RADIANCE, ENERGY FLOW DENSITY, AND
ENERGY DENSITY

To describe the distribution of incoherent light, an appro-
priate quantity is the radianceL.6 The two quantities that are
of interest, the energy flow densityj and the energy density
e, can be calculated from the radiance. The energy flow den-
sity is obtained by

j5E
4p

LdV, ~1!

and the energy density by7

e5
1

c E4p
LdV. ~2!

The vector quantitydV is the differential of the solid angle,
and dV is its magnitude.8 The integration is over the full
solid angle 4p in Eqs.~1! and ~2!.

To understand the meaning ofL, consider Eq.~1!, which
can be considered to define the radiance. Equation~1! tells us
that radiance is energy per unit time, area, and solid angle. It
is a local quantity in two respects;L depends on the spatial
coordinatesx, y, andz and at every position,L depends on
the chosen direction, which is defined by the polar and azi-
muthal anglesq andw.9 In other words,L(x,y,z,q,w) tells
us how much light in the direction~q, w! is found at position
~x, y, z!.

The radiance is essentially what we perceive with our eyes
as can be seen by considering a measuring device forL, a
radiance meter~see Fig. 1!. A cylindrical tube is terminated
at one of its ends by a lens of diameterd and closed at the
other end. The length of the cylinder is equal to the focal
length f of the lens. The inner sides of the walls are com-
pletely absorbing. Located at the center of the closed end,
that is, at the focus of the lens, is a small circular light de-
tector of diameterd8. The device resembles a camera fo-
cused to infinity. In contrast to a real camera, we are inter-
ested only in the light that is parallel to the optical axis. The
radiance meter detects light at a particular position and with
a particular direction. The position is that of the entrance of
the meter. Thus, the spatial resolving power is determined by
the diameter of the lens. The direction is essentially that of
the optical axis of the meter. The angular resolving power in
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the geometrical optics limit is equal to the ratiod8/ f .10 With
such a meter we can verify an important theorem11 ~see Fig.
2!:

On a straight line, the radiance in the direction
of this line is the same everywhere, as long as the
refractive index is constant, and as long as the
line does not meet a region where light is dif-
fused, absorbed, or emitted.

This observation is equivalent to a very familiar experience:
An object does not appear brighter to our eyes, when we go
closer to it. We shall need this theorem to calculate energy
flow and energy density distributions.

For Eqs.~1! and~2! to be valid, the light must be incoher-
ent, because it has been assumed that the energy flow density
and the energy density were obtained by adding up differen-
tial contributions of these quantities. This assumption is true
only for incoherent light. For coherent light, the field
strengths would have to be added instead of the energy
flows. Incoherence will be assumed throughout this article.12

Moreover, we have to assume that the light satisfies the geo-
metrical optics limit. Otherwise, the concept of a light ray
would not be applicable and the integrations in Eqs.~1! and
~2! would not be possible.

Note that Eqs.~1! and ~2! describe an averaging process.
BecauseLdV stands for an elementary light bundle, Eq.~1!
tells us thatj is obtained by averaging all these bundles,
taking into account their respective directions. Two light
bundles of the same radiance, but opposite directions cancel
each other. The integral in Eq.~2! stands for an averaging
process, which results in the total amount of light, indepen-
dent of the directions of the various contributions.

Although most of the diagrams of Sec. IV could have been
drawn qualitatively by using the rules of Sec. III, they were
realized by means of a program calledLIGHTLAB .13 As input,
LIGHTLAB asks the user to place objects on a drawing plane:
light sources, mirrors, scatterers, and absorbers. These ob-
jects form what we call a scenery.

Because flow diagrams in a three-dimensional representa-
tion would be rather complex, we only consider cases where
all of the flow lines remain in a plane. We thus either assume
that all of our objects have infinite extension and transla-
tional symmetry in the direction perpendicular to the draw-
ing plane, or we imagine the world to be two-dimensional.
Then,L depends only on two positional coordinatesx andy,
and one directional anglew: L5L(x,y,w). When calculating
the energy density and the energy flow density from the ra-
diance by means of Eqs.~2! and ~1!, respectively, we only
have to integrate overw. In a two-dimensional world, the
surfaces of the light emitting, absorbing, reflecting, and scat-
tering objects reduce to lines.

LIGHTLAB calculates the energy flow lines in two steps.
First, the surfaces of all of the objects of the scenery are
divided into many small surface elements; for every surface
element, the directions are divided into many small angular
elements. The energy flow in each of these surface/angular
elements can be considered the quanta of the radiance at the
objects’ surfaces.LIGHTLAB calculates the radiance quanta
for the surfaces of all of the objects by using the technique of
ray tracing. The program chooses the first light source, on
this light source the first surface element, and at this surface
element the first angular element, and then calculates the
path of the corresponding light ray. This ray may hit some of
the other objects. The energy flow of this first radiance quan-
tum contributes to one of the surface/angular elements of the
objects that have been hit.

In the same way the contribution of the other radiance
quanta of the source to the radiance of the other bodies is
calculated and then that of the other sources. Now, the radi-
ance is known for the surfaces of all the bodies of the scen-
ery. A particular problem arises when there are bodies with a
scattering surface. Then, at the point of impact, the ray-
tracing process has to go in the directions of all of the angu-
lar elements, the energy flow per quantum being correspond-
ingly weighted.

The last step is simple. According to Eqs.~1! and~2!, the
energy density and the energy flow is calculated at any given
point by summing up the energy flow contributions of the
radiance quanta going through this point. The method of ray
tracing can be applied because of the validity of the theorem
of Sec. II, according to which the radiance of a certain di-
rection is constant on a straight line in this direction.

The results are displayed in the following way. The energy
density is represented by small circles, their surface area be-
ing proportional to the energy density. The energy flow dis-
tribution can be represented either by vector arrows on a
rectangular grid or by stream lines. We have opted for the
more suggestive stream line representation, although it suf-
fers from the same flaws as any other stream line or field line
diagram.14,15

III. RULES FOR QUALITATIVELY DRAWING
ENERGY FLOW DIAGRAMS OF LIGHT FIELDS

All physics students know the rules that allow them to
sketch electric field lines and to interpret field line pictures.
For comparison, let us recall some of these rules:

Fig. 1. Radiance meter. It detects that light at thepositionof the lens that
has thedirection of the optical axis of the lens.

Fig. 2. On any light ray the radiance in the direction of that ray is constant.
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~1! Electric field lines begin on positive and end on negative
charges.

~2! A field line has a kink only where the charge density or
the dielectric constant has a discontinuity.

~3! Two field lines never cross one another.
~4! Field lines begin or end perpendicularly at the surface of

electric conductors.
~5! A field line picture has the same symmetry as the bound-

ary conditions~the system of sources, conductors, and
dielectrics!.

In the same way, rules can be formulated for creating
qualitative pictures of energy flow lines in light fields or for
interpreting such diagrams. We shall formulate some of these
rules and make a short comment on each of them.

~1! Energy flow lines never cross one another. This rule is
valid for every flow line diagram, because the corresponding
vector quantity has a definite value at every position.

~2! Energy flow lines begin on light sources and end on
absorbers. This rule is an expression of the continuity equa-
tion for the energy.

~3! Any symmetry of the object, light sources, absorbers,
mirrors, etc., is the cause of a similar symmetry of the energy
density and the energy flow diagram.

~4! In the immediate vicinity of a reflecting surface or of a
white diffusing surface, the energy flow lines run parallel to
these surfaces. This rule holds because no energy enters such
surfaces. The flow vector is not allowed to have a component
perpendicular to them.

~5! At a great distance from a collection of sources, reflec-
tors, scatterers, and absorbers, the energy flow lines run ra-
dially outwards. To the integral of Eq.~1! there are only
contributions from a small angular domain.

~6! In the immediate vicinity of the surface of an isotropic
radiator, the energy flow lines are perpendicular to this sur-
face, as long as no other objects or other points of the same
object contribute to the light field at these locations. Isotro-
pic means that at any surface point of the radiator, the radi-
ance does not depend on the polar and azimuthal angles,q
andw. To the integral in Eq.~1! there are contributions only
from the half of the solid angle into which the surface is
radiating. Because the integrand is constant, the resulting
vector is perpendicular to the surface.

IV. EXAMPLES

Energy flow diagrams are shown for the following ex-
amples. For comparison we also sometimes show the famil-
iar light ray representation. Where it is interesting, the energy
density diagram is depicted.

A. A spherical light source

Two realizations are the sun and a spherical frosted lamp.
In our two-dimensional world, such a source appears as a
circle. Figure 3~a! shows some arbitrarily chosen light rays,
and Fig. 3~b! is the energy flow diagram. The drawing is
similar to how children sometimes draw the sun. Apparently,
they are not so wrong.

B. Cloudy sky

Imagine the surface of the earth to be planar and com-
pletely absorbing. At a certain altitude, there is a continuous
cloud cover~see Fig. 4!. For a physicist who is accustomed
to geometrical optics and wave optics, this situation is awk-

ward: completely diffuse light in half of the full solid angle
@Fig. 4~a!#. On the contrary, in the energy flow representation
shown in Fig. 4~b!, we have the physicist’s favorite field: a
homogeneous field. Note that from an energy flow diagram,
the angular width of the radiance distribution, that is, the
aperture of the light, cannot be read. The sun in the zenith
would cause the same energy flow diagram as the clouds in
Fig. 4.

C. Light beam incident on a plane mirror

Figure 5~a! shows the familiar diagram using the method
of geometrical optics, and Fig. 5~b! is the energy flow dia-
gram. Outside of the triangular domain of penetration, the
light rays and the energy flow lines have the same shape. Not
so, however, within the penetration region. As is to be ex-
pected, the energy flow lines run parallel to the mirror’s sur-
face according to rule~4!.

D. Two mutually penetrating light beams

The beams have different energy flow densities. The rep-
resentation of geometrical optics is shown in Fig. 6~a!. The

Fig. 3. The light in the vicinity of the sun:~a! light rays; ~b! energy flow
lines.
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energy flow diagram shows that in the penetration region,
energy is changing from one beam~in the sense of geometri-
cal optics! to the other one@see Fig. 6~b!#.

E. The Lambertian radiator

If the radiance of the light emitted by a body is the same
for all of the points of its surface and for all directions, the
radiator is called Lambertian. It is the most uniform way a
body can radiate.

According to rule~6!, from a single Lambertian radiator
whose surface is nowhere convex, the energy flow lines start
perpendicularly in every point of the surface~see Fig. 7!.
There is a simple counterpart to this situation. Imagine the
entire space to be filled with light that is completely homo-
geneous and completely diffuse~homogeneous in the space
of directions!. Thus, for every position and at every position

for every direction,L has the same value. Now, immerse into
this light field a body that has the same shape as the body at
the center of Fig. 7, but which is absorbing instead of radi-
ating. The corresponding energy flow diagram has the same
shape as that of Fig. 7, the only difference being that the flow

Fig. 4. The light when the sky is cloudy:~a! light rays;~b! energy flow lines.

Fig. 5. Reflection of a light beam on a mirror:~a! light rays;~b! energy flow
lines.

Fig. 6. One light beam ‘‘penetrates’’ another one. Do the beams cross or
avoid one another?~a! Light rays; ~b! energy flow lines.

Fig. 7. Lambertian radiator or absorber.
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directions are inverted. From now on we shall omit the ar-
rows in the flow diagrams whenever the flow direction is
obvious.

F. Light beam incident on a white surface and on a
frosted glass surface

In Fig. 8 the radiance of the outgoing light at the scattering
surface is assumed to be the same for every direction. For the
mat glass plate in Fig. 9, the radiance is assumed to be the
same for the forward and for the backward scattered light.
The backscattering of light manifests itself in the backbend-
ing of the flow lines at the left side of the frosted glass. The
effect is particularly pronounced for the two outermost lines.

G. Straight tube with reflecting or white walls

The end surface is a Lambertian radiator, the walls are
perfect mirrors~Fig. 10! or perfectly white scatters~Fig. 11!.
In both cases, the energy flow is homogeneous within the
‘‘tube’’ @see Figs. 10~a! and 11~a!#. The flow is less for the
scattering walls, although the radiators are identical in both
cases. The reason for this difference becomes obvious in the
energy density diagrams, Figs. 10~b! and 11~b!. Although the
energy density is low and constant in the reflecting-wall tube
when going from left to right, it decreases within the tube
with the scattering walls. In the language of geometrical op-
tics, in the latter case light is backscattered and reabsorbed
by the radiation source.~Like any thermal radiator, our light
source is supposed to be a perfect absorber.! The backscat-
tered light contributes to the energy density, but compensates
part of the energy flow from left to right. Imagine now that
we make both tubes longer and longer. The diagrams of the

tube with the reflecting walls will not change significantly,
whereas from the tube with the white walls the energy leak
becomes smaller and smaller.

H. Bent tube with reflecting walls

The situation of Fig. 12 is not very different from the
straight reflecting tube of Fig. 10. Again we observe an en-
ergy flow that reminds us of a laminar flow of a liquid. The
irregularities of the energy density are even more pro-
nounced than in Fig. 11~b!.

I. Closed and spiraling stream-lines

Figure 13 shows a phenomenon that is well-known from
Poynting vector fields: closed energy flow lines. They appear
in many situations. The example of Fig. 13~a! is a very
simple case. In Fig. 13~b!, we have modified the scenery
only slightly: In the center of the region with closed flow
lines in Fig. 13~a!, a small absorber is placed. Now, one of
the incoming flow lines is spiraling toward the absorber in-
stead of bending back together with the other incoming lines.
Here, a phenomenon is observed that we had already dis-

Fig. 8. Scattering of a light beam by a perfectly white surface.

Fig. 9. Scattering of light from a flat Lambertian source by a mat glass plate.

Fig. 10. Lambertian radiator and ‘‘tube’’ with reflecting walls:~a! energy
flow density;~b! energy density.

Fig. 11. Lambertian radiator and tube with white walls:~a! energy flow
density;~b! energy density.
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cussed in the context of electric field lines:15 The line density
does not even approximately reflect the magnitude of the
energy flow vector. If the absorber is made sufficiently small,
the line density in the region of the spiral can be made arbi-
trarily high.

J. Light concentrator

Figure 14 shows a simple version of a light concentrator.
The light that enters opening A at the left-hand side of the
mirrors is channeled to the smaller opening B at the right. A
three-dimensional analog of this concentrator would be a
conical mirror. The maximum value of the concentration fac-
tor c, defined asc5A/B, is determined by the second law of
thermodynamics. Indeed, the concentrator deforms the phase
space region occupied by the light: the light entering the
concentrator has a great extension in space and occupies only
a small angular interval, that is, its extension in momentum
space is small, whereas the light reaching the exit of the
concentrator has a great angular and a small spatial spread-
ing. The trade-off between position and momentum is an
expression of the reversibility of the process: No entropy is
produced as the light proceeds through the concentrator.

K. Illumination of a surface

In Fig. 15, an arrangement of two mirrors is used to illu-
minate a distant surface by means of a flat Lambertian radia-
tor. The difference between Figs. 15~a!, 15~b!, and 15~c! is
the angle extended by the mirrors. If the mirrors are parallel,
Fig. 15~a!, there is no angular concentration at all. In Fig.
15~b!, the bundling effect is weak, because the angle be-
tween the mirrors is too great. With the mirrors of Fig. 15~c!,
a floodlight effect is obtained. The problem of obtaining an
optimum bundling effect is analogous to finding the maxi-
mum concentration factor of a light concentrator.

Fig. 12. Lambertian radiator and a bent tube. The inner sides of the walls are
reflecting:~a! energy flow density;~b! energy density.

Fig. 13. ~a! With two mirrors closed energy flow lines can be created.~b!
The energy flow spirals around a small absorbing object. It is obvious that
the line density does not correspond to the amount of the flow density
vector.

Fig. 14. Simple light concentrator.
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L. Sunshine and a room with a window

Figure 16 shows a more involved situation: a room with a
window. The walls and the ceiling of the room scatter 80%
of the incoming light, the floor only 30%. The sun is 15°
above the horizon. But there is also diffuse light from the
sky. The direction of the sun can be read from the figure in
several ways: It is identical with that of the large light beam
going from the window to the mirror, and it can also be read
from the row of kinks in the energy flow lines on the left-
hand side of the wall outside of the house.

V. WHICH WAY DOES THE LIGHT GO?

There is no doubt that light goes in some way from a
source to an absorber. However, if we are asked for the path
of the light from the source to the absorber, we can easily get
into trouble. The question of the trajectory or the path of

something has a clear meaning only if this ‘‘something’’ can
be tracked in space and time. But photons, the quanta of
light, cannot be tracked. Therefore, quantum electrodynam-
ics cannot tell us which way the light goes.

There are, however, ersatz concepts that can give us the
trajectory in certain circumstances. Such concepts are based
on a particular model of light. One model interprets the light
rays of geometrical optics as the path of the light. Only when
this model is used, does it make sense to say that light propa-
gates rectilinearly or to formulate the law of reflection in the
usual way. A generalization of this model is used when in-
terpreting Fermat’s principle: The light takes the trajectory
that minimizes the ‘‘optical path length.’’

We should not be surprised that other models give differ-
ent answers for the path of the light. That is what happens
when interpreting the energy flow lines as the trajectories of
light. The question of where the light is and its path becomes
equivalent to the distribution of the energy density and of the
energy flow density.16 Note that this description is neither
false nor correct, just as the statement of geometrical optics
that light bounces back from a mirror.

Let us consider again the example of Fig. 6. By interpret-
ing the energy flow lines as the trajectories of the light, we
are led to say that part of the light of one beam is deviated
into the other, whereas geometrical optics tells us that the
two light beams penetrate each other undisturbed. Neither of
the two statements is more correct than the other. Each of
them is a convenient interpretation in the framework of a
particular mathematical description.

Fig. 17. Cloudy sky, the earth is completely absorbing. What are the energy
flow lines? The flat object can be black, white, or reflecting. Next, assume
that the sky is not cloudy and the sun is in the zenith.~For simplicity,
assume that the sky is dark instead of blue.!

Fig. 15. Flat Lambertian light source and two mirrors:~a! no angular con-
centration;~b! weak angular concentration;~c! good angular concentration.

Fig. 16. The left-hand side shows a room. Light is coming from outside:
The sun is shining, and there is diffuse light from the sky.
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VI. CONCLUSION

Our objective was to gain a feeling for the shape of energy
flow distributions in typical light fields, in the same spirit as
we have a feeling for the electric field distribution in stan-
dard situations. We hope that you are now able to solve the
problem of Fig. 17. Perhaps you will find an opportunity to
propose it to one of your colleagues.
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