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Detours due to the historical development 
of physics – Knowledge that got lost
Today’s science curriculum is the result of a process of evolution. It 
reflects the process of the development in great details. Those who 
are learning science have to follow a path that is very similar to the 
course of the historical development. They have to take detours, to 
overcome unnecessary obstacles and to reproduce historical errors. 
They have to learn inappropriate concepts and employ outdated 
methods. When developing the Karlsruhe Physics Course we have 
tried to eliminate such obsolete concepts and methods. 

F. Herrmann and G. Job:
Series of articles “Historical burdens on physics”
F. Herrmann and G. Job:
The historical burden on scientific knowledge, Eur. J. Phys. 17 (1996), p. 159

In the history of science it happened time and again that important 
works and results were not accepted by the scientific community: 
When they arrived it was too late. A change, – although it might have 
been extremely useful – had become too tedious. Here are three 
examples:
1. The physical quantity entropy had three chances to become a 
quantity that would be easy to grasp, even for a beginner; the first 
chance was after the works of Joseph Black and Sadi Carnot, the 
second after the work of H. L. Callendar and the third through the 
book A new concept of thermodynamics by Georg Job. All of these 
chances were missed. The corresponding ideas had been incor-
rectly interpreted or simply ignored.
2. The physical quantity force with the corresponding terminology – 
a sophisticated construction of Newton – turned out to be the 
strength of the current of momentum. The corresponding publication 
from 1908 by Max Planck remained virtually unnoticed.
3. The first 50 years after the introduction of the energy into physics 
it was not clear if energy obeys a local conservation principle. It was 
expected but not proven. For that reason a terminology came in use 
that took these doubts into account. The publication of 1898 by Gus-
tav Mie, in which it is shown that energy obeys a continuity equation 
did not lead to a more appropriate and simple language. We still 
speak about energy as if we had to be prepared that one day ac-
tions at a distance might be discovered.
The Karlsruhe Physics Course takes these buried findings into ac-
count. Since the original literature is not easily accessible, here 
some links:
J. Black: Lectures on the elements of chemistry, Mundell and Son, Edinburgh (1803)
S. Carnot: Réflexions sur la puissance motrice du feu, Librairie scientifique et technique, A. 
Blanchard, Paris (1953)
H.L. Callendar: The caloric theory of heat and Carnot’s principle, Proc. Phys. Soc. London 23 
(1911), S. 153
G. Mie: Entwurf einer allgemeinen Theorie der Energieübertragung, Sitzungsberichte der Kai-
serlichen Akademie der Wissenschaften. CVII. Band VIII. Heft (1898), S. 1113
M. Planck: Bemerkungen zum Prinzip  der Aktion und Reaktion in der allgemeinen Dynamik, 
Physikalische Zeitschrift, 9. Jahrgang, Nr. 23 (1908), S. 828
G. Job: Neudarstellung der Wärmelehre – Die Entropie als Wärme, Akademische Verlagsge-
sellschaft Frankfurt (1972)

Substance-like quantities 
in the Karlsruher Physics Course (KPC)
In the KPC the substance-like quantities are the basic quantities. A 
substance-like or extensive quantity is a quantity, whose value refers 
to a region of space:
mass
energy
momentum
electric charge
entropy
amount of substance

To each of these quantities a density can be defined, and to each of 
them corresponds a current with a current strength and a current 
density. To each of them a simple and direct intuitive representation 
can be formed: It is convenient to imagine them as a measure of the 
amount of a substance, i.e. to apply the substance model.
The use of the substance model in the KPC has two consequences: 

In mechanics momentum and momentum currents are treated 
right from the beginning.
In thermodynamics entropy and entropy currents are treated 
right from the beginning. 

Analogies in the Karlsruhe Physics Course
The KPC takes advantage of several analogies:
1. The analogy between the substance-like quantities allows for a 
simple mental representation of many physical processes as a flow.

2. The analogy between momentum, electric charge, entropy and 
amount of substance allows for the use of a model, where a differ-
ence of the values of the intensive variable appears as the cause of 
a current of the corresponding extensive quantity.

3. The analogy between momentum and angular momentum allows 
for a simple description of rotational dynamics.

4. The analogy between electric and magnetic field strength results 
in a simplified presentation of magnetostatic phenomena.

5. The analogy between energy and amount of data (information) 
indicates similarities between phenomena and devices of the mod-
ern energy and information techniques. 

The genesis of the Karlsruhe Physics Course
Before beginning with the development of a school version there 
was always the work on a version for the University. In this way it 
was assured, that the course could serve as a solid basis for any 
follow-up course. The first of a newly developed teaching unit took 
always place at the Europa-Gymnasium at Wörth.
1988-1992: Test of the KPC at 20 selected schools in the Federal 
State of Baden-Württemberg, under the supervision of the Ministry 
for Culture and Sport.
1994: Thanks to a special clause in the official curriculum the KPC 
can be used at all High Schools in Baden-Württemberg. The course 
is marketed by the Landesinstitut für Erziehung und Unterricht (Fed-
eral Institute for Education and Instruction) at Stuttgart.
1998: Printing and marketing is taken over by the AULIS publishing 
house.
1996-2001: The KPC is evaluated in a PhD theses at the IPN (Leib-
niz Institute for Science and Mathematics Education).
2004: Accreditation of the lower secondary KPC books in Baden-
Württemberg; ideas of the KPC enter the new education standards; 
text books of other authors take over KPC ideas.

The developers of the KPC
Author: Friedrich Herrmann, Karlsruhe Institute of Technology
Numerous basic ideas stem from books and other publications of, 
and from personal contacts with Gottfried Falk (until his death at the 
University of Karlsruhe) and Georg Job (University of Hamburg).

The following PhD students and other collaborators at the Institut für 
Didaktik der Physik participated in the development of the KPC: 
Karen Haas-Albrecht (Nuclear physics)
Holger Hauptmann (Electrodynamics, oscillations and waves, 
! ! ! ! ! rotational mechanics, thermodynamics)
Matthias Laukenmann (Atomic and solid state physics)
Lorenzo Mingirulli (Mechanics)
Petra Morawietz (Thermodynamics)
Dieter Plappert (Energy and energy carriers)
Peter Schmälzle (Electricity, data physics)

 

Gottfried Falk Friedrich Herrmann und Georg Job

Preface

Energy E Momentum p Electric charge Q Entropy S Amount of 
substance n

Energy current P Momentum 
current F

Electric current I Entropy current IS Substance 
current In

Momentum p Electric charge Q Entropy S Amount of 
substance n

Momentum 
current F

Electric current I Entropy current IS Substance 
current In

Velocity v Εlectric potential φ Temperature T Chemical potential μ

Momentum p Angular momentum L

Momentum current F Angular momentum current M

Velocity v Angular velocity ω

Mass m Moment of inertia J

Electric charge Q Magnetic charge Qm

Electric field strength E Magnetic field strength H

Energy E Amount of data H

Energy current P Data current IH
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1
Energy and energy carriers



1.1 Energy
Automobiles need gasoline, diesel locomotives need diesel oil, and 
electric locomotives need electricity. Every vehicle needs fuel, but 
not only vehicles need it. If you walk or ride a bicycle, you also use 
up fuel. A person walking or riding a bicycle uses up food. All these 
‘fuels’ have something in common: A vehicle or a person gets en-
ergy through them. Energy is what is really needed for transporta-
tion.
Energy has something to do with effort. If we pull a wagon, we make 
an effort. We need energy to pull the wagon. While we pull we are 
sending energy into the wagon. 

Motion is not the only thing energy is needed for. Many other proc-
esses take place only when energy is constantly being supplied. 
Some kind of fuel is always needed for heat production, such as 
wood, coal, natural gas, heating oil, and electricity. Again, energy is 
what counts, and it is supplied together with the “fuel”.

The propellants or fuels by which energy gets into a motor or an 
oven are called energy carriers. Wood, coal, gasoline, diesel oil, 
natural gas, and electricity are energy carriers. 
If one wishes to  move something or to heat something, only the en-
ergy is important. Which carrier is used is often of no importance. 
But if it is the energy which really matters, why then don’t we use 
energy without a carrier? You might think that this would be easier. 
Unfortunately, it is impossible because energy without a carrier does 
not exist.    

Energy is a physical quantity. What does this mean? It is possible to 
give it a number just as we do with a length, a time span, or a tem-
perature. It has a unit of measurement just as length, time span, or 
temperature do. The unit of measurement of energy is the Joule, 
abbreviated to J. Large amounts of energy are measured in Kilo-
Joule (kJ) or Mega-Joule (MJ):
1 kJ = 1000 J
1 MJ = 1000 kJ
Energy has a symbol just like other physical quantities do. Just as 
the letter l is used for length, and time is shortened to  t, the letter E 
is used for energy. If a car’s fuel tank contains an amount of energy 
of 800 Mega-Joule, one can briefly write:
 E = 800 MJ. 
Don’t mix up the symbol E for energy with the symbol J for its unit.  
One can say that a kilogram of fuel contains a certain amount of 
Joules, Table 1.1. The energy content for food is often printed on the 
package. A completely charged 4.5-volt battery contains about 
10  kJ. A fully charged auto battery has around 2000  kJ, approxi-
mately the same as a bar of chocolate. The engine of a freight train 
uses up about 10,000 MJ per hour, a wristwatch with a digital dis-
play uses 0.1 J.   

To measure the amount of energy, different methods are used for 
different energy carriers. To determine the energy consumption of a 
car, we simply multiply the quantity of gasoline used (measured in 
kg) by the corresponding value in Table 1.1. The energy delivered to 
a household by means of electricity is measured by an electricity 
meter. 
 

Energy is needed in order to move something.

Energy is needed for producing heat.

Fuels, propellants, food, and electricity are energy carriers. 
There is no energy without a carrier.

coal 30 000 kJ pro kg

briquets 20 000 kJ pro kg

freshly cut wood   8 000 kJ pro kg

propane gas 46 000 kJ pro kg

heating oil 42 000 kJ pro kg

gasoline 43 000 kJ pro kg

Table 1.1 
Energy contents of some fuels



1.2 Energy  sources and energy receivers
Fig. 1.1 shows a section of a central heating unit. Water is heated in 
the boiler which is usually in the cellar. The heated water is pumped 
through pipes to the individual radiators. Only a single radiator is 
shown in Fig. 1.1. We call the boiler the energy source and the ra-
diator, the energy receiver. The car engine in Fig. 1.2 obtains its en-
ergy from the gas tank with the help of the energy carrier gasoline. 
In this case, the gas tank is the energy source and the engine is the 
energy receiver. The energy for the light bulb in Fig. 1.3 comes from 
the power plant via the energy carrier electricity. The power plant is 
the energy source, the light bulb is the energy receiver.  

When energy flows somewhere (with a carrier, of course), what the 
source is and what the receiver is can be found out. By following the 
path of the energy carrier backwards to its beginning, one finds the 
energy source. If the path is followed forward to its end, one finds 
the energy receiver. 
The processes in the figures 1.1 to 1.3 have something in common: 
In each case energy is flowing together with its carrier from a source 
to a receiver. If details are unimportant to us and when we wish to 
express the similarity of the devices and systems shown, then it is 
convenient to represent the processes symbolically, as in the figures 
1.4 to  1.6. Energy source and energy receiver are each represented 
by a box. The boxes are connected by a thick arrow representing 
the energy, and by a thin arrow representing the energy carrier. We 
call these symbolic figures energy flow diagrams.

We wish to  complete Figures 1.4 to 1.6 by adding another aspect to 
them. The energy carrier, along with the energy, goes from the 
source to the receiver. After it has discharged its energy, it generally 
leaves the receiver. This is represented in Figures 1.7 to  1.9. You 
can see that different things can happen to the energy carrier after it 
has left the receiver. 

In the case of a central heating unit, it is returned to the source. The 
water flows through the feed pipe to  the radiator. It gives energy 
from there to the room being heated, and in the process, it cools 
down. It then flows back to the boiler through the return pipe where it 
is reheated and then recirculated. This is similar to a drink filled into 
bottles with refundable deposits. After they have been emptied, the 
bottles are returned to the company where they came from. We will 
call the water in the central heating unit a ‘refundable-deposit-bottle 
energy carrier’. 
It is a different story with the energy transport in Fig. 1.8. The gaso-
line burns in the motor and transforms into exhaust. Naturally, this 
exhaust gas is not returned to the gas tank. It goes out the exhaust 
pipe, it is ‘thrown away’. This is similar to one-way bottles, so we call 
gasoline a ‘one-way-bottle energy carrier’. 
It is easy to distinguish between the two kinds of energy carriers. 
Refundable-deposit-bottle energy carriers flow in a closed circuit. 
Energy source and energy receiver are always connected to each 
other by two conduits (pipes, wires, etc.). The one-way-bottle energy 
carrier, on the other hand, has only one conduit from the source to 
the receiver. 
Electricity must be a refundable-deposit-bottle energy carrier be-
cause an electric cable has two wires, Fig. 1.9. 
Sometimes it is not easy to decide if one is dealing with a one-way 
or a refundable-deposit energy carrier.
An energy carrier we have not mentioned yet is light. It carries the 
energy from the Sun to the Earth, Fig.1.10. The energy receiver has 
no outlet for the light. Therefore light is a one-way-bottle energy car-
rier. We will go into this in more detail later. 

Hot air transports energy in exactly the same way that warm water in 
central heating units transports energy from the boiler to the radia-
tors. This is put to use in heating automobiles. 
A jackhammer (pneumatic hammer) needs to be connected to a 
compressor in order to work. It receives its energy from the com-
pressor. The energy carrier is the compressed air. It is a one-way-
bottle energy carrier. 
Liquids under pressure are also used as energy carriers. A water 
turbine obtains its energy by water under high pressure. The shovel 
and arms of a shovel excavator get their energy from hydraulic oil 
under high pressure. 
Air and water can serve as energy carriers without being warm or 
under pressure. It suffices that they are moving fast. A windmill, for 
example, gets its energy through the energy carrier ‘moving air’.
If the motor of a device (maybe a water pump), is driven by a rotat-
ing shaft, then energy flows from the motor through the shaft and to 
the machine. The carrier by which the energy gets through the shaft 
is called angular momentum. There is always a return path for angu-
lar momentum: It flows from the driven device back to  the motor 
through the foundation upon which the device and motor are in-
stalled. It is therefore a return-deposit-bottle energy carrier. This, 
too, we will go into later. 
In Table 1.2, all these energy carriers are listed. 

Propellants, fuels, food

electricity

light

angular momentum

hot water, hot air

water and air under pressure

moving water, moving air

Table 1.2 
Energy carriers

Fig. 1.1
Energy flows from the boiler with 
the energy carrier “warm water” to 
the radiators.

Fig. 1.4
Energy flow diagram for Fig. 1.1

Fig. 1.10
Some energy flow diagrams

Fig. 1.6
Energy flow diagram for Fig. 1.3

Fig. 1.5
Energy flow diagram for Fig. 1.2

Fig. 1.7
Complete energy flow diagram for 
Fig. 1.1

Fig. 1.8
Complete energy flow diagram for 
Fig. 1.2

Fig. 1.9
Complete energy flow diagram for 
Fig. 1.3

Fig. 1.2
The energy carrier gasoline car-
ries energy from the tank to the 
engine.

engine

tank

radiator

pump
boiler

Exercises

1. Name three different energy receivers which obtain energy by 
means of the energy carrier electricity.
2. Name three different energy sources which emit energy with the 
energy carrier angular momentum. 
3. Name three return-deposit-bottle energy carriers and three one-
way-bottle energy carriers.

Fig. 1.3
The energy carrier electricity 
transports energy from the power 
plant to the lamp.



1.3 Energy  exchangers
Some of the energy sources we have listed are made so that they 
never become empty: they continuously obtain new energy, but with 
a different carrier than the one they use for emitting it. They are 
sources of energy with a carrier A and receivers for energy with an-
other carrier B. An example would be a central heating boiler which 
receives energy with the carrier “heating oil” and gives it up with the 
carrier “hot water”. We say that in the boiler energy is transferred 
from the carrier “heating oil” to the carrier “hot water”. There are still 
other ways of saying this, such as: the energy carrier “heating oil”  
releases energy which is picked up by the energy carrier “hot water.” 
The boiler is then a so-called “energy exchanger”.

Correspondingly, in a car engine energy is transferred from gasoline 
to angular momentum, and in a light bulb, from electricity onto light. 
In Fig. 1.11, some energy exchangers are represented symbolically, 
and Table 1.3 contains a longer list of energy exchangers with the 
corresponding carriers at inlets and outlets. 

One finds that for every device where energy is transferred from a 
carrier A to a carrier B, there is one that does just the opposite, 
meaning it transfers energy from B to A. For instance, in an electric 
motor, energy is transferred from the carrier electricity to the carrier 
angular momentum. In the generator it goes from angular momen-
tum to  electricity. Similarly, light bulbs go together with solar cells, or 
water turbines with water pumps.   
Energy is often transferred several times in succession from one 
carrier to another. Fig. 1.12 shows a light bulb powered by a hydro-
electric power plant. 

If two energy exchangers are connected, the energy carrier at the 
exit of the first one must match the one at the inlet of the second. 
The rule for chaining energy exchangers is the same as the rule for 
playing dominos. 

Fig. 1.11
Energy exchangersboilerENERGY

heating oil

ENERGY

hot water

exhaust gases

light bulbENERGY

electricity

ENERGY

light

car engineENERGY

gasoline

ENERGY

angular momentum

exhaust gases

dynamoENERGY

angular momentum

ENERGY

electricity

Fig. 1.12
Energy being exchanged three times during transport

water
turbine

ENERGY

water under
pressure

ENERGY

angular
momentum

generator ENERGY

electricity

light bulb ENERGY

light

Exercises

1. In Fig. 1.13, the names of the energy carriers at the inlets and out-
lets of both exchangers are missing. Complete the figure. 
2. Enter the names of the energy exchangers in Fig. 1.14.
3. Sketch a chain of exchangers in which at least three different e-
nergy exchangers participate. 
4. Some devices can be represented in different ways by exchanger 
symbols. For instance, a vacuum cleaner can be understood as a 
single exchanger, and can be represented by a single symbol; or one 
can represent it by two connected symbols. Demonstrate both of the-
se possibilities.
5. In order to power a light bulb with the help of a windmill, an additio-
nal piece of equipment is necessary. What is it? Sketch the flow dia-
gram. 
6. Device 1 transfers energy  from carrier A to carrier B. Device 2 does 
just the opposite, it transfers energy from carrier B to carrier A. Give 
three pairs of energy exchangers that are related in this manner. 

energy exchanger energy carrier
inlet

energy carrier
outlet

electric motor electricity angular momentum

light bulb       " light

electric oven       " hot air

hot water heater       " hot water

electric pump       " water under pressure 

electric fan       " moving air

Diesel compressor    fuel compressed air

coal-fired power 
plant

     " electricity

gasoline engine      " angular momentum

petroleum lamp      " light

oil stove         " hot air

boiler      " hot water

solar cells   light electricity

Crookes radiometer     " angular momentum

solar panel     " hot water

forest       " wood

compressor angular momentum compressed air

water pump      " water under pressure 

dynamo, generator      " electricity

propeller      " moving air

water turbine water under pres-
sure 

angular momentum

Fig. 1.13
Which ones are the energy carri-
ers at the inlets and outlets?

solar cell
ENERGY ENERGY

wind
power
plant

ENERGY ENERGY

ENERGY

water

ENERGY

angular momentum

ENERGY

hot air

ENERGY

electricity

Fig. 1.14
What are the energy exchangers 
here? 

Table 1.3 
Energy exchangers 
with the correspond-
ing carriers at the 
inlet and outlet



1.4 The energy current
In order to judge the energy consumption of a device, one must find 
out how much energy flows into the device during a determined time 
span. (The energy must naturally flow out again.) A device with a 
flow of 1000 J per second ‘consumes’ more energy than one with a 
flow of 500 J per second.  
Imagine a device that consumes 25,000 Joules in 50 seconds. How 
can the energy consumption per second be calculated from this? By 
dividing the total energy of 25,000 J by 50 s. The device therefore 
consumes 25,000 J/50 s = 500 J/s.
The amount of energy divided by the time span is called the energy 
current. 
Energy current = Energy/time span
Using the abbreviations E for energy, t for time span, and P for en-
ergy current, we have

P = E
t

 .

Sometimes, the quantity P is also called “power”. The unit of the en-
ergy current is Joule/second. A Joule/second is called a Watt. In 
short:
W = J/s. 
An energy current of 15 Watts flows into a standard light bulb (with 
the carrier electricity). Therefore
P = 15 W.
About 50 kW flow from the motor to the wheels of a car (with the 
carrier angular momentum). A large power plant delivers an energy 
current of 1000 MW carried by electricity. 
The fraction of the energy current from the Sun that reaches the 
earth is 1.7 · 1011 MW; this is as much as one hundred and seventy 
million large power plants could deliver. When a person eats, he or 
she receives energy, so an energy current flows through the person. 
On average it measures about 100 W.  
There are energy sources which can become empty. Examples are 
car batteries, single-cell batteries, or gas tanks. Energy can be 
stored in these, so we call them energy storage units. Other energy 
storage units would be a motor with a windup mechanism, a fly 
wheel, a pumped hydraulic plant, a night storage heater, a heating 
oil tank, fluorescent paint, and the Sun. 

Exercise

A hair dryer with two settings has the inscription:
Setting 1: 500 W
Setting 2: 1000 W
What does this mean?



2
Flows of liquids and gases

Most excavation shovels, some building cranes and many other 
machines are powered hydraulically. This is easy to  see by the 
pipes and hoses leading from a central pump to various places in 
these machines where something is to be set in motion.
There are also machines and equipment that are driven 
pneumatically, for example a jackhammer. Powering equipment 
pneumatically functions very similarly to  the hydraulic case, only the 
energy carrier here is compressed air.  
In this chapter we will investigate liquid and gas flows as they are 
used in these machines. In so doing, we will discover some simple 
rules. It is worth it to  take note of these rules. They are valid not only 
here, meaning not only for flowing air and for water currents. When 
the rules are slightly altered, they also hold for totally different 
currents: for electric currents, heat flows, and for co-called 
momentum currents. 



2.1 Pressure
If a water faucet is turned on all the way, a strong flow of water 
shoots out, Fig. 2.1. This happens because the water in the pipes is 
under high pressure. When the valve of a pumped up bicycle tire or 
car tire is opened, the air comes rushing out. This is because the air 
in the tires is under high pressure. 

Pressure is a physical quantity just as weight, length and energy 
are. The unit of pressure is called a bar. The devices used for 
measuring pressure are manometers, Fig. 2.2. Table 2.1 contains 
some typical pressure values. 

Another unit for pressure is the Pascal, shortened to Pa. Here is the 
relation between these two units:
1 bar = 100,000 Pa.
The bar is more practical and handy than the Pascal. The smaller 
unit Pascal has advantages for physicists. The relation between 
pressure and other physical quantities becomes simpler when the 
Pascal is used. You will understand this better later.  

Table 2.1 
Typical pressure values

Water pipe! 2 – 5!bar
Automobile tire! 4!bar
Steam in the boiler of a power plant! 150!bar
Hydraulic fluid of a power shovel! 150!bar
At the deepest part of the ocean! 1000!bar
In a filled oxygen bottle! 150!bar
In a full propane gas tank! 8!bar
To create diamonds artificially from graphite, 
      the graphite is put under pressure of at least! 15 000!bar
 Inside the sun! 221 000 000 000!bar

Fig. 2.1
The water in the pipes is under 
pressure.

Fig. 2.2
Pressure is measured with a 
pressure gauge (manometer).



2.2 Air pressure, excess pressure, vacuum
The air around us has a pressure of almost exactly one bar. This 
pressure is called standard pressure. Air pressure is the result of the 
weight of the air above pressing down on the air below it.  
Because of this, air pressure decreases as altitude increases in the 
atmosphere. It decreases quickly at the beginning, and more slowly 
higher up. Fig. 2.3 shows the air pressure as a function of altitude 
above sea level. At 4000 m, i.e., in high mountain areas, the air 
pressure is about 0.6 bar.

Air pressure is not the same all the time. Its value changes accord-
ing to the weather. The instrument we use to  measure the pressure 
of the air around us has a special name. It is called a barometer.
We don’t feel air pressure because it is pressing our bodies from all 
sides. Even in the cavities of our bodies, e.g., in our lungs or ears, 
the air is at the same pressure as the air outside. Most manometers 
do not show absolute pressure, i.e., real pressure, but the so-called 
excess pressure. For example, when tire pressure is checked, the 
manometer shows the pressure difference between the air inside the 
tire and the air outside.  
It is possible to have a container of air that has lower pressure than 
the outside air pressure. If there are no air and no  other substances 
in the container, then the pressure is 0 bar. A space with no matter in 
it is called a vacuum.  

Fig. 2.3
Air pressure as a function of alti-
tude above sea level.

Exercises

1. If you have a barometer at home: Read the air pressure in the 
morning and in the evening for 7 days. Plot it as a function of time.
2. A driver checks the air in her spare tire. The manometer shows 0 
bar excess pressure. How high is the actual pressure in the spare 
tire?
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2.3!Pressure difference as driving force for a gas
or a liquid current

When the valve of a pumped up car tire is opened, the air flows out. 
It flows out of the tire where the pressure is high to the outside 
where the pressure is lower. When a package of “vacuum-packed” 
peanuts is opened, it hisses. Air flows in since the pressure is lower 
inside than outside. In both cases air flows from a place of higher 
pressure to a place of lower pressure. When we attach a long thin 
hose to a faucet and turn the faucet on, water flows out. In the pipes 
the water is under high pressure. At the end of the hose there is low 
pressure, namely standard pressure. Water flows from places of 
higher pressure to  places of lower pressure. This is true for other 
gases and liquids as well. 

A car tire is pumped up and connected by a hose to another, empty 
tire, Fig. 2.4. One can hear the air flowing through the hose but after 
a while, it stops. We remove the hose and measure the pressure in 
both tires. Result: the pressure in both tires is the same. In the 
pumped up tire, where the pressure had a higher value at the begin-
ning, it has gone down. In the other tire, the pressure has increased. 
What happened? The air flowed from the tire with higher pressure 
into the one with lower pressure until the pressure difference, mean-
ing the driving force for the current, disappeared. The end state in 
which the air no longer flows (although the connection is still there) 
is called pressure equilibrium.

Notice that the amount of air in the final state of both tires is not 
identical. There is more air in the larger tire. 
It is obvious that not pressure, but pressure difference is the driving 
force for the air flow. At equilibrium, there is no longer any air flow 
even when the pressure itself is very high.

Exercise

The air pressure in a large tire is 1 bar and in a small one, 4 bar. The 
two tires are connected to each other by a hose, so that the air in one 
can flow into the other.
(a) What happens?
(b) Is the final pressure nearer to 1 bar or to 4 bar? 
(c) Which tire has more air at the end?

Liquids and gases flow by themselves from places of higher to 
places of lower pressure. The pressure difference is the driving 
force for liquid and gas currents.

Fig. 2.4
Air flows from the tire with higher 
pressure to the one with lower 
pressure.



2.4!Pumps
Often it is necessary to  transport a liquid or a gas from a place of 
lower pressure to a place of higher pressure. This is achieved by 
use of a pump. At the outlet of the water pump in Fig. 2.5, the water 
has a higher pressure than at the inlet.  

There are various kinds of pumps. Fig. 2.6 shows a centrifugal 
pump. The incoming water flows into the middle between the blades  
of the propeller wheel. Because the wheel is turning, the water must 
turn with it. It is forced outward (like a passenger in a car going 
around a curve) and is pressed out of the outlet. Centrifugal pumps 
are used for pumping water out of the washing machine, for exam-
ple. 

In Fig. 2.7, you can see how a gear pump works. Gear pumps are 
good for creating large pressure differences. A somewhat different 
version of this pump is used as a hydraulic pump in power excava-
tors. Pumps with which gases are brought to high pressure are 
called compressors.

Pumps transport gases and liquids from places of lower 
pressure to places of higher pressure.

Fig. 2.5
The water has higher pressure at 
the pump’s outlet than at its inlet.

Fig. 2.6
A centrifugal pump

Fig. 2.7
A gear pump



2.5 Current intensity
There are occasions when two currents, for example two water cur-
rents, are to be compared. One could ask “Which of them is wider?” 
or “Which of them is faster?” but often we are not interested in the 
width or the speed, but rather in the current intensity or current in 
short. The water current intensity is the amount of water that flows 
by a certain point within a determined time span, divided by the time 
span:

water current = amount of water
time span

The amount of water can be measured in liters or kilograms. The 
unit of a current is therefore either l/s or kg/s. In the Rhine river, 
about 1,500,000 liters flow each second beneath the bridge at Karls-
ruhe. The current of the Rhine there is 1,500,000 l/s. 
In the last chapter we got to know energy currents. They tell us how 
many Joules per second flow by a certain point. 
It is easy to  mistake a current for its speed. The river in Fig. 2.8 has 
the same current everywhere. However, the speed at the narrow 
place is greater than at the wider one.   

In Fig. 2.9, a water current of 1 l/s flows from the left through pipe A 
to the intersection or junction. Through pipe B and pipe C, currents 
of 0.5 l/s and 0.2 l/s, respectively, are flowing away from the inter-
section. What is the current in Pipe D, and in which direction is the 
water flowing? 

Since water can neither disappear nor be created in the junction, the 
quantity of water flowing toward the intersection every second must 
be the same as that flowing away from it. For the balance of the 
amount of water to be correct, 0.3 l/s of water must flow away from 
the intersection through Pipe D:
Flowing into the junction! ! 1 l/s
Flowing away from the junction ! 0,5 l/s + 0,2 l/s + 0,3 l/s = 1 l/s.
A place where several currents meet is called a junction. We have 
used the junction rule in calculating the current of water in Pipe D.

Fig. 2.8
The current is the same at every 
section of the river.

Exercises

1. A bathtub  with a capacity  of 120 l, fills up  in 20 minutes. What is the 
current of water flowing into the tub?
2. The current in a water pipe is 2 l/s. In another one it is 3 l/s. Is it 
possible, using this information, to determine in which pipe the water 
flows faster? Give your reasoning.
3. Three rivers with currents of 5m3/s, 2 m3/s, and 3 m3/s flow to-
gether at a certain point. What is the current after the confluence?

The currents flowing into a junction are, in total, equal to the
 ones flowing away from it.

Fig. 2.9
Every second, exactly the same 
amount of water is flowing through 
pipe A to the intersection as flows 
away from it through pipes B, C, 
and D. 



2.6 Current and driving force
You have turned on the water faucet full force but not as much water 
is coming out as usual. What could be causing this? Of course it is 
the pressure in the pipes. The difference between the pressure in 
the water pipes and the pressure outside (standard pressure of 
1 bar), is the driving force of the water current coming out of the fau-
cet. The higher the pressure in the pipes, the greater the pressure 
difference and therefore the greater the current.
We fill a plastic bag with air coming out of a pumped up automobile 
tire, Fig. 2.10. We do the experiment using a tire with 2 bar excess 
pressure, and then again with one at 0.5 excess pressure. We no-
tice that in the first case, the plastic bag fills more quickly with air 
than in the second. In this case, as well, a higher pressure differ-
ence causes a greater current.   

Fig. 2.10
The greater the pressure in the 
tire, the faster the plastic bag fills 
up.

Exercise

Water flows through the pipe in Fig. 2.11.
(a) The current at the left end of the pipe is 10 l/s. What is the current 
at the right end of the pipe? Give reasons for your answer.
(b) The pressure difference between the left end and the narrowing is 
2 bar. Is the difference between the right end and the narrowing 
greater or smaller than 2 bar? Give reasons for your answer.

The greater the pressure difference between two points (the 
greater the driving force), the greater the current flowing from 
one to the other.

Fig. 2.11
Is the pressure difference between the narrowing and the right end of the pipe greater or 
smaller than 2 bar?



2.7 Current and resistance
A 50 meter long garden hose is attached to a faucet out of which a 
strong jet usually flows. If the faucet is turned fully, the water jet at 
the outlet of the hose is considerably weaker. The water current with 
the hose is less than without it, Fig. 2.12. Why is this? It cannot be 
because of the driving force, because that is the same in both 
cases. The hose is responsible for the reduction of current: It ob-
structs the current of water. It puts up a resistance to it. 

Again, we will do an experiment with a car tire and a plastic bag. We 
fill the plastic bag twice, with the air out of the same tire. For the first 
filling, we use the shortest hose possible and for the second, a very 
long one. Both hoses have the same diameter. In the first case, the 
plastic bag fills up more quickly than in the second one. The air cur-
rent is stronger in the first case than in the second. The long hose 
puts up a greater resistance to the air than the short one does. One 
could say that the long hose “has” a greater resistance. 
We now compare the resistance of three hoses or pipes that are of 
the same length, but have different cross sections. We realize that 
the greater the cross-sectional area of the hose, the smaller the re-
sistance will be. 

The current is therefore not only dependent upon the driving force, 
but also upon the characteristics of the pipe through which it flows. 

The relationships between current, pressure difference, and resis-
tance, as well as between resistance, length, and cross-sectional 
area of the pipe are summarized in Fig. 2.13.  

Fig. 2.14 shows a longer water pipe upon which pressure gauges 
(manometers) have been mounted at even intervals. We want to 
understand the values shown by these gauges. We can conclude 
from the higher value shown by the manometer on the left, that the 
water flows from left to  right, meaning from higher pressure to lower 
pressure. However, we see that already between the first and sec-
ond manometers the pressure drops because the water needs a 
driving force to move even this small distance. This is also true for 
the distance between the second and third manometers, and so 
forth. We realize that the pressure differences between two neigh-
boring pressure gauges in the thin part of the pipe are the same, 
namely 0.6 bar. The pressure differences between two neighboring 
manometers on the thick part of the pipe are equal as well, namely 
0.2 bar. The pressure difference between two neighboring manome-
ters on the thin part of the pipe are not the same as on the thick part. 
This is easy to  understand, though. In order to press the same 
amount of water through the thin pipe, a greater pressure difference 
is necessary than to press it through the one with a larger diameter. 

Fig. 2.12
The hose puts up a resistance to 
the water current.

Every conduit sets up a resistance to the gas or liquid current 
flowing through it. The smaller the cross-sectional area of the 
pipe is, and the longer it is, the greater the resistance is.

The current of a gas or liquid in a pipe is greater if the pressure 
difference is larger between the two ends of the pipe, and if the 
resistance of the pipe is smaller.

Fig. 2.13
The relation between current, 
pressure difference and the char-
acteristics of the conduit

Fig. 2.14
The decrease of pressure in the narrow part of the pipe is greater than in the wider part.

4,0 bar 3,4 bar 2,8 bar 2,4 bar 2,2 bar 2,0 bar

current
depends upon

pressure difference resistance
depends upon

cross sectional area                length       



2.8. Hydraulic energy transfer
A power shovel is a versatile machine. It can move, it can turn its 
upper section, it can swing and bend its arm, and it can tip the 
shovel at the end of its arm, Fig. 2.15. A system of hydraulic circuits 
makes all these manipulations possible.

A diesel engine drives a pump. The pump presses hydraulic oil 
through pipes and hoses to the various places where something is 
to be moved. The oil flows back to the pump through a second pipe. 
A hydraulic motor is located where something is to be rotated such 
as the wheels of the power shovel or its upper section. A hydraulic 
cylinder is used where something is to be moved back and forth, 
Fig. 2.16.

Fig. 2.17 shows a part of the hydraulic system of the power shovel: 
the pump and one of the hydraulic motors. One sees that the hy-
draulic oil flows in a closed circuit. It is under high pressure on its 
way to the motor. On its way back to the pump, the pressure is low. 

Let us describe the processes from the point of view of energy. The 
energy flows from the diesel engine to the pump with the energy car-
rier angular momentum. In the pump it changes its carrier. It is trans-
ferred over to the hydraulic oil. Along with the oil in the high-pressure 
pipes, it reaches the hydraulic motor where it is again transferred to 
angular momentum. After it has given up its energy, the oil flows 
back to the pump. Fig. 2.18 shows the corresponding flow diagram.

Fig. 2.15
The power shovel can roll, rotate 
its upper section, swing and bend 
the arm, and tip its shovel.

Fig. 2.16
Hydraulic cylinder

Fig. 2.17
Hydraulic circuit

Fig. 2.18
Energy flow diagram of a hydrau-
lic enginepump ENERGY

hydraulic oil

hydraulic
motor



3
Momentum and momentum currents

We begin with an extensive area of physics called mechanics. Here 
is a definition of it for a start: Mechanics deals with the motion of 
objects. With time we will realize that this definition is too limited, but 
for the moment it suffices.
Mechanics is the oldest field of physics. Its most important laws 
have been known for 200 years. For a long while it was the stated 
goal of physics to interpret everything happening in nature 
mechanically, to base not only the processes representing obvious 
movement upon mechanics, but thermal, optical, electrical, and 
chemical processes as well. This viewpoint saw the world as nothing 
more than a huge and very complicated „mechanism“. 
It has been known since the beginning of the 20th century that this 
conception is unsound. Other parts of physics are fully equal to 
mechanics, for example electricity and thermodynamics. In a given 
process, mechanics as well as electricity and heat normally play a 
role and other phenomena of physics do as well. In the following, 
when we deal with mechanics we will look at only one aspect of 
processes, the mechanical one. When we investigate an object, we 
will be interested in whether and how it moves. We will not worry 
about what temperature it has, if it is electrically charged, or what 
color it is and we will naturally not be interested in problems having 
nothing to do with physics, such as how expensive the object is or 
whether it is beautiful or ugly. 
Before we begin with mechanics we must first learn about one of the 
most important tools of a physicist: the physical quantity. We will do 
this in the next section.



3.1 Physical quantities
A characteristic of physics is that it describes nature quantitatively. 
“Quantitative” means that statements are expressed in numbers. A 
physicist is not satisfied to know that an object has a high tempera-
ture, a small mass or a low speed. He wants to determine the values 
of temperature, mass or speed. His goal might be to calculate or de-
termine by measuring, that the object has a temperature of 1530˚C, 
a mass of 5.3 milligrams or a speed of 882 meters per second. 
Temperature, mass and speed are called physical quantities. There 
are also many other physical quantities. Many of them are already 
known to you, and others you will learn about during your physics 
classes. 

We want to remind ourselves of some basic rules for dealing with 
physical quantities. These are rules that you already know well, but 
maybe you are not aware of them and do not always follow them. 
Each physical quantity is shortened to a letter. These abbreviations 
have been established internationally. Table 3.1 shows some exam-
ples. 

Notice that it is important whether the abbreviated symbol is a lower 
or upper case letter. A certain lower case letter often stands for a dif-
ferent physical quantity than the corresponding upper case letter. 
For example, v means velocity (speed) and V stands for volume. 
Sometimes more than one symbol is used for a quantity. In the case 
of energy this is so. The symbol E is used for energy as well as W.
As you already know, every quantity has a unit of measurement. The 
unit for time is the second, for energy it is the Joule and for pres-
sure, the bar. Table 3.2 gives some examples of units of measure-
ment. 

A unit of measurement represents a determined amount of the quan-
tity. The value of a quantity is always given in multiples or fractions 
of its unit. When one says, “the energy content of an object is 1000 
Joules”, one means that the object has 1000 times the determined 
unit of “1 Joule”.
We abbreviate the name of a unit of measurement in exactly the 
same way we have done with quantities. Hence, “meter” is short-
ened to “m”, “Joule” to “J”, and “second” to “s”. In order not to mix up 
the symbols for physical quantities with those of units of measure-
ment, the symbols for quantities are written in italics. This means 
that m is the physical quantity mass but m is the measurement of 
the unit of measurement meter. Units of measurement have also 
been defined internationally. The quantities we have discussed so 
far are in table 3.3. The table contains the names of some quanti-
ties, the abbreviations of these names, the corresponding units and 
their abbreviations. 

Thanks to  abbreviations of names and units, it is possible to write 
physical statements very compactly. Instead of “the speed is one 
hundred meters per second”, we can just write
v = 100 m/s.
In place of “the energy is forty thousand Joules”, we can write
E = 40,000 J.

Important: 1. Do not confuse the names of quantities and units! 2. 
Do not mix up the symbols for quantities and units!
We often have to deal with very large or very small absolute values 
of physical quantities. In these cases, it is possible to use a deter-
mined multiple or fraction of the usual unit. One labels these multi-
ples and fractions by putting in an identifying word before the usual 
name of the unit. The definitions of these determinatives are listed in 
Table 3.4. Every determinative has an abbreviation. These are con-
tained in Table 3.4 as well. We have for example:
40 000 Joule = 40 kJ = 0.04 MJ, 
or
0.000 002 m = 0.002 mm = 2 μm.

Exercises

1. Name four quantities (other than those in Table 3.1), their units of 
measurement, as well as the symbols for the quantities and the units. 
2. Write a shorter form of the following expressions by using the de-
terminatives in Table 3.4:
E = 12,000,000 J
v = 1,500 m/s
p = 110,000 Pa.
3. Give the speed v = 72 km/h in units m/s.
4. Name some units of measurement of quantities that are no longer 
used today.

Physical quantities are some of the most important tools of 
physicists. 

Name of the quantity Symbol

mass m

velocity v

time t

volume V

energy E

pressure p

Table 3.1 
Names and abbreviations of some physical 
quantities

Name of the quantity Unit

mass kilogram

velocity meters per second

time seconds

volume cubic meters

energy Joule

pressure bar

Table 3.2 
Names and units of some physical 
quantities

Name of the quantity (Symbol) Unit (Symbol)

mass (m) kilogram (kg)

velocity (v) meters per second (m/s)

time (t) seconds (s)

volume (V) cubic meters (m3)

energy (E) Joule (J)

pressure (p) bar (bar)

Table 3.3
Names and units for 
some physical quantities 
and their abbreviations

Prefix Abbreviation Meaning

kilo k thousand

mega M million

giga G billion

tera T trillion

milli m thousandth

micro μ millionth

nano n billionth

pico p trillionth

Table 3.4
Prefixes that are used to denote 
multiples and fractions of units



3.2 Momentum and velocity
According to our present definition, mechanics deals with the motion 
of objects or, as we sometimes say, bodies.
In order to begin our physical description of motion we need to 
create the tools necessary for doing so. You remember that our most 
important tools are physical quantities. Gradually we will get to know 
quite a few of these quantities. For the moment though, two 
quantities are enough for us. These characterize the state of motion 
of a body. One of these is already well known to  you, velocity, which 
is abbreviated by v. Many units of measurement are used for 
velocity: kilometers per hour, knots, millimeters per day, etc. In 
physics the unit of measurement used is meters per second, 
abbreviated by m/s. 
The second quantity we need as a physical quantity that can be 
given a numerical value, is certainly unknown to you at this point al-
though you are already well aware of it. You will quickly get to be so 
comfortable with it that you will be able to determine its values. 
Again, it is a quantity by which motion can be described. For exam-
ple, it can be used to describe the difference between a vehicle 
standing still and one that moves. It has a special feature that veloc-
ity does not have: it represents what is contained in a body when it 
is in motion and what is not in it anymore when it comes to rest. 
Everybody knows an expression for describing exactly this property. 
Every one of us says that a heavy rolling car has “impetus”. The 
same car has no impetus when it is no longer moving. The charac-
teristics described by this word is very similar to the characteristics 
of the physical quantity we are looking for. Actually, we could use 
this name for this quantity, i.e., “impetus”. Certain expressions have 
become standard, though. This quantity is called “momentum”. Its 
symbol is p. (Attention: this symbol is the same as the one used for 
pressure). 

Later on we will discuss how to quantitatively determine how much 
momentum (impetus) a body contains. Right now we will get to  know 
the unit of momentum. It is called a Huygens, abbreviated to Hy and 
named for the physicist Christiaan Huygens (1629-1695) who made 
important contributions toward creating the quantity called momen-
tum. 
In the following, we will develop the most important characteristics of 
the quantity p. In doing so, it is enough to  always keep in mind that 
momentum is essentially what we usually call impetus. 
Two identically built cars are driving down the street, one is faster 
than the other, Fig. 3.1. Which car contains more momentum? 
(Which car has more impetus?) The faster moving car, which has a 
higher speed. 

A truck and a car are moving at the same speed, say 60 km/h, side-
by-side. The truck’s weight is 8,000 kg, and the car weighs 1,200 kg, 
Fig. 3.2. Which of these two vehicles has more momentum? Of 
course, it is the truck. The quantity we measure in kg, the one that is 
usually call “weight”, is called mass in the natural sciences. There-
fore:

We are now able to give the definition of the unit Huygens for mo-
mentum:

In the following we will do several experiments in which friction 
would interfere. We will therefore use cars that have good bearings. 
A bearing with very little friction can be achieved by using air cush-
ions instead of wheels. Fig. 3.3 shows an air track, the kind often 
used in experiments. The track has four rows of very fine holes out 
of which air flows. The gliders do not touch the track but float upon 
an air cushion. 

A vehicle unimpeded by friction moves upon a horizontal track. This 
vehicle could be an air glider or possibly a train car (without an en-
gine) rolling on horizontal tracks. We observe the vehicle at three 
different points in time, Fig. 3.4. At the first point, Fig. 3.4a, the glider 
is moving at a certain speed; it therefore contains a certain amount 
of momentum. At the second point, Fig. 3.4b, the speed is the same 
and, finally, at the third point Fig. 3.4c, it is also the same. The mo-
mentum contained in the glider at the first point is still there at the 
second and third points. The momentum is still in the vehicle, simi-
larly to a load that it might carry without losing any of it. 

If a vehicle has bad bearings, its “charge” of momentum decreases 
with time. Later we will investigate what happens to the momentum 
in this case, and where it goes. At the moment, we will only experi-
ment with vehicles that have good bearings (or air cushions) where 
no, or almost no friction occurs.
Fig. 3.5a shows two identical gliders. The one on the left, glider A, 
moves to the right. Glider B is at rest. A little later A bumps into B 
and one can observe that after the collision, A stays still and B 
moves to the right, Fig. 3.5b. We will explain this process by stating 
what happens to  the momentum. At the beginning, meaning before 
the collision, A had a certain amount of momentum, say 12 Hy, and 
B had none. During the collision, the entire amount of momentum 
transferred from A to B. The entire 12 Huygens was transferred from 
A to B so that after the impact, glider A had no more momentum. 

In the experiment in Fig. 3.5, there was an elastic spring buffer be-
tween the two gliders. We will now repeat the experiment once 
again. However, this time by use of a totally inelastic buffer. We re-
place the spring buffer with a piece of putty, Fig. 3.6. The experiment 
now proceeds very differently. At first, glider A moves, and B is at 
rest. After the collision, though, both gliders move at the same speed 
to the right. This speed is smaller than the speed of the glider on the 
left before the collision. What is the explanation? This time, not all of 
the momentum is transferred from the left glider into the one on the 
right. The 12 Hy are distributed half and half over A and B so that in 
the end, each has 6 Hy. 

What happens to the momentum in Fig. 3.6 is comparable to what 
happens to  the water in Fig. 3.7. In Fig. 3.7a, all of the water is in the 
left hand container. After the faucet is opened, half of the water flows 
into the container on the right. The water is distributed over both 
containers exactly like the momentum in Fig. 3.6. It distributes over 
both gliders after the collision. 

We now let glider A (with the inelastic buffer) collide with two cou-
pled gliders B and C, Fig. 3.8. This time the momentum that A had at 
the beginning is distributed evenly over A, B and C. Each one has 1/
3 of the amount of momentum that A had at the beginning. If A had 
12 Hy to start with, then each glider would have 4 Hy after the colli-
sion. 

If A collides with 3, 4 or 5 gliders at rest, its momentum is distributed 
over 4, 5 or 6 gliders at impact. The longer the “train” of gliders, the 
less momentum each individual glider receives and the slower the 
train moves. 
Instead of with a train of gliders, we let A simply collide with a buffer 
at the end of the air track, Fig. 3.9. Glider A naturally comes to an 
immediate stop. Where did the momentum go in this case? What is 
actually the collision partner of A? Initially, the collision partner is the 
track. The momentum distributes over A and the track. Now the track 
is firmly attached to the table. The momentum, therefore, distributes 
over A, the track and the table. Ultimately, the table stands upon the 
ground so  that the momentum is further distributed into the ground. 
In other words, the momentum flows into the Earth, where it is so 
widely distributed or “diluted” that it isn’t noticeable anymore. 

Another version of the experiment looks like this: We set a glider in 
motion and before it reaches the end of the track, we turn off the air-
flow. The air cushion disappears and the glider comes to rest upon 
the track. Again, its momentum has flowed into the Earth. As long as 
the air cushion was available, the glider’s motion was frictionless. By 
removing the air cushion, we have activated friction. We can con-
clude that:

A comparison of momentum with water is useful here as well. A ve-
hicle with bad bearings that rolls to  a stop, meaning that it gives its 
momentum to the Earth, is comparable to a leaky pail, Fig. 3.10. The 
water gradually dissipates into the environment so that eventually no 
one is aware of it anymore. 

Bad bearings, i.e., friction, represent a leak of momentum. A vehicle 
with good bearings is comparable to a sealed pail. 
We will do another experiment with two cars (or gliders on an air 
track). The two vehicles have an inelastic buffer and are propelled 
so that they move toward each other at the same speed. They col-
lide and stop, Fig. 311. Again we ask the question: where did the 
momentum go? Because the cars have good bearings, it cannot 
have flowed into the Earth. By the way: two objects in outer space 
that collide in this way would also come to  rest. In outer space there 
is no  Earth to have taken up the momentum. The answer to our 
question must be that the momenta of our cars have somehow can-
celled each other out, but how is this possible? 

The explanation is very simple if the momentum of one body is con-
sidered positive and the other negative. If one car had +20 Hy and 
the other one –20 Hy before the collision, then the total momentum 
already before the collision is 0 Hy. As the experiment shows, it is 0 
Hy after the collision, and the balance is achieved. We conclude 
that: 

Which of the two bodies in Fig. 3.11a has the positive and which the 
negative momentum? This can be decided at will. You know from 
math class that the positive x-axis is pointing to  the right. We do ex-
actly the same in the case of momentum. We establish that:

Fig. 3.1
The two cars are built exactly the 
same. The one moving faster has 
more momentum.

Exercises

1. A vehicle containing 1,500 Hy of momentum, bumps into four vehi-
cles at rest. All of them are built identically and are coupled after col-
liding. What is the total amount of momentum of all five vehicles after 
the collision? How much is contained in each one?
2. Two coupled wagons with a total momentum of 12,000 Hy, collide 
with a third one which initially does not move. All the wagons are con-
structed identically  and are coupled after the collision. How much 
momentum does each wagon have before colliding? How much mo-
mentum is contained in each wagon after the collision? 
3. Two identical gliders move toward each other at the same speed. 
They are equipped with elastic buffers. The glider on the left contains 
+5 Hy of momentum and the one on the right contains –5 Hy. What 
happens with the momentum of the gliders during the collision?
4. Two cars with a total of 500 Hy roll to the right and bump  into a 
third one coming the other way. The third one has –200 Hy of mo-
mentum. (All three cars are built the same and are connected after 
the collision). How much momentum does each car have after the 
collision? In which direction do the cars move? 
5. A ball flies horizontally against a wall and bounces off of it so that it 
flies off at equal but opposite speed. Its momentum before the colli-
sion was 1 Hy. What is the momentum after the bounce? What is the 
difference of the momentum before and afterwards? Where did the 
missing momentum go? 

A body in motion contains momentum. If it is moving quickly or 
is heavy, it has a lot of momentum. When it is not in motion, it 
contains no momentum.

The greater the velocity of a body, the more momentum it 
contains.

The greater the mass of a body, the more momentum it contains.

Fig. 3.2
The two vehicles are traveling at 
the same speed. The heavier one 
has more momentum than the 
lighter one. 

A body with a mass of 1 kg and a speed of 1 m/s contains 1 Hy.

Fig. 3.3
An air track. The glider moves 
almost without friction.

Fig. 3.4
 The wagon has very good bear-
ings. It doesn’t lose any momen-
tum.

Fig. 3.5
Before the collision (a), the glider 
on the left moves and the one on 
the right is at rest. Afterwards (b), 
the right one moves and the left 
one is at rest.

Momentum can go from one body to another.

Fig. 3.6
Before colliding (a), the left hand 
glider moves and the right hand 
one is at rest. Afterwards (b), they 
both move but at a lower speed.

Momentum can be distributed over several bodies.

Fig. 3.7
The water distributes over both 
containers similarly to how the 
momentum in Fig. 3.6 distributes 
over the two gliders.

Fig. 3.8
At impact the momentum of A dis-
tributes over all three gliders, A, B, 
and C.

Fig. 3.9
At impact, the glider’s momentum 
flows into the ground. 

If a vehicle has bad bearings so that it comes to a stop by itself, 
its momentum is flowing into the Earth.

Fig. 3.10
A pail with a leak. The water dis-
tributes into the environment so 
that there is nothing left of it to 
see.

Fig. 3.11
Two cars move toward each other 
at equal speeds. When they col-
lide, they come to rest.

Momentum can take positive and negative values.

The momentum of a body is positive when the body moves to 
the right and negative when it moves to the left.
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3.3 Momentum pumps
We were just dealing with the question of where the momentum 
goes from a body with decreasing speed. We found that the momen-
tum flows into  the ground. We now ask the opposite question: 
Where does the vehicle get its momentum from when it speeds up?
A wagon is set in motion as a result of someone pulling on a rope 
attached to it, Fig. 3.12. While the person pulls, the wagon picks up 
speed, meaning that its momentum increases. Where does the mo-
mentum come from? From the person pulling? The momentum of 
the person would then have to decrease, which it doesn’t. The per-
son is at rest at the beginning and at the end. The momentum was 
and is 0 Hy. 

We can change the experiment slightly so that the momentum actu-
ally does come from the person, Fig. 3.13. When the person here 
pulls on the rope, the momentum of the wagon on the left increases. 
The wagon on the right, including the person, is put into motion, but 
to the left. Wagon and person are receiving negative momentum, or 
in other words: their momentum decreases. As long as one pulls, 
momentum flows from the wagon on the right (plus person) through 
the rope into the one on the left. The person used her muscles to 
make sure that momentum flowed from right to left. She used herself 
as a “momentum pump”. 

We also see what must have happened in the case of Fig. 3.12: The 
person pumped momentum out of the Earth, through the rope and 
into the wagon. It is just as impossible to  see that the momentum of 
the Earth become negative as it is to see the increase of momentum 
of the Earth when a vehicle rolls to a standstill (thereby giving mo-
mentum to the ground).
We consider some other examples of momentum being pumped 
from one body into another.
The person in Fig.3.14 pulls the wagons A and B towards himself so 
that they become faster. The momentum of A increases and the 
momentum of B takes increasingly negative values, (meaning that it 
decreases). The momentum of the person at the center is equal to 
0 Hy and it does not change. Therefore, the person transports mo-
mentum from the right to  the left wagon. The person stands on a 
skateboard to  ensure that there is no momentum coming from or 
flowing into the Earth. 

A car is traveling with increasing speed, meaning that its momentum 
increases. In this case, the motor acts as the momentum pump. It 
transports momentum out of the ground over the drive wheels (in 
cars these are mostly the front wheels) into the car, Fig. 3.15. 

A toy car with remote control is standing upon a piece of cardboard 
under which rollers, say drinking straws or pencils, are placed, Fig. 
3.16. The car is set in motion so that it moves to the right. Its mo-
mentum increases. At the same time, the cardboard rolls to  the left, 
meaning that its momentum becomes negative; it decreases. The 
car’s motor pumped momentum out of the piece of cardboard into 
the car.

Two cars (or gliders on an air track) are connected by a thread, Fig. 
3.17. One of the cars has a spring buffer attached to it. The thread is 
so short that the spring is compressed. When the thread is cut, the 
cars are set in motion. The one on the right moves to the right, and 
the one on the left moves left. The right hand car has received (posi-
tive) momentum, the left hand one has lost (positive) momentum. 
The spring worked here as the momentum pump. As long as it was 
expanding it transferred momentum from the wagon on the left to 
the wagon on the right. 

Fig. 3.12
The momentum of the wagon in-
creases while the person is pull-
ing.

Fig. 3.14
The person pumps momentum out 
of the wagon on the right into the 
wagon on the left.

Fig. 3.15
The car’s motor pumps momen-
tum out of the Earth, over the 
drive wheels into the car.

Fig. 3.17
The spring pumps momentum 
from the wagon on the left into the 
one on the right.

Fig. 3.16
The motor of the toy car pumps 
momentum out of the cardboard 
into the car.

Fig. 3.13
The person sends momentum 
through the rope from right to left.



3.4 Momentum conductors and insulators
We saw that momentum can get from one body A into another body 
B. We also say that momentum flows from A to B, or we say that a 
momentum current flows between bodies A and B. 
A necessary requirement for momentum to flow from A to B is that 
there be a connection between A and B. Not just any connection is 
enough. It must be able to transmit momentum. It must be a “mo-
mentum conducting” connection. How do such momentum conduc-
tors look? What kinds of objects conduct momentum? What kind do 
not? 
In Fig. 3.18a, a person is pressing a rod against a wagon. The 
wagon becomes faster, its momentum increases. The person is 
pumping momentum out of the ground and into the wagon. Momen-
tum is flowing from left to right through the rod. In Fig. 3.18b, a 
wagon is being charged with momentum but this time the person 
pulls the car with the rod. In this case, momentum is flowing through 
the rod from right to left. In both cases it can be seen that the rod is 
a momentum conductor. It is also  clear that the exact form of the rod 
makes no difference, nor does the material it is made of, which must 
only be solid. We conclude: 

Fig. 3.19 shows someone who believes in miracles. She is trying to 
set the wagon in motion by pressing on the air around it in the hopes 
that the air will conduct momentum to  the wagon. Eventually she is 
convinced that:

Later on we will see that this statement has only limited validity. In 
the case of air cushions it is useful: The air between the track and 
the gliders prevents momentum from flowing from the gliders into 
the track. 
In Fig. 3.20, someone is investigating the momentum conductivity of 
a rope and finds that momentum flows easily from right to left, Fig. 
3.20a, but absolutely not from left to right, Fig. 3.20b. 

We will carry out an experiment that is not quite as easy to interpret 
as those we just did. A magnet A is attached to a small wagon, Fig 
3.21. One holds another magnet B up to it so that the poles with the 
same sign face each other: north pole facing north pole and south 
pole facing south pole. If magnet B is held close enough to  magnet 
A, the wagon is set in motion, its momentum increases. We have 
pumped momentum out of the ground, through magnets B and A, 
and into the wagon. 

The question is, how did the momentum get from A to  B? From our 
observations we assume that there must be a connection between 
the magnets. There must be an invisible entity between them which 
can conduct momentum. This entity, that surrounds every magnetic 
pole, is called a magnetic field. 

Fig. 3.22 shows a person who is transferring momentum into a 
wagon by pushing a rod across the top of it. The rod slides over the 
top of the wagon because it is not attached to  it. It is actually possi-
ble to  get momentum into the wagon this way, but not very effec-
tively. One sees that transfer of momentum is the better the greater 
the friction between rod and wagon. If the rod slides very lightly over 
the wagon, the momentum current from the rod to the wagon is very 
small. If the friction is strong, for example if the rod and the wagon 
both have rough surfaces, the transfer of momentum works well. We 
conclude:

Basically we have always assumed the validity of this rule: In order 
to make sure that the momentum of an object does not flow into the 
ground, one must make sure that there is no momentum conducting 
connection between the object and the ground. This means that one 
must ensure that there is only very slight friction. 
The most important apparatus we have for keeping friction between 
an object and the Earth to a minimum is the wheel. 

There are definitely other methods to do this: air in airtrack gliders, 
airplanes and helicopters, the runners of sleds and blades of skates, 
and water in the case of river boats and ships.

Fig. 3.18
Momentum flows through the rod 
from the Earth into the wagon. (a) 
The momentum flows through the 
rod to the right. (b) The momen-
tum flows through the rod to the 
left.

Exercises

1. Ropes do not conduct momentum to the right, but only to the left. 
Invent a device that conducts the momentum only to the right and not 
to the left. 
2. A car driver brakes sharply on ice. What happens? Momentum 
conduction plays an important role in the process of braking. What 
can you say about this in the case of ice on the street?
3. A driver attempts to drive off quickly on ice, what happens?

Solid materials conduct momentum.

If two objects rub against each other, momentum flows from 
one to the other: The stronger the friction, the stronger the flow.

Air does not conduct momentum.

Fig. 3.19
The person tries unsuccessfully to 
send momentum through the air. 

Ropes conduct momentum in only one direction.

Fig. 3.20
In a rope, momentum can flow 
from right to left (a) but not from 
left to right (b).

Fig. 3.21
There is a magnetic field between 
the magnets. The field is a mo-
mentum conductor. 

Magnetic fields conduct momentum.

Fig. 3.22
Transfer of momentum by friction.

Wheels help to insulate momentum.

a

b

a

b



3.5 Drives and brakes
Wheels are insulators for momentum only when they spin freely. The 
propelled wheels of a car are not insulators for momentum. They are 
connected through the engine to the chassis and the body of the car 
so that the engine can pump momentum out of the ground and into 
the car. 
It is often desirable to get rid of the momentum stored in a car as 
quickly as possible, Fig 3.23. Vehicles have brakes for this. In the 
process of braking, the wheels’ friction is greatly increased; the 
wheels are transformed into  good momentum conductors so that the 
momentum of the vehicle quickly flows into  the ground. A brake is 
therefore a pipeline for momentum that can be “turned on and off”, 
meaning it is a kind of valve or switch for the momentum current. 

A fast moving car not only loses momentum through the friction of its 
wheels but also through friction between its surface and the air. At 
speeds above 80 km/h, this is actually the source of greater loss. In 
this process, the car’s momentum first flows into the air. The fact 
that the air actually contains the momentum can be seen in that it is 
still strongly moving shortly after the car has gone by. Gradually it 
gives the momentum to the ground, again by friction. 
The experiment represented in Fig. 3.24 shows us that momentum 
can be contained in air. A toy balloon is mounted upon a small 
wagon. If the balloon is opened and the wagon is let go, it will start 
to move. The skin of the balloon presses the air out to  the left. The 
air flowing out of the balloon gets negative momentum and the 
wagon positive momentum. 

In Fig. 3.24, the wagon’s propulsion basically functions like that of a 
rocket. A rocket also gets momentum resulting from a gas being 
ejected with great speed out of the rear of it. The space inside the 
rocket is taken up mostly by two tanks, Fig. 3.25. One contains the 
fuel, for example liquid hydrogen. The other tank contains liquid 
oxygen. In the process of burning hydrogen, water vapor at very 
high pressure is created. This vapor flows out the back of the rocket 
with great speed taking momentum with it. In this way the rocket 
gets momentum having the opposite sign.

Ships are moved by propellers, Fig. 3.26, which turn under water 
and are driven by the ship’s engine. A propeller sets the water in mo-
tion backwards, charging it with negative momentum. The corre-
sponding positive momentum is given to  the ship. In other words, 
the propeller pumps positive momentum out of the water and into 
the ship. If the ship brakes, the propeller motion is reversed, and 
momentum is pumped from the ship into the water. 

Propulsion systems of airplanes work similarly to those of ships, only 
here the momentum is taken from the air instead of from the water. 
An airplane with propellers uses them to pump momentum out of the 
air and into the airplane. In a jet, the jet engine does this. A jet en-
gine is actually nothing more than a very strong fan hidden inside 
the casing and driven by a turbine. The turbine receives its energy 
with kerosene, a fuel similar to gasoline (petrol). 
Airplanes must brake very quickly after landing. This means they 
must get rid of a lot of momentum very quickly. One way to  do this is 
through the wheels into  the ground, as an automobile does. A more 
efficient method, though, is something called thrust reversal. In 
some airplanes one can observe this well from inside through a win-
dow. Two flaps are extended from each engine. These divert the air 
blown out of the rear, forward, Fig. 3.27. In the process, the air re-
ceives positive momentum from the airplane, meaning that the air-
plane’s momentum decreases (we have assumed the airplane 
moves to the right). 

Fig. 3.23
This car should get rid of its mo-
mentum quickly.

Exercises

1. Where does a sailboat get its momentum from?
2. A  ship  is moving at a constant speed, meaning its momentum 
doesn’t change. Where does the momentum go which the motor con-
stantly pumps into the ship?

Fig. 3.24
The air flowing out gets negative 
momentum, the wagon gets posi-
tive momentum.

Fig. 3.25
How a rocket is constructed.

Fig. 3.26
The propeller pumps momentum 
out of the water into the boat.

Fig. 3.27
A jet engine with the thrust re-
verser working: The airplane gives 
momentum to the air.



3.6 Steady state
An automobile accelerates: The engine continuously pumps mo-
mentum out of the ground and into the car. The faster the car tra-
vels, the greater is the air friction and the more momentum is lost. At 
a certain speed, exactly the same amount of momentum is pumped 
into the car as flows off by friction. As a result, nothing is left to be 
stored and the car’s momentum no longer increases, Fig. 3.28.

This situation always occurs when a car travels along a level road at 
constant speed. The inflow of momentum equals the outflow.
This situation is again comparable to  another one where water plays 
the role of momentum, Fig.3.29. The pail with the hole is equivalent 
to the car. The pail has a leak for the water just as a car has a leak 
for momentum. There is a continuous flow of water into the pail, but 
exactly the same amount of water is flowing out of the hole so that 
the amount of water in it never changes. 

A process where the current flowing out is adjusted so that it is e-
xactly as strong as the current flowing in, is called steady state.

We often have a steady state when something moves at a steady 
(constant) speed.
A bicyclist pumps momentum into a bicycle (and into the person 
himself). A current of equal strength flows off, due to friction, over 
the air and wheels. This works correspondingly for airplanes and 
ships. 

Fig. 3.28
A car traveling at constant speed. 
Due to friction, all of the momen-
tum that the motor pumps into the 
car flows back out into the envi-
ronment.

Exercises

1. Describe the following situations in the movement of a car by 
showing what happens with momentum. 
(a) The car starts moving.
(b) The car rolls slowly in neutral.
(c) The car brakes.
(d) The car moves at a high and constant speed.
2. Earlier we found out about a process by which a body moves at 
constant speed although there is no steady state. Why does the mo-
mentum stay constant in this case?

Steady state: The outflow is adjusted to equal the inflow.

Fig. 3.29
The same amount of water flowing 
into the pail is flowing out of the 
hole in it. The amount of water in 
the pail stays constant. 



3.7 Direction of momentum currents
We can do the following experiment only in our minds because we 
need a moving train for it. 
An object G is thrown onto the floor of a train car W traveling to the 
right, Fig. 3.30. It is thrown so that it slides across the floor to the 
right. The speed of G immediately after hitting the floor is greater 
than that of the train. The object comes quickly to  “rest”, though. By 
rest, we mean that it no longer moves relative to the train. In other 
words: it moves exactly a fast as the train. While it was sliding, the 
momentum of G decreased. The momentum flowed from G to W. 

Again, we toss G onto the floor, but this time so that it slides to the 
left. At first, its speed is lower than that of the train. Again, the two 
speeds quickly even out. This time, the momentum of G increases 
during sliding. Momentum flows from train car W to object G.
Have you noticed that there is a simple rule for the direction of the 
momentum current? In both cases, momentum flows from the body 
with the greater velocity to the body with the lower velocity: In the 
first case, from G to W and in the second, from W to G. This rule al-
ways holds when momentum flows because of friction. In the exam-
ple of a car rolling to a stop, Fig. 3.31, momentum flows from the 
body with the greater velocity (the car) into the body with lower ve-
locity (into the ground which has a velocity of 0 km/h).

Whenever momentum should flow in the opposite direction, meaning 
from a body with lower to a body with higher velocity, a momentum 
pump is necessary.
We therefore have the rule:

Fig. 3.30
The object slides across the floor 
of a train car. 

Fig. 3.31
A car slows down. The momentum 
flows from the body with higher 
velocity into the one with lower 
velocity. 

Momentum flows by itself from a body of higher velocity into a 
body of lower velocity. A “momentum pump” (engine, person) 
transfers it in the opposite direction.



3.8 Compressive and tensile stress
In Fig.3.32a, someone sets a wagon in motion. Momentum flows 
through the rod from left to  right. In Fig. 3.32b, the wagon rolls on 
alone. Its momentum remains unchanged (except for loss through 
friction). Therefore, no momentum is flowing through the rod in Fig. 
3.32b. In Fig.32c, momentum flows through a rod from right to left. 
Put yourself in the position of the rod. Would you feel any difference 
in these three situations? Of course. One can actually consider the 
person’s arms as extensions of the rod. One can feel with one’s 
arms the differences in the three situations. In the first, there is com-
pressive stress, in the third one feels tensile stress, but in the sec-
ond there is neither pressure nor tension. 

These statements can be used for the rod as well. In the first case, 
the rod is under compressive stress, in the second, it is under no 
stress at all, and in the third, it is under tensile stress. We then have 
the following rule:

We will convince ourselves of the validity of this rule by using a fur-
ther example. Fig. 3.33a shows a truck just driving off. The truck’s 
engine pumps momentum out of the ground into the truck, and 
across the coupling to the left into  the trailer. We know that the cou-
pling rod is under tensile stress in agreement with our rule. 

We now consider a truck starting to  move to the left, Fig. 3.33b. In 
this case, the motor pumps negative momentum into the truck, 
meaning it pumps positive momentum out of it. Therefore, (positive) 
momentum flows through the coupling rod to  the left. The coupling 
rod is, naturally, under tensile stress. Our rule also holds here. 
A rod does not show whether it is under compressive or tensile 
stress or even whether or not it is under any stress at all. One also 
does not actually see whether or not, nor in which direction, momen-
tum flows in it. However, there are objects that show very clearly 
their stress states. They all deform elastically. Examples of these 
would be rubber bands or steel springs. 
Such objects lengthen by applying tensile stress and shorten by ap-
plying compressive stress. One sees whether or not and in which di-
rection a momentum current flows through it, Fig. 3.34 and 3.35. 

Exercises

1. A car traveling to the left, suddenly brakes. From where to where 
does the momentum flow? In this case, is the rule obeyed that states 
that momentum flows by itself from a body with greater velocity  to a 
body with smaller velocity?
2. A person accelerates a car to the left by pushing it. In the process, 
her arms are under compressive stress. In what direction does the 
momentum current flow in her arms?
3. A truck travels to the right at a constant high speed. Under what 
kind of stress (compressive or tensile) is the trailer coupling? Sketch 
the path of the momentum.

Momentum flow to the right: !compressive stress
Momentum flow to the left: ! tensile stress

Fig. 3.33
A tractor-trailer starts off to the 
right (a) and then to the left (b). In 
both cases, the coupling rod is 
under tensile stress, and both 
times the momentum current is 
flowing to the left.

Fig. 3.34
A momentum current is flowing to 
the left through the rubber cord. 
The cord is under tensile stress 
and it stretches. 

Fig. 3.35
A momentum current flows to the 
right through the spring. The 
spring shortens.

Fig. 3.32
(a) Momentum flows to the right in 
the rod. (b) No momentum flows 
in the rod. (c) Momentum flows 
left in the rod. 

Lengthening: Tensile stress; 
! ! momentum current flows to the left
Shortening: ! Compressive stress; 
! ! momentum current flows to the right

a

b

c

a

b



3.9 Momentum current circuits
It can happen that a momentum current flows, and in spite of this, 
the amount of momentum does not change anywhere. Fig. 3.36 
shows an example: A person pulls a crate across a floor at a con-
stant speed. 

The person could just as well be pulling a car at a constant speed 
instead of the crate. For our purposes, the crate has the advantage 
of showing very clearly the place where friction occurs, on the sur-
face between crate and floor. In the case of wheels, friction not only 
occurs in the bearings but in the rubber tire and the point of contact 
between the tire and the ground as well. 
We again ask the old question: What is the path taken by the mo-
mentum? Hopefully, the answer isn’t too difficult. The person pumps 
momentum out of the ground, through the rope and into  the crate. It 
flows out of the crate and back into the ground because of friction 
between the bottom of the crate and the ground. In this case, we 
can say that the momentum flows “in a circuit”, even if we don’t ex-
actly know the path it takes back through the ground. 
Again, a water current gives us a good image of this situation. Do 
you know how?
Fig. 3.37 shows a variation of the experiment in Fig. 3.36: Here, the 
crate is pulled, not across the ground, but across a board mounted 
upon rollers. The path of the momentum is even simpler. Because 
the board is mounted upon rollers, the momentum cannot flow back 
into the ground, and the person cannot pump any momentum out of 
the ground. The person pumps momentum out of the board. The 
momentum then flows through the rope into the crate. It then flows 
out of the crate back into the board, from where it continues to  flow 
to the right to  the person. Here again, the current flows in a closed 
circuit, and this time the path is clearly visible everywhere. One 
could say that the momentum current creates a circuit in this case.

The fact that momentum really flows to the left in the rope and to  the 
right in the board, can be demonstrated in a further variation of the 
experiment, Fig. 3.38. The rope and the board are each split by a 
spring. The springs show the direction in which momentum is flow-
ing. The spring in the rope is stretched, it is under tensile stress. 
This means that momentum is flowing to  the left. The spring be-
tween the two halves of the board is compressed, it is under com-
pressive stress. This means that momentum is flowing to the right. 

We again change the experiment, this time in two steps. First, we 
block the crate, Fig. 3.39. The person pulls again, but the crate can-
not move anymore. We conclude that we do not actually need the 
person: It is enough to just attach the tensed rope somewhere on 
the right, Fig. 3.40. As before, the rope is under tensile stress, and 
the board is under compressive stress. This means that the momen-
tum current flows in a circuit as it did before, even though nothing is 
moving and even though we have no ‘momentum pump’ at all. 

It will surprise you that something can flow without a driving force. 
After all, earlier in Chapter 3 we learned that a driving force is nec-
essary to make a current flow. We now see that this rule doesn’t al-
ways hold. There are currents without driving forces. The fact that a 
driving force is not necessary just means that the current meets no 
resistance. 
Later on you will see that electric currents usually need a driving 
force as well, but that there are electric conductors that have no re-
sistance. These are the so-called superconductors. Electric currents 
can flow without any driving force in an electric circuit made of su-
perconducting material. 
Electric circuits without resistance are rare but non-resistant mo-
mentum current circuits are common. Figures 3.41 and 3.42 show 
two examples. 

Fig. 3.36
Although a momentum current 
flows, momentum isn’t building up 
anywhere. 

Exercises

1. In Fig. 3.43a, a tractor tries to pull a tree out of the ground. Sketch 
the path of the momentum current.
2. Fig. 3.43b  shows a taut clothesline. Sketch the path of the momen-
tum current. Where do we find the tensile stress and where is the 
compressive stress?
3. How can a non-resistant current of matter be realized? Does such 
a thing exist in nature?

Momentum can flow in a closed circuit. Momentum therefore 
never increases or decreases. A part of every momentum cir-
cuit is under compressive stress and the other part is under 
tensile stress. 

Fig. 3.37
A closed momentum current 
circuit

Fig. 3.41
A closed momentum current 
circuit.

Fig. 3.43
For Exercises 1 and 2

Fig. 3.42
A closed momentum current 
circuit.

Fig. 3.38
The springs show the direction of 
the momentum current.

Fig. 3.39
The crate does not move. Even 
though, a momentum current is 
flowing. 

Fig. 3.40
Momentum current without a 
driving force.

a

b



3.10 The strength of momentum currents
A momentum current flows at a constant rate from the tractor in Fig. 
3.44 into the trailer. A certain number of Huygens per second flow 
through the coupling rod. The amount of momentum flowing through 
a conductor divided by the time span is called the strength of the 
momentum current (or simply the momentum current).

This equation can be written much more briefly if the symbols for the 
quantities are used:
p = momentum
F = momentum current
t = time
Therefore we have

If, for example, 500 Hy per second flow through the trailer coupling 
as in Fig. 3.44, then
F = 500Hy/s.
The name Newton (N) is used for the unit Hy/s:

N = Hy
s

We can then write our momentum current so:
F = 500 N.
The unit of momentum currents is named for Isaac Newton 
(1643-1727). Newton gave mechanics the basic form we learn it in 
today. Among other equations, Newton gave us the equation F = p/t. 
Momentum currents are easy to measure. A so-called force sensor 
is used for this, Fig. 3.45. A force sensor consists of a steel spring 
that elongates according to  the strength of the momentum current 
flowing through it. The scale is calibrated in Newtons. 

Fig. 3.46 shows how to use a force sensor. The strength of the 
momentum current flowing through the rope in Fig. 3.46a is to  be 
measured. The rope is cut at an arbitrarily chosen position and the 
newly created ends are connected to  the two hooks of the force 
sensor, Fig. 3.46b. 

In Fig. 3.47a, the strength of the same momentum current is 
measured twice successively. Of course, both force sensors show 
the same reading. They also show exactly what just one force 
sensor would show. 

Momentum currents can branch just like water currents do. Fig. 
3.47b gives an example. The sum of the currents in ropes A and B 
must equal that of C. Here we have used the junction rule that you 
already know from water currents (see section 2.5): 

Fig. 3.44
 A momentum current that is con-
stant in time flows from the truck 
to the trailer.

Exercises

1. A constant momentum current flows into a wagon with perfect bear-
ings. Within 10 seconds, 200 Huygens of momentum has collected. 
What was the current?
2. A  truck is starting to drive off and a momentum current of 6,000 N 
flows through the coupling to the trailer. What is the momentum of the 
trailer after 5 s? (Friction loss by the trailer can be ignored).
3. In Fig. 3.48a, what do the force sensors C and D show?
4. The boxes in Fig. 3.48b are pulled at constant speed across the 
floor. What is the momentum current flowing from the box on the left 
into the ground? What is the current into the ground in the case of the 
one on the right? 
5. A constant momentum current of 40 N flows into a vehicle (friction 
can be ignored). Represent the momentum as a function of time.

The sum of the currents flowing into a junction equals the sum 
of the currents flowing out of it.

Fig. 3.46
(a) The strength of the momentum 
current in a rope is to be meas-
ured. (b) The rope is cut and the 
force sensor is attached to the 
newly created ends.

Fig. 3.47
(a) A current flows consecutively 
through two sensors. (b) A 
branched momentum current.

Fig. 3.48
(a) For exercise 3; 
(b) For exercise 4

Fig. 3.45
A force sensor

momentum current = momentum
time interval

F = p
t

a

b

a

b

a

b



3.11 Force
In this section we will do nothing other than learn a new word for a 
well-known concept. 
The name momentum current for the quantity F has only existed 
since the beginning of the 20th century. The quantity itself, though, 
has been around since Newton’s time, or for about 300 years. At 
that time the quantity was given another name: it was called force. 
The F is the first letter in the word “force”. The name force for the 
quantity F is still widely used. In fact it is more often used than the 
name momentum current. We must therefore get used to using it,  
although there is a problem in doing so: Even though “force” de-
scribes the same physical quantity as “momentum current”, the two 
words are dealt with very differently. We will call a description using 
momentum currents the momentum current model and one with 
force, the force model. 
You already understand why our measuring device for momentum 
currents is called a “force sensor”.
We will illustrate handling a force model by using Figures 3.49 and 
3.50. In Fig. 3.49, a person pulls a wagon with good bearings and 
sets it in motion to  the right. Remember the description in the mo-
mentum current model: The person pumps momentum out of the 
Earth over the rope into the wagon. In doing so, the wagon’s mo-
mentum increases. The force model describes the same process in 
this way: A force is exerted upon the wagon, thereby increasing its 
momentum.

It gets a bit more difficult in the description of Fig. 3.50. Here, there 
are two springs, A and B, pulling on a car. A pulls to the left and B 
pulls to the right. Naturally, both force sensors show the same thing. 
Let us assume it is 50 N. We will once again describe the situation in 
the momentum current model: A momentum current of 50 N flows 
out of the ground through spring B, and into the car from the right. 
From there it flows through A and back into the ground. A force 
model would describe it as follows: Spring A exerts a force of 50 N 
on the car pointing to  the left, Spring B exerts a force of 50 N on the 
car pointing to  the right. Because the forces have the same absolute 
value, but act in opposite directions, the momentum of the car does 
not change. 

Fig. 3.49
The person exerts a force upon 
the wagon. The momentum of the 
wagon changes because of this.

Fig. 3.50
Spring A exerts a force to the left 
and spring B a force to the right 
upon the wagon. Because the 
forces are of the same magnitude, 
the wagon’s momentum doesn’t 
change.



3.12 Measuring momentum currents
We wish to build a device for measuring currents (a force sensor) 
ourselves. We pretend that the spring force sensor has not been in-
vented yet, and that the unit of measuring momentum currents has 
not yet been determined.
We will start by deciding what our unit of measurement will be. To do 
this, we need a large number of identical rubber bands. We hold one 
of them up to a ruler so that it is stretched out but not beyond it’s 
normal length, Fig. 3.51, and measure its length. Let’s assume we 
find a length of 10 cm = 0.1 m. Because the rubber band is slack, no 
momentum current is flowing through it yet. We stretch it until it is 
0.15 m long. Naturally, a momentum current is flowing through it 
now. We declare the strength of this momentum current to  be our 
unit of current. (Because the band is made up of two parallel rubber 
threads, only half of the unit of momentum current flows through 
each thread.)

Now we can create as many units of momentum current as we wish 
with other rubber bands. This means that we can create multiples of 
our unit of momentum current. For example, if we connect three uni-
form rubber rings together in parallel, three units of momentum cur-
rent flow through all three of them. 
With the help of our supply of rubber bands, we can now calibrate 
another elastic object such as an elastic cord, Fig. 3.52. To do this, 
we allow one or more units of momentum current to flow through the 
cord, all the time measuring the changes in its length as compared 
to its relaxed state. 

In Fig. 3.53, the momentum current is shown as a function of the 
“stretching”. This curve represents the calibration curve of the ex-
pandable cord. If we now wish to measure a momentum current, we 
can forego our rather cumbersome process with the rubber band 
units, and use the rubber cord instead. 

For example, we wish to  measure the strength of the current flowing 
into a wagon we are pulling. To do this, we pull the wagon by the 
elastic cord and measure by how much the cord lengthens. If the 
amount of stretching is 0.25 m, we can see from the calibration 
curve that the momentum current has a value of 4 units. 
Now we will take another object to  show the relationship between 
lengthening and momentum current: a steel spring. The result is 
shown in Fig. 3.54. The relation here is simpler than with the elastic 
cord: It is linear. The spring’s lengthening s and momentum current 
F are proportional to  each other. One says that the spring follows 
Hooke’s law, which can be formulated as follows:
 F = D · s

D is a constant for a given spring. It is called the spring constant. Its 
unit is N/m. In general, the spring constant has different values for 
different springs. Fig. 3.55 shows the relation between F and s for 
two different springs. D has a greater value for spring A than for 
spring B. If spring A and spring B are both stretched by the same 
amount, the momentum current in A is greater than the one in B.  
The spring with the higher spring constant is the harder spring. 

Many springs can have tensile stress as well as compressive stress. 
Hooke’s law holds for such springs, meaning the linear relation be-
tween change of length and momentum current, for lengthening 
(positive values of s) as well as for shortening (negative values of s).

Fig. 3.51
How to determine a momentum 
current unit. (a) The rubber band 
is laid out but not stretched. 
(b) The rubber band is stretched 
by 5 cm.

Exercises

1. A  spring’s spring constant is D = 150 N/m. How much does it 
lengthen when a momentum current of 
a) 12 N         
b) 24 N
flows through it?
2. The F-s relation for the rope represented in Fig. 3.56 is measured. 
a) By how much does the rope stretch when a momentum current of 
15 N flows through it? How much will it stretch for a momentum cur-
rent of 30 N?
b) If the rope lengthens by 20 cm, what is the momentum current?
c) What does one feel when one pulls the rope at each end with both 
hands? Compare it to the steel spring. 
3. How would a device be made whose F-s relation looks like the one 
in Fig. 3.57?
4. Two springs are hooked up  to each other and inserted into a rope 
through which a momentum current flows. One spring stretches four 
times as much as the other. What is the relation between the two 
spring constants? 

Fig. 3.52
The cord of an expander is calib-
rated using the rubber band unit.

Fig. 3.53
The calibration curve of the ex-
pander: The momentum current is 
given as a function of the stretch-
ing of the cord. 

Fig. 3.54
In a steel spring, the relation be-
tween momentum current and 
stretching is linear.

Fig. 3.57
For exercise 3.

Fig. 3.56
For exercise 2.
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The spring constant of spring A is 
greater than that of spring B. 
Spring A is harder than spring B. 
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3.13 Momentum currents can be destructive
If a momentum current becomes to great, the conductor it flows 
through can break, Fig. 3.58. Mostly this is undesirable. However, 
sometimes one wishes to break, tear or crumble something. We will 
discuss examples of both cases. 

Towing a car
The towing rope in Fig. 3.58 has torn. How could this have been 
avoided? Try to bring a heavy car up to a certain speed by pulling on 
it with a thin thread. If you pull too hard, i.e., if you let a momentum 
current flow that is too strong, the thread will snap. However, it is 
possible to charge the car with the desired amount of momentum. 
One must allow a momentum current that is weak enough but flows 
over a longer time span. In other words: You need to pull less 
strongly, but for longer. In the case of towing a car this means that 
one must start off slowly so that the momentum current in the rope is 
not too great.

Catching a stone
A stone hitting a window pane transfers its momentum to the window 
pane very quickly. The current is very strong, and the glass breaks. 
If you catch a stone with your hands, you follow the motion of the 
stone with your hands while stopping it. In doing so, the duration for 
the momentum to  flow out of the stone is increased and the momen-
tum current is decreased. No damage is done.

A hammer
Sometimes one wishes to break something, a brick, perhaps. A 
hammer could be used for this. At first, the hammer is charged with 
momentum relatively slowly when it is put into motion by a hand. 
When it hits the stone, its momentum flows in a short span of time. 
The momentum current is very strong and the stone breaks. 
Whether or not a momentum current is destructive does not only 
depend upon its strength. It is clear that it is possible to avoid the 
tearing of the towrope in Fig. 3.58 by other means, say by using a 
thicker rope. One sees that for tearing, not only a strong momentum 
current but a strong momentum current through a small cross sec-
tional area is decisive, and not just a strong momentum current. 
Rope A in Fig. 3.59 tears when a current of 50 N flows through it. 
Rope B, with double the cross sectional area, does not tear. This is 
easy to understand. If rope A has a cross sectional area of 1 cm2 
and rope B has one of 2 cm2, one can imagine rope B as two paral-
lel ropes of 1 cm2 cross sectional area each where 25 N flows 
through each one. They are stressed less strongly. The stress of the 
material of a conductor can be reduced by making the conductor 
thicker. Here are some more examples of this. 

Nails, thumb tacks, knives, chisels
These can be used to  destroy things (making a hole in a wall is a 
kind of destruction). In each case, a momentum current is conducted 
through a tip or other narrow point into the material being worked 
upon. The stress of the material at this point is so  great that it 
breaks.

Seat belt and air bag
A car comes to an abrupt stop during an accident. It transfers its 
momentum very quickly: to  a tree, a guard rail, or another car. The 
people in the car also have momentum and must get rid of it during 
the accident. The strong momentum currents which flow during the 
process lead to the destruction of the car and injuries of the passen-
gers involved. In vehicle construction, a so-called crush zone is in-
cluded in order to reduce some of the momentum currents. At im-
pact, the car folds up somewhat. As a result, the process of transfer 
of momentum is prolonged, and the momentum currents become 
weaker. 
Seat belts have several functions.
First, they stretch out somewhat at impact. In the process, the trans-
fer of momentum from passenger to the car is prolonged and the 
current is made smaller. 
Second, because seat belts are wide, the momentum current flowing 
out of the person is distributed over a large surface. As we have 
seen, the destructive effects of the currents are reduced by this kind 
of momentum distribution. Without the belt, the passengers might be 
thrown against some pointed object inside the car. 
Finally, the momentum currents are conducted through parts of the 
passenger’s body that are less in danger of being injured. It would 
be much worse if the passenger transferred his momentum via his 
head.
The situation is even better with an air bag. The surface to which the 
passenger’s momentum flows is still greater.

Fig. 3.58
If the momentum current is very 
large, the conductor can break.

Exercise

A car needs to tow another one. A  momentum current of 2000 N may 
be expected for accomplishing this. Unfortunately, the drivers do not 
have a towrope with them. They finally locate a big roll of string that 
can take a momentum current of only 100 N. What do you suggest 
they do?

Fig. 3.59
The cross sectional area of rope B  
is double that of rope A.

A

B



3.14 Velocity
The physical quantity that indicates how fast a vehicle or anything 
else moves, is called velocity, abbreviated to v.
The driver of a car must always know how fast he is driving, he must 
know the velocity of his vehicle. For this purpose, every car has a 
measuring device for velocity: the speedometer. It shows the veloc-
ity in the unit of kilometers per hour, abbreviated to km/h.
Fig. 3.60 shows the record of a tachograph: The velocity of a truck is 
automatically recorded over time. We will try to interpret the dia-
gram. The truck moves off at time t = 0 minutes. After 4 minutes, it 
must stop shortly and after 9 minutes, this happens again. Probably 
it came to traffic lights on red. From the 12th to the 16th minutes, it 
drove rather slowly, at 35 km/h. Maybe it was traveling uphill or there 
was a lot of traffic. From the 18th minute onwards, it drove at a con-
stant high speed of 85 km/h. Apparently, it had left the city limits. 

As long as a body moves at constant speed, there is a simple rela-
tion between the velocity, the distance to be covered and the time 
needed to cover it. 
If a car moving at a constant velocity needs half an hour to cover 60 
km, it needs 0.75 hours to cover 90 km, 1 hour to cover 120 km, 2 
hours to cover 240 km, etc. (see table 3.5). The distance s is propor-
tional to the time t: 
s ~ t

In Fig. 3.61, the relation is represented graphically. Another way of 
expressing the same facts would be: The quotient s/t is constant. It 
is
60 km
0,5 h

= 90 km
0,75 h

= 120 km
1 h

= 240 km
2 h

=…

and this quotient equals the velocity v = 120 km/h. Therefore, in the 
case of constant velocity, we can write:

v = s
t

Similarly to  various other quantities, velocity can have many units. 
For example, a car‘s velocity is given in km/h, a ship’s in knots. The 
internationally agreed upon physical unit is meters per second, ab-
breviated to m/s. 
We convert the unit km/h into m/s:

1 km
h

= 1 km
1 h

= 1000 m
3600 s

=  0,2778 m/s .

Exercises

1.  A bicyclist needs 40 minutes to cover a distance of 10 km. What is 
his velocity (in km/h)?
2. A train travels at constant velocity for 1 h 32 min covering a dis-
tance of 185 km. What is its velocity? Give the result in km/h and m/s.
3. A car drives at 90 km/h for 10 minutes. How many km does it cover 
in this time?
4. An airplane traveling at 800 km/h flies 1600 km. How long is the 
flight?
5. The speed of light is 300,000 km/s. The distance from the Earth to 
the sun is 150,000,000 km. How long does light from the sun take to 
reach the Earth?

Fig. 3.60
Tachograph record of a truck. The speed is given as a function of time.
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60 0,50 120

90 0,75 120

120 1,00 120
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240 2,00 120

Table 3.5
Covered distance, time necessary 
to cover that distance, and quo-
tient of distance and time for a  car 
that moves with constant velocity.



3.15! The relation between momentum, mass, and
 velocity

The heavier and the faster an object is, the more momentum it has. 
This sentence makes a statement about the relation between three 
physical quantities: momentum p, mass m and velocity v. We will 
now investigate this relationship by looking for a “quantitative” ex-
pression. 
We ask about the dependence of momentum upon the two other 
quantities. Solving our problem will be much easier if we separate it 
into two parts. First we will investigate how the momentum relates to 
the mass of the object in question. After that, we will look into how it 
depends upon the velocity.
In order to obtain the influence of mass upon momentum we con-
sider several bodies of varying masses, all moving at the same ve-
locity. Our problem becomes clear if we choose bodies like those 
shown in Fig. 3.62. Body A is a glider on an air track and body B is 
composed of two coupled gliders each of which is exactly as heavy 
as body A. The mass of B is double that of A: 
mB = 2 · mA

Body C is composed of three such gliders, it therefore has three 
times the mass of A:
mC = 3 · mA

We could continue in this way with more bodies of four times the 
mass of A, five times the mass of A, etc. Now A, B, C, etc., are all 
moving at the same velocity. How do their momenta relate to  each 
other? Body B is nothing more than two coupled bodies A. If A has 
momentum pA then B must have twice the momentum pA:
pB = 2 · pA

C is composed of three coupled A-type bodies. Each of these moves 
exactly as fast as body A, meaning that C must have three times the 
momentum of A:
pC = 3 · pA

We recognize the following relationship: The momenta of two bodies 
differ by the same factor as their masses. In other words, momen-
tum and mass are proportional:
p ~ m ! at v = const
This was the first of the relations we are looking for. We will need to 
do a bit more to find our second one, the relationship between mo-
mentum and velocity.
Our approach will be to lower the momentum of a body to half and 
then measure by how much the velocity changes. Next, we will 
lower the momentum down to a third and check again how v 
changes, etc. Fig. 3.63 shows how the experiment looks.

Body A moves to the right and towards body B, which is at rest. A 
hits B and couples to it so that A and B, together, move further to  the 
right. We can measure the velocity of A before and after impact. (Af-
ter impact, it is naturally exactly as great as that of B.) We now seek 
the momentum and velocity values of body A both before and after 
impact. 
We call the momentum of A before impact pi (i means initial), and its 
momentum afterwards pf (f means final). Because at impact, pi dis-
tributes evenly over both bodies A and B, body A has exactly half as 
much momentum after impact as it did before impact. Therefore: 
pf = (1/2) · pi
The velocities before and after the collision are found by experiment. 
It demonstrates that the velocity vf after the impact is half that of the 
velocity vi before it: 
vf  = (1/2) · vi
If a body A is allowed to collide with two bodies B and C at rest, Fig. 
3.64, the momentum distributes over all three bodies and we have
pf = (1/3) · pi
In this case measuring velocities yields
vf = (1/3) · vi

We conclude from this that for a body, i.e., for constant mass, mo-
mentum and velocity are proportional:
p ~ v ! for m = const
Now we have the two relations individually: the one between p and 
m, as well as the one between p and v. We will write them once 
again:
p ~ m ! for v = const  ! ! ! ! ! ! (1)
p ~ v ! for m = const! ! ! ! ! ! (2)
Mathematics tells us that we can combine these two relations into 
one: 
p ~ m · v ! ! ! ! ! ! ! ! ! (3)
The correctness of this proportionality can be seen in that the two 
relations (1) and (2) result from it. If one leaves v constant and only 
changes m, then relation (1) results from (3). If, on the other hand, m 
is left constant and v is changed, then the result is (2). 
We still cannot calculate the momentum of a body from its mass and 
its velocity by using (3). To do this, we still need a factor of propor-
tionality in (3). We are lucky here: Actually we don’t need such a fac-
tor because the unit of momentum (Huygens) sets this factor to one 
if we set the mass in kg, and the velocity in m/s. Therefore:

This is our desired result. Now we have a very useful formula. We 
can calculate the momentum of a body if we know its mass and ve-
locity. Mass and velocity are easily measured quantities. Thus, we 
have learned a simple method of determining values of momentum. 
Remember that in this formula, momentum has the unit Hy only if 
the mass is given in kg and the velocity in m/s. 

We consider the equation p = m · v from a different viewpoint. Imag-
ine two bodies A and B with strongly differing masses:
mA = 1 kg
and
mB = 1000 kg.
Each of these bodies is given 1 Hy of momentum. How do the bod-
ies react? Of course, they are set in motion, but differently. From
p = m · v
follows

v =
p
m

 .

The resulting velocity for body A is

v A =
p
mA

=
1 Hy
1 kg

= 1 m/s

and for body B it is

vB =
p
mB

=
1 Hy

1000 kg
= 0.001 m/s .

A is 1000 times as fast as B. It is easier to set a body of small mass 
in motion than one with more mass. A general statement about this 
would be:

We also say that a heavy body has more inertia than a light one.

Exercises

1. A truck weighing 12 t (12,000 kg) travels at a velocity of 90 km/h. 
What is its momentum?
2. A goalie catches a ball which comes at a velocity of 20 m/s. What 
is the momentum that flows over the goalie into the ground? (The ball 
weighs 420g.)
3. A tennis ball is hit at a right angle against a wall. Its velocity is 
30 m/s. What is the momentum that flows into the wall? (The tennis 
ball weighs 50g.)
4. A person accelerates a car with good bearings by pulling on it. A 
force sensor shows the momentum current flowing into the car. The 
person pulls for 5 seconds. What is the resulting velocity? (The car 
weighs 150 kg, the force sensor shows 15 N.)
5. A locomotive pulls a train. A momentum current of 200 kN flows 
through the coupling between the locomotive and the train cars. What 
is the train’s momentum (without the locomotive) after 30 seconds? 
The train now has a velocity of 54 km/h. What does the train weigh?
6. A wagon at rest and weighing 42 kg is accelerated. The momentum 
current through the rod pulling the wagon is 20 N. How much momen-
tum flows into the wagon in 3 seconds? At this point, its velocity is 
1.2 km/s. What is its momentum? Where did the missing momentum 
go? 
7. Water flows at a speed of 0.5 m/s in a long straight pipe having a 
length of 2 km and a diameter of 10 cm. The water is blocked off at 
one end by a valve. Calculate the momentum given up  by the water. 
Where does this momentum go? The blocking lasts 2 s. What is the 
force of the water upon the valve (the momentum current)? Hint: First 
calculate the water volume in liters. 1 l of water has a mass of 1 kg.

The mass of a body is responsible for its inertia.

The momentum of a body is proportional to its mass and its 
velocity.

It is easier to  change the velocity of a body with small mass 
than to change the velocity of a body with greater mass.

Fig. 3.62
Body B has twice, body C three 
times the mass of body A. B also 
has twice, and body C, three 
times the momentum of A.

Fig. 3.63
The momentum of body A de-
creases by half at impact. Meas-
urement shows that the velocity 
also reduces to half.

Fig. 3.64
At impact, momentum and velocity 
of body A both reduce to one third 
of their initial values.

p = m · v



3.16 SI-units
In the part of physics that you have gotten to  know, the statement 
we made about mechanics has proven true: Physical quantities are 
needed in order to describe the world physically. An important goal 
of physics, if not the most important goal, is to find relationships be-
tween these quantities. 
In Table 3.6, we have put together some of the quantities we have 
encountered so far. 

You know that every quantity has a unit. Most quantities, though, 
have more than one unit, Table 3.7. There are various reasons for 
one and the same quantity having more than one unit. Often, differ-
ent units of measuring were defined within the different fields of sci-
ence, technology, or handicrafts: A tailor uses the cubit, the plumber, 
the inch, and the physicist, the meter. People agree on one unit in 
one country perhaps, but unfortunately, in other countries there will 
be other units. In most of Europe, mass is measured in kilograms, 
but in the USA the pound is used. The Système International was 
finally agreed upon as the binding system for units. According to this 
system, each quantity (with few exceptions) has only one unit. We 
call these units SI-units.

The units in Table 3.6 behind the names of the quantities are SI-
units. 
Use of SI-units has not only the advantage of making international 
communication easier. It is also a unit system that makes physical 
formulas as simple as possible. If the values of the quantities on the 
right side of the formulas that you already know are entered in SI-
units, the result (meaning the value of the quantity on the left) is also 
in SI-units. If, on the other hand, the values on the right were in-
serted in different units, the result would probably be in a unit not 
commonly used. We will look at two examples.
The equation P = E/t can be used to calculate the energy current 
from energy and time. If the energy is given in Joules, and the time 
in seconds, the resulting energy current is Joules per second. Now, 
1 J/s is equal to 1 Watt. We therefore obtain the SI-unit Watt. If we 
had given the energy in calories and the time in minutes, we would 
have gotten calories per minute. This would have been a totally in-
appropriate unit. 
We have learned the following:

If you want to solve a problem, and the initial values are not in 
SI-units, convert them to SI-units immediately.

Name of the quantity (symbol) SI-unit (symbol)

pressure (p) Pascal (Pa)

energy (E)  Joule (J)

energy current (P) Watt (W)

time (t) seconds (s)

momentum (p) Huygens (Hy)

momentum current (F)  Newton (N)

velocity (v)  meters per second (m/s)

distance (s)  meter (m)

mass (m) kilogram (kg)

Table 3.6
Names and SI-units of 
some physical quanti-
ties and their abbre-
viations

Name of the quantity Units

pressure Pascal, bar, atmosphere

energy  Joule, calorie

energy current Watt, horsepower

time second, minute, ... year

momentum current, force Newton, dyne

velocity meters per second, kilo-
meters per hour, knots

distance meter, inch, light year

mass kilogram, pound

Table 3.7
Most physical quanti-
ties have beside the 
SI-unit other units.



4
The gravitational field



4.1 Vertical motion
In the following sections we will deal with the concepts of gravity, 
gravitational force, and objects that fall to the ground. Previously, we 
looked at horizontal motion, now we will consider vertical motion. 
Moreover, everything we learned about horizontal movement we can 
transfer to  our description of vertical movement. We need only to 
turn our x-axis 90 degrees so that it is vertical and its positive side 
points downward. This means:   

In section 3.8 we learned the following rule:
Momentum current to the right: compressive stress
Momentum current to the left: tensile stress
Because what was to the right is now down, and what was to the 
left, is now up, the new rule is: 

We take the closed momentum current circuit of Fig. 4.1 as an ex-
ample.

Fig. 4.1
Closed momentum current circuit 
with vertical x-axis.

A body’s momentum is positive when the body moves down-
ward, and negative when it moves upward.

Momentum current downward: compressive stress
Momentum current upward: tensile stress



4.2 !Gravitational attraction – 
the gravitational field

Every object is attracted by the Earth. Two phenomena show this:
1. If you take an object into your hand and then let it go, it drops 
downward.
2. Every object has a weight.
Both of these phenomena show that the object receives momentum 
from the Earth. A falling body gets faster the longer it falls. Its mo-
mentum increases.
A body that is not falling also gets momentum. This can be seen, for 
example, if it is hung from a spring scale, Fig. 4.2. The spring shows 
that a continuous momentum current flows out of the body, over its 
mounting and into the Earth. The momentum must be supplied con-
tinuously. There is a constant momentum current flowing into the 
body. However, it flows through a connection between the body and 
the ground which is invisible.  

We have already gotten to know a similar momentum conductor, a 
connection that cannot be seen: the magnetic field. In the case we 
want to consider at the moment though, there cannot be a magnetic 
field, because that would mean that only magnets or iron bodies 
would be attracted to the Earth. The connection is composed of an 
entity that is not a magnetic field but is similar to a magnetic field. It 
is called a gravity field, or gravitational field. All entities that have a 
mass, that means all bodies, are surrounded by a gravitational field 
in exactly the same way that a magnetic pole is surrounded by a 
magnetic field. The greater the mass of the body, the denser this 
field is. 

Fig. 4.2
 The momentum which continu-
ously flows through the spring 
scale and the mounting into the 
ground, reaches the body through 
an invisible connection. 

Every body is surrounded by a gravitational field. The greater 
the mass of the body, the denser the field. Momentum flows 
from one body to another through the gravitational field. The 
Earth’s gravitational pull results from the momentum current 
from the Earth to the object in question.



4.3!What the Earth’s gravitational attraction 
depends on

Let us try an experiment. First we hang a piece of iron with a mass 
of 1 kg on a spring scale, i.e, a force sensor, and then we hang a 
1 kg piece of wood on it. The force sensor shows the same thing 
both times. Is this a surprise? Of course not. How does one find out 
whether a piece of iron or a piece of wood has a mass of 1 kilogram, 
anyway? By putting it on a scale. Most scales function like our 
spring scale. Using the scale or the force sensor, we can define 
what we mean by two equal masses: If two bodies show the same 
reading on a force sensor, they have the same mass. 
We can say this in another way as well: If the momentum currents 
flowing out of the Earth and into two bodies have the same strength, 
the bodies have the same mass. 
We now take two bodies, each with a mass of 1 kg. If we put them 
together, we can consider them as one body with a mass of 2 kg. A 
momentum current flows into both of them which is twice as strong 
as the current that would flow into  just one of them. This may seem 
obvious to you. You could probably imagine, though, that the mo-
mentum current into the first body is influenced by the addition of the 
second body. 
How strong is the momentum current flowing into the 1 kg body? 
The force sensor shows that it has a strength of about 10 N. A more 
exact measurement gives us 9.81 N. Accordingly, 2 · 9.81 N = 
19.62 N flows into  a body of 2 kg mass, and 98.1 N flows into a body 
of 10 kg mass. Again, we are dealing with proportionality: the 
strength of the momentum current flowing from the Earth into a body 
is proportional to the mass of the body: 
F  ~ m 
The factor of proportionality has a value of 9.81 N/kg:
F = m · 9.81 N/kg
We are not quite finished with our considerations. A kilogram of iron 
weighs exactly as much as a kilogram of wood, but a kilogram of 
iron doesn’t weigh as much on the Moon as it does on Earth. We will 
do the following thought experiment. We take an object with a mass 
of 1 kg and weigh it at different locations: here at home, at the north 
pole, at the equator, on the Moon, on Mars, on the surface of the 
Sun and finally, on a neutron star. The results are compiled in Table 
4.1. 

At every location, the following proportionality is valid
F  ~ m.
However, the factor of proportionality has a different value for each 
location. The values vary only slightly at different locations on the 
surface of the Earth. They deviate greatly, though, on the other ce-
lestial bodies from those on Earth. For this reason, we will write the 
relation between F and m in a general form

The proportionality factor g is dependent upon where the body hav-
ing the mass m is to be found. It is called the gravitational field 
strength.. 

Here is a description of the Earth’s gravitational pull in the force 
model: The quantity F is called force of gravity or weight. One can 
also say that the gravitational force acts upon a body. 
What do we actually mean when we say that an object is very 
heavy? It probably means that it is difficult to  lift it off the ground. Do 
we mean that it has a big mass? Probably not. On the Moon it 
wouldn’t be difficult at all to lift this “heavy” object. The word “heavy” 
rather means that a strong momentum current is flowing into the 
body. In other words, the gravitational force acting upon it is great. 
The same object can be light or heavy depending upon where it 
happens to be.

Exercises

1. What is the momentum current that flows out of the Earth into your 
own body? (What is the gravitational force acting upon your body?) 
What would this momentum current be on the Moon? What would it 
be on a neutron star?
2. During an expedition to the Moon, astronauts using a force sensor 
determine the gravitational force acting upon a body. They find that F 
= 300 N. What is the body’s mass? 

The momentum current from the Earth into a body equals the 
product of the mass of the body, and the gravitational field 
strength. The strength of the gravitational field on the surface of 
the Earth is 9.81 N/kg ≈ 10 N/kg.

Location            g in N/kg

Central Europe                              9.81

North and South Poles                              9.83

Equator                              9.78

Surface of the Moon                              1.62

Surface of Mars                              3.8

Surface of the Sun                          274

Surface of a neutron star  1 000 000 000 000

Table 4.1
Values of the standard 
gravitation at various 
locations

F = m · g



4.4 Free fall
We take an object into  our hands and let go of it. It falls to the 
ground. We can now explain this phenomenon: A momentum current 
of m · g flows into the object. Therefore, its momentum continuously 
increases. The longer it falls, the faster it falls. 
Something here is odd, though. If two objects, one heavy and one 
light, are let go at the same time from the same height, they reach 
the ground at the same time. Shouldn’t the heavier one hit the 
ground earlier since it receives more momentum from the Earth?
We will calculate how the momentum of the two bodies increases. 
We assume that the mass of the heavier body is 4 kg, and that of 
the lighter one is 1 kg. We insert
F = m · g
into
 p = F · t 
and obtain
 p = m · g · t ! ! ! ! ! ! ! ! (1)
Here we insert the mass and the gravitational field strength for the 
heavier body and get
p = 4 kg · 10 N/kg · t = 40 N · t
and for the light body
p = 1 kg · 10 N/kg · t = 10 N · t .
These p-t-relations are represented in Fig. 4.3. The figure shows 
that the momentum of both objects increases uniformly. However, 
the momentum of the heavier body increases more quickly than the 
momentum of the light one. At any given moment, the heavier one 
has four times the momentum of the lighter one. 

Why do both the bodies fall at the same velocity, then? To answer 
this question, we need the formula
p  = m · v .! ! ! ! ! ! ! ! ! (2)
We conclude from it that four times the momentum is needed in or-
der to bring the heavy body up to a certain velocity than is needed to 
bring the light one to the same velocity. The body with greater mass 
has greater inertia than the one with smaller mass. 
A simple calculation yields the same result. We equate the right 
sides of (1) and (2) and obtain
m · g · t  = m · v
Dividing both sides of this equation by m yields
v = g · t! ! ! ! ! ! ! ! ! (3)
This equation demonstrates that the velocity of a falling body in-
creases uniformly. Because the mass plays no role anymore, it also 
tells us that the velocity with which a body falls, is not dependent 
upon the body’s mass. In Fig. 4.4, the speed of an arbitrary freely 
falling object is represented as a function of time. 

The fact that the gravitational field strength appears in Equation (3) 
means that the velocity of free fall depends upon where the falling 
object is located. For example, objects on the Moon fall six times as 
slowly as on Earth. 
We have so far assumed that a falling body gets momentum only 
from the Earth and that it does not lose momentum while falling. We 
have rather simplified the situation by making this assumption. A fal-
ling body actually does lose momentum through friction with the air. 
If a body is not too light and falls only a short distance, then our sim-
plification is justified. This situation is called free fall. However, if a 
body is very light and has a large surface as well, our considerations 
become invalid. 

We will now consider a variant of free fall. We don’t let an object fall 
from a state of rest, but we throw it vertically up into the air. At the 
beginning, it has negative momentum. Like before, it constantly re-
ceives new positive momentum from the Earth, leading to  a gradual 
reduction of its negative momentum. It becomes slower and slower, 
comes to  rest and finally begins to  move in the positive direction 
(downward).
Upward motion is the mirror image of downward motion. In the proc-
ess of falling down, the momentum of an object increases uniformly. 
In the process of moving upward, the negative momentum of an ob-
ject decreases uniformly. The equivalent is true for the velocity: The 
negative velocity decreases linearly with time during upward move-
ment, and when an object falls downward, its (positive) velocity in-
creases linearly with time.  
Fig. 4.5 shows the velocity as a function of time. We have set the 
point of reversal as the zero  point of the time axis. The toss up into 
the air takes place at the time “minus 0.4 seconds”. One sees in the 
figure that the object needs the same amount of time to fly upward 
as it does to fall back down.

Fig. 4.3
Momentum as a function of time 
for two falling bodies of different 
weights. 

Exercises

1. You jump from a 3-meter diving board into water. The free fall lasts 
0.77 s. What is your momentum when you hit the surface of the wa-
ter? What is your speed?
2. What is the velocity  of a freely falling body after 1/2 seconds on 
Earth, on the Moon and on the Sun?
3. A stone is thrown upward. Its initial speed is 15 m/s. How long does 
it take to hit the ground?
4. A stone is shot upward by a slingshot. After 5 seconds it hits the 
ground. What was its initial speed?

Three rules for falling bodies:
If a body A has twice the mass of a body B, it receives double the 
amount of momentum per second from the Earth. It also needs 
twice the momentum to reach the same velocity as body B. 
The velocity of falling bodies increases uniformly.
All bodies fall equally fast.

Fig. 4.4
The velocity of a freely falling 
body increases linearly with time.

Fig. 4.5
The velocity of a body thrown up-
ward. During upward motion the 
velocity is negative, for downward 
motion, it is positive.
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4.5 Falling with friction
We cannot always ignore friction. How great it is depends upon
1. the form of the body
2. the velocity of the body.
You already know from cars that:
1. One tries to keep air friction to a minimum by designing the car 
body accordingly.
2. If you drive fast, friction and gas usage (per kilometer) are much 
higher than if you drive slowly.   

Figs 4.6 and 4.7 show that friction, meaning the momentum current 
that flows into  the air, grows very fast with increasing speed. Both 
figures show the momentum loss due to friction as a function of 
speed. In Fig. 4.6, this is for a typical automobile, and in Fig. 4.7, for 
a much smaller object, a ball with a diameter of 30 cm. 

We have seen that if we didn’t have this friction loss, or as long as it 
could be ignored, all bodies fall at the same velocity. How does the 
velocity of a falling body behave when friction cannot be ignored any 
longer?

We let a large and very light ball 
fall (Fig. 4.8, on the left). Its mass 
is m = 100 g = 0.1 kg, and its di-
ameter is 30 cm = 0.3 m. A mo-
mentum current flows continuously 
from the Earth into the ball. It is
F = m · g = 0,1 kg · 10 N/kg = 1 N.
When it starts to fall, its speed is 
small as is its momentum loss to 
the air. At a speed of 2 m/s, the 
momentum current flowing into the 
air is less than 0.1 N (see Fig. 
4.7). The loss is still small com-
pared to the momentum current of 
1 N coming out of the Earth. How-
ever, the loss quickly becomes 
greater until finally the ball loses 
exactly as much momentum per 
second to the air as it receives 
from the Earth. From this point on, 
its momentum does not increase 
anymore. Fig. 4.7 shows that the 
ball then has a velocity of about 
7 m/s. 

Fig. 4.9 shows the velocity of our ball as a function of time: At the 
beginning, its velocity increases linearly with time. It behaves like a 
freely falling ball. Gradually the loss becomes greater though. Fi-
nally, when the currents flowing into  and out of it become equal, its 
momentum and therefore its velocity, do  not increase any longer. It 
has reached its final or terminal velocity. The ball is now in a steady 
state.

We let another ball fall. It has the same diameter (30 cm), but it is 
four times as heavy as the first ball, Fig. 4.8, on the right: 
m = 0.4 kg.
A momentum current of
F = m · g = 0.4 kg · 10 N/kg = 4 N
flows from the Earth, through the gravitational field, and into the ball. 
At which speed does this ball stop becoming faster? Let’s take an-
other look at Fig. 4.7. The momentum current loss is exactly the 
same as the momentum current flowing in from the Earth when the 
velocity is 14 m/s. The heavy ball reaches steady state at a higher 
speed than the lighter one. 

An interesting application of our considerations would be parachute 
jumping. The parachutist jumps out of an airplane and reaches her 
terminal velocity of 50 m/s within a few seconds. She then “falls” at 
this speed for quite a while. The momentum current flowing through 
the gravitational field and into  the person has the same strength as 
the one flowing out due to friction. 
The parachute opens up at about 400 m above ground. The opening 
of the parachute means that air friction increases abruptly and 
strongly. The momentum current flowing off is suddenly much 
greater than the one flowing in. In the process, the momentum de-
creases. Along with the momentum, the velocity decreases, and with 
it, the loss by friction. Finally the momentum current due to  friction 
reaches the same value as the gravitational momentum current, al-
though at a velocity of only about 4 m/s. The parachute, with its pas-
senger, now floats at a constant low velocity to the ground. Fig. 4.10 
shows the velocity of the parachutist as a function of time. 

Our considerations of the terminal velocity become invalid if there is 
no air or any other resistive medium involved. The Moon has no at-
mosphere. For this reason, all objects there fall at the same velocity: 
a sheet of paper falls just as quickly to  the ground as a large stone. 
This can also be observed on Earth. The experiments must be car-
ried out in a container from which the air has been removed. We let 
some small objects having different mass fall in an evacuated glass 
pipe. As expected, they all fall equally fast. 

Fig. 4.6
Air resistance for a typical auto-
mobile: The momentum current 
flowing into the air as a function of 
the velocity.

Exercise

What terminal velocity does a falling sphere with a diameter of 30 cm 
and a mass of 0.8 kg reach?

At high velocities, friction cannot be ignored.
The speed of a falling body increases only to  a terminal veloc-
ity. The terminal velocity of an object depends upon its form, 
and it is greater for heavy bodies than for light ones. 

Fig. 4.10
The velocity of a parachutist as a function of time

Fig. 4.7
The momentum current which 
flows off into the air as a function 
of velocity, in the case of a sphere 
with a diameter of 30 cm.

Fig. 4.9
If there is air friction, the velocity 
of a falling body increases until it 
reaches a terminal velocity.

Fig. 4.8
A light sphere (left) and a heavy 
sphere (right) fall to the ground. The 
light one reaches its terminal velocity 
earlier than the heavy one.
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4.6 Weightlessness
The man in Fig. 4.11a feels heavy. His body must carry the weight of 
his heavy head, and his feet have it even worse. They must carry 
the weight of his whole body. The man has an idea, see Fig. 4.11b. 
His legs are relieved of their burden, but now his arms must support 
his entire weight. In Fig. 4.11c, the man makes a third try at ridding 
himself of his weight, but he fails again. 

The man in Fig. 4.11 is bothered by the “feeling of gravity”. We will 
try to define this feeling physically. In each of the three cases, what 
the man is feeling are momentum currents flowing through his body. 
Momentum flows through the gravitational field into every part of his 
body and must be conducted off: it must flow back into the ground. 
In Fig. 4.12, these currents have been sketched for a standing per-
son. Momentum flows into the head, into  the arms, into the upper 
body, etc. All of it must flow downward through the legs and feet and 
into the ground. The momentum current in the feet is therefore the 
strongest.  

In the following we will consider a model of a person. It is composed 
of two blocks, one on top of the other (upper body and lower body), 
Fig. 4.13. One sees that the momentum current on the bottom side 
of the lower block is twice that on the bottom of the one above. 

We will now put our model into a state of weightlessness: a state 
where no momentum flows through it. In other words, a state in 
which no part of it is under compressive or tensile stress. 
You probably think that it would be necessary to bring the model 
person very far away from the Earth to a place where the Earth’s 
gravitational field is very weak. There would not be any momentum 
flowing into our model there. There wouldn’t be any momentum flow-
ing through it either. This would be a possibility indeed. There is an-
other, simpler method though. We let momentum flow into the 
model, but not back out again. When there isn’t any momentum 
flowing through it, it feels weightless.  
How can this be done? Very simply. It is enough to interrupt the 
connection to the ground so that the momentum cannot flow out of 
the model person and back into the Earth. We must just let our per-
son fall freely, Fig. 4.14. Now momentum is flowing from the gravita-
tional field into each block (into every part of the person), and into 
every part of each block. It doesn’t flow within the blocks though. In 
particular, no momentum flows from one of the blocks into the other. 
The result: There is no more compressive or tensile stress. The 
block below does not feel the weight of the one above.  

For you, meaning a real person, the same holds: If you jump down 
from somewhere, you are weightless as long as you are falling. 
Even when you jump upward, you are weightless as soon as you 
lose contact with the ground. You remain so until you touch down 
again. 
Now the time spent falling through the air is too short for one to 
really notice the feeling of weightlessness. We will therefore do an 
experiment with our model person, Fig. 4.15. The two blocks stand 
upon a platform. This platform hangs from strings similarly to  a 
scale. There is a thin board between the two blocks attached to a 
taut rubber band connected to  the wall. The rubber band would pull 
the board out if it wasn’t held in place between the two blocks be-
cause of the weight of the upper block.  

Now the experiment: We cut the string holding up the whole ar-
rangement. At the same time, pulled by the rubber band, the board 
shoots out from between the blocks. Why? The stack of blocks was 
in free fall for a short moment. During this short period, it was 
weightless. The upper block was not pressing down upon the lower 
one. It let go off the board. 
You know that astronauts feel weightless in their space ship. What is 
the explanation for this? Is it because they are so  far away from the 
Earth? Not at all. The ISS (the International Space Station) flies at 
an altitude of about 250 km. Compared to the Earth’s radius, this is 
not very high. Actually, it flies very close to  the Earth’s surface, Fig. 
4.16. The gravitational field up there is almost exactly as dense as 
down here where we are: The strength of the field at 400 km altitude 
is g = 8.68 N/kg. This is hardly smaller than on the Earth’s surface.

There must be another reason for weightlessness then. It is exactly 
the same as the one we have for falling objects: As soon as the pro-
pulsion rockets have burned their fuel, the space ship becomes a 
freely falling body. Why doesn’t the ISS or a satellite fall to Earth? 
Now this is exactly what it does. However, it has a lot of horizontal 
momentum. It falls like a stone thrown sideways. It falls so far away 
that it always “falls behind the Earth”. It “falls” in a continuous circle 
and never touches the Earth’s surface.

Free falling bodies are weightless.

Fig. 4.11
No matter what he does, the man 
cannot get rid of his feeling of 
weight.

a
b c

Fig. 4.12
The momentum currents flowing 
through the gravitational field into 
a person must also flow out again.

Fig. 4.13
A model person. It is composed of 
an upper and lower body. 

Fig. 4.14
A freely falling body is weightless. 
There are no momentum currents 
flowing within it.

Fig. 4.15
During free fall, the blocks are 
weightless. The board between 
the blocks is released.

Fig. 4.16
The ISS flies at an altitude of only 
400 km. The strength of the gravi-
tational field is hardly smaller here 
than at the surface of the earth.

Exercises

1. An astronaut has two identical looking objects of different mass be-
fore him. Can he find out which of them has the greater mass? If yes, 
how?
2. A space ship is so far away from Earth that there is almost no 
gravitational field. The astronauts would like to feel their weight. How 
can they do this without returning to the Earth or flying to another ce-
lestial body?



4.7 Density of materials
“Which is heavier: 1 kg of iron or 1 kg of wood?” We have all heard 
this question. It is asked to trick someone. The right answer is natu-
rally: “Both are equally heavy”. However, someone not listening 
carefully, and not noticing the word “kg”, would probably say that the 
iron is heavier. 
We see that the words “heavy” and “light” can be understood in two 
somewhat different ways:

First, to represent a weight or mass: 1.5 kg of sugar is heavier 
than 0.8 kg of flour. 
Second, to express a characteristic of the substance: One says 
that iron is heavier than wood because a piece of iron has greater 
mass than a piece of wood of the same volume.

This second definition of “heavier” and “lighter” is expressed quanti-
tatively by the density of the material. We understand the density ρ 
of a material to  be the ratio of mass m and volume V. In short, the 
mass per volume:

The resulting SI-unit is kg/m3. The densities of various materials are 
given in Table 4.2. 

Here is another point to consider: Some substances, namely gases, 
can be easily compressed. For this reason, their densities can be 
changed by just altering the pressure or temperature. If the density 
is given, the corresponding pressure and temperature must also be 
given. This effect is very small for solid and liquid substances, 
though. The values in the Table are based upon standard conditions: 
They are valid for p = 1 bar and ϑ = 20˚C. The densities of gases in 
the table are noticeably much smaller than those of liquids and sol-
ids. We will keep in mind a basic rule-of-thumb:

In order to measure the density of a substance, one takes an arbi-
trary amount of it and determines its mass m and its volume V, and 
then divides m by V.
Sometimes it is easy to  measure m and V, sometimes it is not. For 
example, to determine the density of gasoline, it is enough to weigh 
1 l = 0.001 m3. One finds m = 0.72 kg. This leads to the following 
density:
ρgasoline =

0.72 kg
0.001 m3 = 720 kg/m3

It is more difficult to determine the volume of a solid substance if it 
has an irregular form. Fig. 4.17 shows how one might approach this 
problem. The object is submerged in water and the amount of water 
it displaces is measured. 

Finding the mass of gases is the more difficult part of determining 
their density. Let us find the density of air. We take a container that 
can be sealed, having a volume of 1 l, which we weigh. We then 
pump the air out of it with a vacuum pump and weigh it again. The 
difference of the two results is the mass of the air that was in the 
container at the beginning. 

Exercises

1. The weight of 1.6 liters of a liquid is determined. One finds m = 1.3 
kg. What is the density of the liquid?
2. A granite paving stone weighs 2.2 kg. What is its volume?
3. The capacity of a car’s gas tank is 40 l. How much does the gaso-
line of a full tank weigh?
4. A copper sheet is 120 cm long and 80 cm wide. It weighs 8.2 kg. 
How thick is it?
5. What is the mass of the air in your living room?

Under standard conditions, the density of liquids and solids is 
about 1000 times that of gases. 

ρ (kg/m3)

Beech wood 600 – 900

Granite 2600

Aluminum 2700

Iron 7800

Copper 8960

Gold 19300

Gasoline 720

Ethyl alcohol (standard alcohol) 790

Water 998

Trichloroethylene 1460

Mercury 13550

Hydrogen 90

Nitrogen 1.25

Air 1.29

Oxygen 1.43

Carbon dioxide 1.9

Table 4.2
Density of some substances at 
p = 1 bar and ϑ = 20 ˚C

Fig. 4.17
In order to determine the volume 
of a solid body, the volume of the 
displaced water is measured.

ρ = m
V



4.8 When a body floats and when it sinks
A piece of wood, some gasoline, or a drop of oil float on water. Iron, 
copper or aluminum sink. What about a drop of water in water? 
Does it float or sink? A silly question, you may think. You cannot dis-
tinguish one drop of water from the rest of it! However, it is really not 
difficult to do this. Just dye it a color. The result: It doesn’t float and it 
doesn’t sink, it is suspended.  
Whether or not a body floats upon a liquid depends upon how heavy 
the body is. What do “heavy” and “light” mean here though? Surely 
not the mass. A piece of wood floats upon water no matter how great 
its mass. Density is important in this case. A body floats upon a liq-
uid if its density is less than the density of the liquid. If it has greater 
density, it sinks. If the densities of the body and the liquid are the 
same, the body is suspended. 
(We have created an alternative use of the word body. It can also 
mean a portion of a liquid.)
We will test this once more with water and gasoline. If we put a drop 
of water into a container of gasoline, it sinks. Gasoline dripped onto 
a container filled with water spreads out over its surface.  
Both cases deal with the same phenomenon. This can be clearly 
seen in the following experiment: Several liquids of differing densi-
ties are poured into a glass. These might be trichloroethylene, water, 
and gasoline. The three liquids arrange themselves in layers with 
the one with greatest density at the bottom. Just on top of it is the 
one with the next greatest density, etc. (Fig. 4.18). Now a few solid 
bodies can be put into the glass. A metal body sinks to the bottom; a 
body of hard rubber (ρ = 1200 kg/m3) floats upon the trichloroethyl-
ene but not upon the water. A body of light plastic (ρ = 900 kg/m3) 
floats upon the water, but not upon the gasoline. Finally at the top, a 
piece of wood floats upon the gasoline. The seven different sub-
stances have arranged themselves according to their densities.  

Because gases have lower densities than liquids, all gases “float” 
upon all liquids. This is why an air bubble in water or a carbon diox-
ide bubble in cola rise to the top.   
So far we have asked what types of bodies float upon liquids. The 
same question could be asked for a gas. Of course all liquids and 
solids sink in gases. Water drops or solid particles fall downward 
through the air. In a glass, though, one gas can “float” upon another. 
This phenomenon is put to use by balloons. If a balloon is filled with 
a gas with a lower density than that of air, say hydrogen, the balloon 
will rise upward (assuming that the balloon’s shell is not too heavy 
because the hydrogen must lift it as well). The dirigibles popular at 
the beginning of the 20th century functioned by this principle. 
We sum up:

Exercises

1. Is there a liquid upon which iron would float? Give reasons!
2. A balloon is filled with carbon dioxide. Does it rise or fall? Give rea-
sons!

A body with a density lower than that of its environment, rises 
upward. If its density is higher than that of its environment, it 
sinks.

Fig. 4.18
The 7 bodies (liquid and solid) 
arrange themselves according to 
their densities. (Wood, Gasoline, 
Plastic, Water, Hard rubber, Tri-
chloroethylene, Brass.)



4.9 The relation between pressure and altitude in
liquids and gases

One feels “pressure in the ears” when diving into a swimming pool 
or when an elevator rises or moves downward quickly in a tall build-
ing.
In both cases, the pressure changes. Ears are our most sensitive 
sense organs for detecting changes of pressure.
We fill a tall container with water. The container has holes on its side 
at three different levels, Fig. 4.19. The water sprays out of all three 
holes. The pressure forcing the water out is called hydrostatic pres-
sure. It is created by the weight of the water. The water jet at the 
bottom sprays the farthest, so the pressure there must be the great-
est. The jet at the top is the weakest, so the pressure there must be 
the lowest. Hydrostatic pressure of water increases with depth. 

This increase of pressure can be measured. One finds that hydro-
static pressure increases 1 bar per 10 m water depth. At the deepest 
part of the ocean (about 10,000 m below sea level) pressure is at 
1000 bar. You can now see why diving capsules that go to these 
depths need to have such thick walls. 
Hydroelectric power plants are often constructed as shown in the 
schematic in Fig. 4.20. At a high altitude in the mountains there is a 
water reservoir: a storage lake for water coming from various rivers 
and streams. Several thick pipes lead from this reservoir down into 
the valley below to the actual power plant with its turbines and gen-
erators. If, for example, the reservoir lies 500 m above the turbines, 
the pressure at the entrance to the turbines is 50 bar. 

This increase of pressure with depth can also be observed in the 
Earth’s atmosphere, or in other words, in the “sea of air” surrounding 
the Earth. On the floor of this sea, meaning at the Earth’s surface, 
the hydrostatic pressure is about 1 bar, as you know. It decreases in 
the upward direction. Close to the Earth’s surface it decreases at 
about 1 mbar per 10 m. Not only does the pressure grow smaller in 
an upward direction, but the pressure change per altitude difference 
does as well (also see Section 2.2). 

The hydrostatic pressure of liquids and gases increases with 
depth.

Fig. 4.20
The pressure at the entrance to 
the turbine depends upon the dif-
ference in height between the tur-
bine and the water reservoir.

Fig. 4.19
Water pressure increases with 
depth.



5
Momentum and energy



5.1 Momentum as an energy carrier
Physical effort uses up energy. What is meant here by “uses up”? 
For example, one needs to  eat a lot in order to keep up his or her 
exertions. One receives energy through food, and gets rid of this 
energy through physical activity. “You use a lot of energy” actually 
means “A lot of energy is flowing through you”, you take in a lot of 
energy and you get rid of a lot of energy.
The person in Fig. 5.1 is pulling a box across a floor. (Of course 
there are less exhausting ways to transport it, but then we wouldn’t 
be able to discuss our problem so well.) She exerts herself, she is 
getting rid of energy. Where does this energy go? It goes to the bot-
tom surface of the box, creating heat there. Then it distributes into 
the environment together with the heat.

We now wish to investigate the transport of energy between the per-
son and the box. The first point to be dealt with is: Which one is the 
energy carrier? In the rope between the person and the box, a mo-
mentum current flows simultaneously with the energy current. We 
suspect that the energy carrier we are looking for is momentum. 

However, we immediately see that not every momentum current is 
accompanied by an energy current. The momentum current in Fig. 
5.1 flows, as we know, from the box through the ground and back to 
the person. The energy takes its own course from the bottom of the 
box. Therefore, the momentum flowing back does not carry any en-
ergy.  
What does the strength of the energy current depend upon? Put 
more generally: What do we need to do  in order to transport as 
much energy as possible through a rope or a rod? 
If we attach a taut rope to a wall, Fig. 5.2, a momentum current 
flows, but no energy current flows because nothing is being heated 
and nothing is moving. What is the difference between the ropes in 
Fig. 5.1 and Fig. 5.2? The first rope is moving, the second one is 
not. We see that in energy transport, the velocity with which the 
momentum conductor moves is important.  

In addition, the strength of the energy current is dependent upon the 
strength of the momentum current. If a rope is not under mechanical 
tension, no energy can be transported by it. 
We draw a conclusion:

We want to  see how the relation looks quantitatively. What kind of 
equation relates the three quantities P, F, and v?
The dependence of the energy current P upon the momentum cur-
rent F is easy to find. Fig. 5.3 shows from above how two identical 
boxes are pulled across a floor. We compare both pieces of rope A 
and B. Both move at the same velocity. The momentum current as 
well as the energy current split evenly at the node P. The momentum 
current in B is half that of A. This is also true of the energy current. 
Therefore we see that at constant speed the energy current is pro-
portional to the momentum current:
P ~ F

We will do  an experiment in order to find the relation between P and 
v. A box is pulled with the help of a “pulley”, Fig. 5.4. We compare 
ropes A and B.  A first comment about the energy current: All of the 
energy that flows into rope B from the right goes through the pulley 
and through rope A. No energy can flow in rope C because C does 
not move. We therefore have
PA = PB

Next we compare the velocities of A and B. If the box, and rope A 
along with it, moves a certain distance to the right, the right end of B 
moves twice this distance to the right. Let us assume that the box 
moves 10 cm to the right. The pulley also moves 10 cm to  the right. 
If rope B was not rolled over the pulley, but attached to the right end 
of A, then B would also move 10 cm to the right. However, rope C 
becomes 10 cm shorter because of the pulley, and rope B takes 
these 10 cm coming from rope C. B becomes 20 cm longer and this 
means that the velocity of B is always twice that of A. Therefore:
vB = 2vA

Finally, we will compare the momentum currents in A and B. We can 
only do this by measuring. Our measurements show that the mo-
mentum current in B is half that in A. (In C it is exactly the same as 
in B, so the junction rule is satisfied). We can then write:
FA = 2FB

All of these results together can be written as follows:
P ~ v · F
This proportionality tells us that P is proportional to F if the velocity is 
kept constant. It also tells us that if v is doubled and F is halved, P 
stays constant. This is what we have found in our experiment with 
the pulley.

In order to form an equation out of this proportionality, we should in-
troduce a factor of proportionality. Fortunately, the SI-units of the 
three quantities have been so chosen that the following is valid:

This is the desired result. We can use it to  calculate the energy cur-
rent in our rope if we know the momentum current through it and its 
velocity. 
An example: We pull on a rope with a force sensor mounted into it. 
The force sensor shows 120 N and the rope moves at 0.5 m/s. The 
resulting energy current is:
P = v · F = 0,5 m/s · 120 N = 60 W. 
Remember that velocity must be given in m/s and momentum cur-
rent in N so that the energy current is given in the SI-unit Watt. 
The formula 
P = v · F 
can be transformed into an equation that is handier for some prob-
lems. We replace P by E/t and v by s/t:
E
t = st ·F

and multiply both on the right and the left by t. The result is:

The equation tells us, for example, that if one pushes against a rod 
and the rod moves a distance s, the amount of energy flowing 
through the rod is s · F.  Here, F is the momentum current flowing 
through the rod being pushed. 
An example: We pull on a rope so that we have a momentum cur-
rent of 120 N and the rope moves 2 m. How much energy is trans-
ported through the rope? We apply our new formula. With F = 120 N 
and s = 2 m, we have
E = s · F  = 2 m · 120 N = 240 Nm = 240 J

Exercises

1. A tractor pulls a trailer on a horizontal street at a speed of 20 km/h. 
A momentum current of 900 N flows through the trailer coupling. What 
is the energy used by  the trailer? (What is the energy current from the 
tractor to the trailer?) Where does the momentum that flows through 
the trailer go?  Where does the energy go?
2. A  truck is pulling a trailer along a horizontal street from one city to 
another. The distance between the two cities is 35 km. A momentum 
current of 900 N flows through the coupling. How much energy in all 
has flown from the truck to the trailer? 
3. The drive belt of a machine runs at a speed of 10 m/s. The energy 
current transported by the drive belt has a strength of 800 W. What is 
the force of the belt upon the belt pulley? (What is the momentum 
current in the belt?)
4. A crane lifts a weight of 50 kg at a velocity of 0.8 m/s. What is the 
energy current through the crane cable? The weight is lifted 5 m high. 
How long does this take? How much energy flows through the cabel 
during this process?

Momentum is an energy carrier.

The strength of the energy current P through a rope depends 
upon
  – the strength F of the momentum current in the rope and
  – the velocity v of the rope.

If energy is transported by the energy carrier momentum, the 
strength of the energy current is proportional to  the strength of 
the momentum current and to the velocity with which the 
conductor moves.

Fig. 5.1
The momentum flows in a closed 
circuit. The energy flows from the 
person’s muscles to the underside 
of the crate.

Fig. 5.2
No energy current flows although 
a momentum current is flowing.

Fig. 5.3
Two crates are pulled across the 
floor. View from above.

Fig. 5.4
The momentum current in rope A 
is twice that in rope B. The veloc-
ity of rope A is half that of rope B.

P = v · F

E = s · F



5.2 Mechanical energy storage
a) Elastically deformed bodies as energy stores
We stretch a long, strong spring, Fig. 5.5. This is tiring because en-
ergy is used for it. We consider the right end of the spring (point A in 
Fig. 5.5). This end of the spring is under mechanical tension, mean-
ing a momentum current F is flowing through it, and it is moving at a 
velocity v. According to our formula, P = v · F, an energy current is 
flowing through it as well. Now we look at its left end (point C). The 
momentum current here is the same as at A, but because C does 
not move, no energy current flows. The energy flowing in at A does 
not flow out again at C but is stored in the spring. 

We can check the currents at other points of the spring, for example, 
in the middle. There the momentum current is exactly the same as 
at A and at C. The velocity at the middle of the spring is exactly half 
that at point A. Therefore the energy current flowing at point B is 
only half that flowing into the spring at point A. This is understand-
able: Half the energy is stored in the right half of the spring and the 
rest flows further to the left half. This idea can be taken further: A 
third of the energy is stored in each third of the spring. In every quar-
ter of the spring, a quarter of the energy is stored, etc. In short: The 
energy distributes evenly over the entire length of the spring.   
If a spring can be compressed so that it doesn’t expand sideways, 
this method can be used to store energy as well. 

Of course, these considerations are not only valid for springs but for 
any other elastically deformable object as well. An extended ex-
pander contains energy in the same way a slingshot does, a bent 
diving board or a dented football, Fig. 5.6.

b) Moving bodies as energy stores
We charge a car which is unimpeded by friction, with momentum. 
We have done this often in the past, Fig. 5.7, but this time we know 
that not only momentum but also energy flows in the rope. The en-
ergy cannot leave the car any more than the momentum can. In the 
process of pulling, the car accumulates momentum and energy. 

When a moving car rolls to a stop, its momentum flows into the 
ground. The energy takes another path. It is used to  create heat. 
Wherever we have friction, heat is produced. In the process, the en-
ergy is distributed into the environment: a part goes into the ground, 
and a part goes into the car and into the air. 
The energy contained in a moving wagon can also be put into a 
spring and stored there. To do this, a wagon pulls a spring, Fig. 5.8. 
The wagon comes to a stop. There are two ways to pull the spring. 
Either its left end is attached to the wall, and its right end is pulled to 
the right by the wagon, or the right end is attached to the wall, and 
the left end is pulled to the left. In both cases the result is identical: a 
taut spring charged with energy. In the first case, the energy came 
from a wagon with positive momentum and in the second case, from 
a wagon with negative momentum. However, both wagons have 
positive energy. 

c) The gravitational field as energy store
In Fig. 5.9, a heavy body is pulled upward. Again, energy is flowing 
in the rope along with momentum. The momentum comes out of the 
Earth, over the gravitational field into the body.

The gravitational field can be pictured as an invisible spring pulling 
on the body. When the object is lifted, energy is stored in the gravita-
tional field exactly as energy is stored in a spring by expanding it. 
When the object is lowered again, the energy is given back from the 
gravitational field. 
It takes more energy to lift a heavy object than to lift a light one. The 
heavier the object being lifted, the more energy is stored in the field.  

The energy of the gravitational field is put to use in hydroelectric 
plants, Fig. 5.10. 

Water from streams and rivers is collected at high elevations and 
piped downward. In the process of flowing down, water takes energy 
out of the gravitational field. It then flows through the turbines of the 
power plant and gives its energy up there. Energy flows into the tur-
bines with the energy carrier “water”. From the turbines, the energy 
continues to the generator carried by the energy carrier angular 
momentum.

A spring is an energy storage unit. The more a spring is ex-
panded or shortened, the more energy it contains.

The gravitational field is an energy storage unit. The higher an 
object is lifted, and the heavier it is, the more energy is put into 
the gravitational field.

A moving body contains energy. The greater its speed, the 
more energy it contains. 

No matter in what direction an object is moving, its energy is 
positive.

Fig. 5.5
Energy flows into the spring from 
the right when it is stretched.

Fig. 5.6
Energy is stored in a stretched 
expander, in a stretched slingshot, 
in a bent diving board and in a 
dented football.

Fig. 5.7
Energy as well as momentum 
flows into a car when it acceler-
ates.

Fig. 5.8
A moving wagon gives its energy 
to a spring. (a) The wagon moves 
to the right. (b) The wagon moves 
to the left.

a

b

Fig. 5.9
Energy is stored in the gravita-
tional field while the object is be-
ing hoisted.

Fig. 5.10
Hydroelectric power plant. While 
flowing downward, the water takes 
energy out of the gravitational 
field. It gives it up again in the tur-
bine.



5.3 The complex paths of energy and momentum
In the following, we will investigate two processes of motion: The 
motion of a stone thrown upward, Fig. 5.11, and the motion of a 
body oscillating between two springs, Fig. 5.12. In both cases we 
ask the same questions:
– What path does the energy take? 
– What path does the momentum take?

a) The stone thrown upward
Energy
When a person throws a stone up into the air, Fig. 11, energy goes 
from his muscles and into the stone. While the stone is moving up-
ward, the energy flows into the gravitational field. At the turnaround 
point, it has completely left the stone. During the descent it flows out 
of the field and back into the stone. When the stone hits the ground, 
heat is created. The energy is distributed into the environment, i.e., 
into the stone, the ground and the air, along with the heat.

Momentum
In the act of throwing the person “pumps” negative momentum from 
the ground into the stone. While the stone is traveling upward, posi-
tive momentum flows out of the Earth, through the gravitational field, 
and into the stone. In the process, the negative momentum of the 
stone decreases. At the turnaround point, the entire negative mo-
mentum of the stone is compensated. The inflow of positive momen-
tum does not stop here though. The stone now takes the positive di-
rection (downward) and its positive momentum increases with fal-
ling. At impact with the ground it gives the momentum back to the 
ground.

b) The oscillating object
The air cushion glider in Fig. 5.12 moves back and forth, performing 
a so-called oscillation. You have certainly seen a lot of other cases 
of oscillatory motion. In many of these processes, the paths of en-
ergy and momentum are very similar to  those in Fig. 5.12. We will 
therefore look a little closer at the glider in Fig. 5.12. We push the 
glider to the left a bit out of the equilibrium position and then let go of 
it.

Energy
At the moment of release, both springs are charged with energy: the 
left one because it is compressed, and the one on the right because 
it is stretched. The glider now starts moving to the right receiving 
energy from both springs because both of them relax. If the glider 
reaches the middle, both springs have given up their energy. All the 
energy is in the glider. The glider continues moving to the right 
gradually becoming slower. It now gives its energy to both springs. 
At the reversal point on the right, all the energy is in both springs 
again, and the whole process starts all over in the opposite direction.

Momentum
At the moment the glider is released, the left hand spring is under 
compressive stress and the right hand one under tensile stress. In 
the one on the left, a momentum current is flowing to the right. In the 
right hand one, it is flowing to the left. In total, two momentum cur-
rents are flowing from the ground into the body. The body’s momen-
tum increases until it has reached the middle. Now the springs are 
relaxed and momentum has ceased to flow. However, as soon as 
the glider moves beyond the middle point, the springs begin to be 
stressed again, but now the right one is under compressive stress 
and the left one is under tensile stress. The momentum is flowing in 
the opposite direction than before: out of the body, in both directions, 
and into the ground.

Exercises

1. A train car rolls against an elastic spring buffer. What path do en-
ergy and momentum take?
2. A ball falls to the ground and bounces back up. What path do en-
ergy and momentum take?
3. An object hangs from a ceiling on a rubber band so that it can oscil-
late up and down. Describe the path of energy and momentum.

Fig. 5.12
The path of energy and momen-
tum for an oscillating object.

Fig. 5.11
The path of energy and momen-
tum for an object that is thrown 
upward. 



6
Momentum as a vector



6.1 Vectors
There is thick fog in an area with a lot of ship traffic. Captain 
Amundsen gets the positions and speeds of the ships in the sur-
roundings from his radio operator: “At a distance of 5.6 miles north-
east of the Gigantic, a tanker is traveling at a speed of 35 knots (65 
km/h).” Is this information enough to let Captain Amundsen avoid a 
collision? Of course not, Fig. 6.1. “What direction is it traveling in?” 
he asks. He knows that if the tanker is traveling westward, it will be-
come dangerous. He would have to carry out an evasion maneuver. 
If the tanker is traveling eastward, there is no danger. 

In order to  unambiguously describe the motion of a body (in this 
case, the tanker), one needs the following information: 
– how fast the body is traveling, for example, 65 km/h;
– in which direction the body is moving, for example, east.
Both statements are about velocity. “65 km/h” alone does not deter-
mine the velocity. Determining the direction of the motion is also a 
part of this. 
Velocity has a magnitude and a direction. In the case of our tanker 
we have:
– magnitude of the velocity: 65 km/h; 
– direction of the velocity: eastward.
There are other quantities that can only be defined through their 
magnitudes and directions. Momentum is one of these quantities.
Both the cars in Fig. 6.2 have a momentum of 2000 Hy. In spite of 
this, their momenta are not the same. The cars are not moving in the 
same direction. Car A is traveling in direction x and car B is traveling 
transversely to it.  

In order to identify the momentum of a body, the magnitude and the 
direction must be given, as for velocity. In our example this means:
Momentum of car A
" Magnitude: 2000 Hy
" Direction: x
Momentum of car B
" Magnitude: 2000 Hy
" Direction: transverse to x
Two momenta are identical only when they have the same magni-
tudes and the same directions. 
Physical quantities defined in this way are called vectors.

“Normal” physical quantities, meaning those that can be defined by 
just a number, are called scalars.
To say that the mass of a body is 
m = 5 kg 
is unambiguous. To give a direction in this case would not make 
sense. The mass is therefore a scalar. Other examples of scalars 
are energy, electric current, and temperature. 
How do you communicate the value of a vector quantity, say the 
momentum of a body? For example, like this:
– magnitude of momentum: 200 Hy;
– direction of momentum: 35 degrees to the x axis. 
There is an even easier way to describe the momentum (or any 
other vector quantity): by a sketch. The scale must be set first, say:
1 cm in the sketch corresponds to 50 Hy.
The momentum can now be represented by an arrow. The length of 
the arrow indicates the magnitude of momentum, the direction of the 
arrow is the momentum’s direction. 
In Fig. 6.3, the momenta of three bodies are represented. Note that 
1 cm corresponds to 50 Hy. 

To make things a little easier for us, we will give the three types of 
momentum in Fig. 6.3 different names. The one in body A we will 
call 0-degree momentum because the momentum arrow makes a 0 
degree angle to the x-axis. Body B’s momentum we call 45-degree 
momentum because its arrow forms a 45-degree angle to the x-axis. 
We accordingly name the momentum of C 270-degree momentum. 
The fact that a quantity is a vector quantity is also expressed by its 
symbol: An arrow is written over the letter symbol. The symbol for 
the velocity vector is  

v and the symbol for the momentum vector is 
 
p . These symbols were used in Fig. 6.3. 

Exercises

1. Show the following momentum values graphically.
Body P: ! magnitude of momentum: 20 Hy
! ! direction of momentum: 270 degrees to the x-direction
Body Q: ! magnitude of momentum: 1200 Hy
! ! direction of momentum: 10 degrees to the x-direction
2. In the former chapters, we dealt only with motion parallel to one 
axis. In those cases positive and negative momentum values ap-
peared. Show the momentum values p1 = 3,5 Hy und p2 =  – 4,5 Hy 
as arrows.
3. What are the magnitudes and directions of the momenta repre-
sented as arrows in Fig. 6.4?

A vector is determined by its magnitude and its direction
Velocity and momentum are vectors.

Fig. 6.1
The positions of the Gigantic and 
a tanker. The tanker sails east-
ward. There is no danger.

Fig. 6.2
The momenta of both cars are 
different.

Fig. 6.3
Fig. 6.3. Momenta of three bodies 
A, B, and C, represented by ar-
rows.

Fig. 6.4
For exercise  3



6.2 Direction of flow and direction of that which
flows

Someone is standing at the edge of a pond trying to move a raft with 
the help of a pole. The Figs. 6.5a to 6.5c show three different 
scenes from above. We will describe what is happening.
In order to make things a bit easier, we have drawn in the x-axis. We 
always give the direction of momentum in relation to this direction.  
In Fig. 6.5a, the person pushes the raft to the right, in the direction of 
the positive x-axis. We assume that he is pushing so that 150 Huy-
gens per second flows into the raft. The momentum current is 
150 Hy/s = 150 N. In Fig. 6.5b, he pushes the raft away from himself 
so that it moves toward the center of the pond. Again, he is pushing 
so that 150 Hy per second flows into the raft. In Fig. 6.5c, he pushes 
diagonally forward and to the right with 150 N. 
Although the same number of Huygens per second is flowing in all 
three cases, the momentum currents are different in each case, be-
cause what is flowing is not the same. 
In the first case, the raft gets 0-degree momentum. 0-degree mo-
mentum flowed through the pole. In the second, the raft received 90-
degree momentum, so 90-degree momentum must have been flow-
ing through the rod. In the third case, 45-degree momentum flowed 
through the rod. 
The momentum flowing from the person to the raft is represented by 
the arrows on the left of the pole. You can imagine each arrow as a 
portion of the momentum flowing from the person to the raft. 
The long dashed line shows the path the momentum takes.
You can tell that momentum currents present us with the same 
situation as momentum does. We need more than just a number to 
specify a momentum current. A momentum current is specified only 
if we give the direction of the flowing momentum (0 degrees, 90 de-
grees, or 45 degrees) in addition to its magnitude (here: 150 N).

We can represent this vector by an arrow, just as we did with other 
vectors. Length and direction have the following meanings:
– Length of the arrow: Magnitude of momentum current strength;
– Direction of the arrow: The direction of the momentum flowing
   through the conductor. 
We use 


F as the symbol for the momentum current vector.

Fig. 6.6 shows the vectors of the currents belonging to Figs. 6.5a-c. 

We now consider Fig. 6.7 and compare it to  Fig. 6.5c. In Fig. 6.7, 
45-degree momentum is flowing to the raft. In contrast to  Fig. 6.5c 
though, it is flowing not through a straight pole but through one that 
is bent. The momentum must flow through an s-shaped path. In both 
Figures, the same momentum is flowing, and in both figures 150 N 
is flowing. It is flowing once through a straight conductor and once 
through a curved one. The vector arrows representing the situations 
in Figs. 6.5c and 6.7, are therefore the same. 
The path the momentum takes is represented by the dashed lines in 
Figs. 6.5a-c and Fig. 6.7.  

In our descriptions of the three processes in Figs. 6.5a to 6.5c, we 
have said what kind of momentum and how much of it flows from the 
ground to the raft. We can also describe these processes by saying 
what kind of momentum and how much of it flows away from the 
raft, meaning to the Earth. Both descriptions are equivalent. 
“x Huygens of momentum of a given direction flow per second from 
the ground to the raft” means the same as “x Huygens of momentum 
of the opposite direction flow per second to the ground”.
Fig. 6.8 shows the same process as in Fig. 6.5a, but here it is de-
scribed differently. Fig. 6.8 does not show what kind of momentum is 
flowing into the raft, but the kind of momentum that is flowing to the 
Earth. This is 180-degree momentum. 
Notice that the arrows representing the current strength vectors in 
the two descriptions must point in opposite directions. 
The following statements are equivalent:
– 150 Hy/s of 0-degree momentum flow from the Earth to the raft;
– 150 Hy/s of 180-degree momentum flow from the raft to the Earth.

The momentum current strength is a vector.

Don’t mistake the direction of the path with the direction of the 
momentum being transported.

Fig. 6.6
Current strength vectors for mo-
mentum flowing toward the raft in 
Figs. 6.5a-c. 

Exercises

1. 300 N flows in a rod between a tractor and its trailer, Fig. 6.9. What 
kind of momentum is flowing into the trailer? Represent the momen-
tum current by an arrow. Describe the same process by giving what 
kind of momentum and how much of it flows through the rod away 
from the trailer.
2. Someone pushes a wagon with a spiral rod in the positive x-
direction, Fig. 6.10. A momentum current of 25 N flows. 
a) What kind of momentum is flowing into the wagon?
b) Sketch the path of the momentum in Fig. 6.10.
c) Draw the arrow representing the current vector.  
3. In Fig. 6.11, an apple falls to the ground. Momentum flows into the 
apple. (It comes from the Earth and travels through the gravitational 
field.) The apple weighs 300 g. 
a) What is the magnitude of the momentum current?
b) What kind of momentum flows into the apple? (Give the angle in a 
vertical plane). 
c) Draw the arrow representing the current vector.

Fig. 6.7! Fig. 6.8
45-degree momentum" The same process as in Fig."
flows through a bent rod" 6.5a, but described differently:
to the raft." 180-degree momentum flows"
" " into the ground. 

Fig. 6.9
For Exercise 1

Fig. 6.10
For Exercise 2

Fig. 6.11
For Exercise 3

Fig. 6.5
(a) 0° momentum, (b) 90° momentum and (c) 45° momentum flows toward the raft, meaning 
in the rod from bottom to top.

a b c



6.3 Adding vectors
Again we take the example of the pond with the raft, Fig. 6.12. The 
raft has momentum to the right. Physically speaking: It has 0-degree 
momentum, say 500 Hy. The person pushes the pole against the raft 
from below (in the figure). He presses so that 50 Huygens per sec-
ond of 90-degree momentum go into the raft. He pushes for three 
seconds. How much momentum does the raft have at the end?

It now has 500 Hy of 0-degree momentum and 3 ⋅ 50 Hy of 90-
degree momentum. How much is this in all? What kind of momen-
tum is it?
You can imagine that the raft moves neither parallel nor transverse 
to the x-direction, but somehow diagonally (upward and to the right 
in our figure). The total momentum is neither 0-degree nor 90-
degree. 
The question of how much total momentum there is can be reformu-
lated as follows: How do you add up vectors? How do you add up 
500 Hy of 0-degree momentum und 150 Hy of 90-degree momen-
tum?
It is easy to find the answer if the arrow representation of the mo-
mentum vectors are used. 
We represent each momentum by an arrow, Fig. 6.13a. We call the 
arrows  

p1 and  
p2. We now connect them in such a way that the 

starting point of  
p2 coincides with the tip of  

p1, Fig 6.13b. Then we 
draw a third arrow 

p3whose starting point coincides with the initial 
point of  

p1and whose tip coincides with the tip of  
p2 . Arrow  

p3 shows 
the total momentum we are looking for.

We call what we just did vector addition. Symbolically it is expressed 
by

 
p1  +  

p2 =  
p3 .

One obtains the same result if  
p2 is attached to  

p1 as one does by 
attaching  

p1 to  
p2, Fig. 6.14. Like usual addition, vector addition is 

commutative.

Example
A 0.5 kg stone is thrown horizontally, Fig. 6.15. Just after being 
thrown it has 3 Hy of 0-degree momentum. Because of its gravity, it 
constantly receives momentum from the Earth. This is 270-degree 
momentum. How much and what kind of momentum does it have af-
ter 2 seconds?

We calculate the momentum current from the Earth:
F = m  ⋅  g = 0.5 kg ⋅ 10 N/kg = 5 N
The stone receives a momentum current of 5 Hy per second from 
the Earth. The momentum coming from the Earth in 2 seconds is
p = F ⋅  t = 5 Hy/s ⋅  2 s = 10 Hy
Now we add

 
p1  +  

p2 =  
p3 .

where

 
p1 : 3 Hy of 0-degree momentum

 
p2 : 10 Hy of 270-degree momentum

Fig. 6.16 shows the solution. We can find the magnitude of the total 
momentum from Pythagoras’ rule:

 

Magnitude of p3 = (3 Hy)2  + (10 Hy)2

= 9 + 100 Hy
= 10.44 Hy

Example 
Two people pull a boat through a canal. One person is on one bank 
and the other person is on the opposite bank, Fig. 6.17. The ropes 
are at 30-degree angles to  the canal. (Or better: the upper rope in 
the figure creates a 30-degree angle and the lower one a 330-
degree angle). A momentum current of 90 N flows in each rope. How 
much momentum per second does the boat receive? What kind of 
momentum is it?

In the upper rope, 90 N of 30-degree momentum flows, and in the 
lower one, 90 N of 330-degree momentum flows. In Fig. 6.18, the 
two current vectors have been combined. The total current into  the 
boat is the sum of the vectors. From the drawing we see that:
Total current: 156 N of 0-degree momentum.

Example 
A car drives around a 90-degree curve, Fig. 6.19a. The magnitude of 
its momentum is the same before and after, namely, 30,000 Hy. 
While going through the curve, the car receives momentum from the 
ground. We have the following rule: initial momentum of the car + 
momentum from the ground = final momentum of the car. The plus 
sign symbolizes addition of vectors.

Fig. 6.19b shows how the vector of momentum coming from the 
Earth is constructed. The direction of the momentum coming from 
the Earth is the direction that bisects the angle between the initial 
and final directions of the street. According to the Pythagorean law, 
its magnitude is about 42,000 Hy. 

Exercises

1. A stone weighing 100 g is thrown horizontally  off a tower. Its initial 
momentum is 0.5 Hy. 
a) How much and what kind of momentum does it receive from the 
Earth within one second?
b) Construct the vector of the momentum of the stone one second af-
ter being thrown. 
c) What is the magnitude of the momentum in the stone one second 
after being thrown?
2. A 0.3 kg stone is thrown horizontally from a tower. Its initial velocity 
is 5 m/s. 
a) What is the magnitude of its initial momentum?
b) At a certain point, the angle at which the stone falls is 45˚ to the 
vertical. How much momentum has the stone received from the Earth 
until this point? Draw the vector diagram. What is the magnitude of 
the momentum at this point? 
3. A  sphere having a mass of 3 kg is pushed diagonally upward at a 
45˚ angle. At the beginning, it has 12 Hy of momentum. After what 
amount of time does it move diagonally  downwards at an angle of 
45˚?
4. A train with a mass of 1,200 t and a velocity  of 70 km/h, goes 
around a  30˚ curve. Construct the vector of the momentum received 
by the train from the Earth.
5. A car goes around a 90˚curve. Its velocity before going around the 
curve was 30 km/h, afterwards it is 50 km/h. The car’s mass is 
1,400 kg. Draw the vector of the momentum going into the car while it 
is traveling around the curve. What is the magnitude of this momen-
tum?
6. The goalie throws the ball out onto the field. A player kicks it right 
back to the goal. Use words to describe where the ball gets its mo-
mentum from or to where it loses it on its way. Take air friction into 
account. 

Fig. 6.12
The raft has 500 Hy of 0-degree 
momentum and receives 150 Hy 
of 90-degree momentum. 

Fig. 6.13
Vector additiona

b

Fig. 6.14
Vector addition is commutative.

Fig. 6.15
At the beginning, the stone has 0-
degree momentum. It constantly 
receives 270-degree momentum 
through the gravitational field.

Fig. 6.16
Vector arrows of the toss in Fig. 
6.15.

Fig. 6.17
The boat receives 30-degree mo-
mentum from one person, and 
330-degree momentum from the 
other person.

Fig. 6.18
The current vectors for Fig. 6.17.

Fig. 6.19
 (a) An automobile drives through 
a 90° curve. (b) Vector construc-
tion of the momentum received by 
the auto from the ground.

a b



6.4 Satellites, moons, and planets
We have seen that an object near the Earth’s surface receives 270-
degree momentum. If it is let go from a state of rest, the 270-degree 
momentum increases and the object moves towards the Earth. 
If the object is not only let go, but thrown horizontally, it also falls to 
the Earth, Fig. 6.15. 
Imagine that we throw the object off a high mountain in such a way 
that it receives a lot of 0-degree momentum. Fig. 6.20 shows the 
flight path for three different values of the initial 0-degree momen-
tum. 

The body travels so  far that the curvature of the Earth becomes no-
ticeable. Now something remarkable happens: Near the starting 
point, the body receives 270-degree momentum. During the body’s 
flight, the direction of the new momentum flowing into it, changes. At 
the end of the trajectory c, the body in Fig. 6.20 receives 240-degree 
momentum instead of 270-degree momentum. 
If we manage to give the initial momentum a very large value, the 
situation as seen in Fig. 6.21 will occur. The body falls and falls but 
in spite of this, never approaches the Earth. 

At point A it receives 270-degree momentum, at B it receives 225-
degree momentum, at C 180-degree momentum, at D 90-degree 
momentum, at E 0-degree momentum, etc. The momentum flowing 
in causes the path of the body to be bent toward the Earth at every 
point. If the initial momentum is chosen appropriately, the body will 
describe a circular orbit. 
The direction of the momentum flowing into the body at each mo-
ment is at a right angle to the direction of the momentum that it has 
at that moment. The body at location B contains 315-degree mo-
mentum and it receives 225-degree momentum. At C it has 270-
degree momentum and it receives 180-degree momentum, etc. 
Hopefully you have noticed that we have not discussed a silly and 
totally unrealistic thought experiment. 
When it is said that a satellite has been brought into  its “orbit”, this 
means 
– !that it has been brought to a certain altitude, and
– !that it has been given the right amount of horizontal momentum 

so that it travels around a circular orbit.
If the satellite receives too little momentum, it falls to  the Earth like 
the one in Fig. 6.20. If the body receives too much momentum for 
the circular orbit, it flies out further: It then takes an elliptical path, 
Fig. 6.22. 

Only at a much greater initial momentum does it actually fly away 
from the Earth. If this happens, it is no longer a satellite, but a space 
probe. (A very successful space probe was Voyager 2. After about 
ten years in flight, it left the solar system.)
Satellite movement is not something that people invented. It existed 
in nature long before people ever did. The motion of our natural sat-
ellite, i.e., that of the Moon, around the Earth is the same as the mo-
tion of artificial satellites. However, the Moon is much further away. 
Satellites move at an altitude of between 200 km and 40,000 km 
from the Earth’s surface, while the Moon is at a distance of almost 
400,000 km. 
You probably know that not only the Earth, but other planets as well, 
have moons. 
The movement of the Earth and of the other planets around the sun 
is of the type you just learned about. The Earth and the other plan-
ets constantly receive momentum from the Sun. The direction of the 
momentum that the Earth receives at any moment is transverse to 
the momentum it already has at that moment. 

Fig. 6.22
If the initial momentum is greater 
than needed for a circular orbit, 
the satellite moves in an elliptic 
orbit.

Fig. 6.21
The direction of the momentum 
coming from the Earth is trans-
verse to the direction of the mo-
mentum already in the flying ob-
ject.

Fig. 6.20
An object is thrown from the top of 
a high mountain. The three trajec-
tories correspond to three different 
values of the initial momentum.



6.5 Wheels
We were dealing with momentum conductors and insulators before 
we knew that momentum is a vector. At that point, there was only 
one sort of momentum and we observed motion in only one direc-
tion. We discovered the rule that tells us that wheels serve the pur-
pose of momentum insulation.
This rule becomes more complicated when momentum of different 
directions flows. 
Fig. 6.23 shows once again how wheels hinder the flow of momen-
tum into  the ground. The person pulls and momentum flows through 
the rope and into the wagon. It builds up in the wagon because it 
cannot flow out through the wheels into the Earth. The wagon then 
picks up speed. 

In Fig. 6.24, a person is also pulling on a wagon. In spite of the 
wheels, the momentum does not stay in the wagon. It flows off and 
the wagon remains still. The difference to what is happening in Fig. 
6.23, is that the momentum flowing into the wagon is transverse to 
the wheels. So:

Wheels let transverse momentum flow into the Earth. Lengthwise 
momentum is not allowed to pass.
We have perhaps been a bit too black-and-white in our description 
here. Actually, a little lengthwise momentum flows into the Earth due 
to friction. It is also possible, by pulling very strongly (producing a 
very strong momentum current), to  make the conducting connection 
for the transverse momentum in Fig. 6.24 break down, Fig. 6.25.  

The car in Fig. 6.26 that is going around a curve, needs to get rid of 
its 0-degree momentum. This works because the tires let the trans-
verse momentum flow into the ground, except in the case of an icy 
road when tires are insulators for momentum of every direction. Ve-
hicles on tracks are safer in that situation. Transverse momentum 
can always be conducted off by them very well.

The conditions are much less clear with a ship. Lengthwise momen-
tum does not flow off into water as well as transverse momentum 
does, but the difference is not as great as with vehicles on land. 
Sometimes a vehicle is not supposed to lose lengthwise momentum 
or transverse momentum to the ground. A method to achieve this is 
to attach the wheels so that they can change their direction. You 
probably have tables for experiments in your physics classroom that 
move on these kinds of wheels, Fig. 6.27. 

Are we finished with wheels yet? Not quite. We have observed mo-
tion on the surface upon which the wagon rolls. The third direction is 
still missing.
Take a little car and press it from above against a tabletop. Of 
course it does not move. Lift it vertically upward and it moves up-
ward. Do the same thing again but this time against a wall instead of 
the tabletop. If the wagon is pressed against the wall it doesn’t 
move, momentum flows off, Fig. 6.28. If you pull it away from the 
wall, it starts to move, momentum is not flowing out. By the way, the 
wheels were totally unnecessary in this experiment. 

Example
A 20 kg wagon stands upon a sloping street and the brakes are then 
released, Fig. 6.29.  What does the wagon do? Through the gravita-
tional field, 270-degree momentum continuously flows into the 
wagon. The magnitude of the momentum current is 
F = m · g = 20 kg · 10 N/kg = 200 N

What happens with this momentum? Does it flow into the ground? 
Does it build up?
We do not know what happens with the 270-degree momentum, but 
we do know what happens with the momentum that is parallel to the 
bottom of the car and the momentum that is perpendicular to  its bot-
tom. 
The lengthwise momentum of the wagon is 345-degree momentum. 
It cannot flow off, so it has to build up in the wagon.  
The momentum that is transverse to the car’s bottom is 255-degree 
momentum. It flows entirely into the ground. 
All we have to do is decompose the 270-degree momentum current  
 

F coming in, into a 345-degree current  


Flong, and one of 255-degree 

current  

Ftrans, Fig. 6.30.  From the figure, we can extract that

 

Flong = 50 N

 

Ftrans= 190 N
Therefore: 190 Hy per second flow into the Earth, and the momen-
tum of the wagon increases by 50 Hy. 

Exercises

1. A cylindrically formed handle Z can slide without friction along a rod 
S, Fig. 6.31a. What kind of momentum can pass through the connec-
tion between handle and rod? Which momentum cannot pass?
2. Cylinder Z1 can glide along the rod S and cylinders Z2 and Z3 can 
glide back and forth on the frame R, Fig. 6.31b. Which kind of mo-
mentum can pass through the connection between Z1 and the frame? 
Which one cannot pass? 

Wheels let transverse momentum flow into  the Earth. Length-
wise momentum is not allowed to pass.

Fig. 6.23
The wagon is insulated from the 
ground by the wheels so the mo-
mentum coming from the person 
cannot flow off. It builds up in the 
wagon.

Fig. 6.25
If the momentum current is too 
strong, the conductive connection 
breaks down.

Fig. 6.24
The momentum coming from the 
person flows into the ground. 
Transverse momentum is not re-
tained by the wheels.

Fig. 6.26
Going around the curve, the car 
must give its 0-degree momentum 
to the ground and receive 90-
degree momentum from the 
ground.

Fig. 6.27
The wheels pivot. They allow nei-
ther longitudinal momentum nor 
transverse momentum to pass 
through.

Fig. 6.28
Momentum that is transverse to 
the platform of the car, is con-
ducted into the wall. 

Fig. 6.29
270-degree momentum flows into 
the wagon. This is divided into a 
portion flowing into the Earth and 
a portion that builds up in the 
wagon.

Fig. 6.30
The current vector of 270-degree 
momentum decomposed into 
components of 255-degree and  
345-degree momentum. 

Fig. 6.31
(a) For Exercise  1 
(b) For Exercise  2a

b



6.6 Ropes
Here is an old rule we still have to complete: Ropes conduct mo-
mentum in only one direction.  
It isn’t easy to see what is happening in Fig. 6.32: The person is try-
ing to  set the wagon in motion sideways with the help of the rope. Of 
course he doesn’t succeed. Using momentum for a description: He 
tries to  send 90-degree momentum through a rope lying in 0-degree 
direction. This doesn’t work because ropes are choosy.  

We want to apply this newly formulated rule. Fig. 6.33 shows a 
wagon from above that is being pulled by a rope. It is not being 
pulled forward, but a bit to the side. A momentum current of 40 N 
flows through the rope. What is the change of momentum per sec-
ond of the wagon? How much momentum flows into the ground? 

The momentum flowing through the rope must have the same direc-
tion as the rope. We call the corresponding current vector 


F ,  Fig. 

6.34.  It is decomposed into two components:
– !a component  


Ftrans,which lies transverse to the wagon and flows

off over the wheels;
–! a component 


Flong,which lies in the direction of the wagon and

causes the increase of the wagon’s momentum. 

We extract from the Figure that:
Ftrans = 20 N
Flong = 34 N.
As a result, 20 Hy of transverse momentum flows into the Earth, and 
the longitudinal momentum of the wagon increases by 34 Hy. 

Exercises

1. A  toy car is pulled by a rope across a horizontal floor. The rope 
runs diagonally  upward between the person and the car, Fig. 6.35. A 
momentum current 20 N flows through the rope. How large is the part 
that contributes to the forward motion of the car? 
2. One car tows another. The cars travel in the same direction, but 
shifted sideways by 1 m, Fig. 6.36. The tow rope is 3 m long. A mo-
mentum current of 500 N flows through the rope. Which momentum 
current contributes to the motion of the car?

Only momentum lying parallel to a rope can be sent through it, 
and in only one direction. 

Fig. 6.32
Someone is trying to move a 
wagon transversely to the direc-
tion of the rope.

Fig. 6.33
Wagon with rope, seen from 
above. The rope is pulled. The 0-
degree momentum of the wagon 
increases.

Fig. 6.34
The momentum current vector of 
the rope is decomposed into longi-
tudinal and transversal compo-
nents.

Fig. 6.35
For Exercise 1

Fig. 6.36
For Exercise 2



6.7 The junction rule for momentum currents
A lamp is hung by ropes from the walls of two neighboring houses, 
Fig. 6.37. It has a mass of 3.5 kg. How are the hooks on the walls 
stressed? 

Hopefully you have noticed that the momentum current vectors in 
ropes B and C are asked for here. We can easily find the momen-
tum current in rope A. 270-degree momentum flows through the 
gravitational field into  the lamp. The magnitude of the corresponding 
current is 
F = m ⋅ g = 3.5 kg ⋅ 10 N/kg = 35 N
This momentum current flows through rope A to junction K. How 
does it travel from K?
Because B is a rope, the only momentum that can flow here is the 
momentum lying parallel to B. The corresponding holds for C. 
Therefore, we must decompose vector  


FA into two vectors. One,  


FB,

lying parallel to B and the other,  

FC,lying parallel to C. The total cur-

rent in B and C must be equal to that in A. This means that 

 

FA =


FB +


FC .

Fig. 6.38 shows the decomposition.  

FA is parallel to rope A,  


FB is 

parallel to rope B, and  

FC is parallel to rope C. By measuring the 

lengths of the vectors  

FB  and  


FC we find

 

FB  = 9 N
and

 

FC  = 33 N. 

Have you noticed that we are dealing with an old friend here? We 
have used a junction rule. The junction rule for momentum currents 
is:

A junction is a location where three or more momentum currents 
meet. The currents are combined according to  the rules of vector 
addition. 

Exercises

1. Two tugboats tow a ship, Fig. 6.39. Each tugboat pulls with 15,000 
N. What is the momentum current through the piece of rope attached 
to the ship?
2. A 10 kg object is to be hung from the hooks in Fig. 6.40. The rope 
can take a momentum current of up  to 200 N. Beyond this, it will tear. 
What happens? Can it take the weight or not?

The total of momentum currents flowing into a junction are 
equal to the ones flowing out of it.

Fig. 6.37
How strongly are the two walls of 
the buildings stressed by the 
lamp?

Fig. 6.38
 The momentum current flowing in 
rope A to node K is equal to the 
momentum currents flowing away 
through ropes B and C.

Fig. 6.39
For Exercise 1

Fig. 6.40
For Exercise 2



7
Torque and center of mass



7.1 Pulley wheels and pulley blocks
Wheels that are turned by chains or drive belts are very important in 
technology. We see wheels with ropes as deflection sheaves in 
cranes or pulleys (pulley blocks). You know chain wheels from bicy-
cles and motorcycles. Often there are wheels with v belts hidden in-
side machines. Large drills would be an example of this. Flat belts 
were very often used for driving machines in the factories of earlier 
times. 
In the following, we will deal with the flows of momentum and energy 
through such wheels. The first wheels we will consider are freely ro-
tating ones: so-called rollers, pulley wheels, or simply wheels. They 
are not fixed to an axle driving something but are mounted in such a 
way that they spin easily.   
Fig. 7.1 shows a wheel with a rope around it. There is a force sensor 
inserted into each of the ropes A, B, and C. They measure the 
strength of the momentum current through the corresponding rope. 
The loop at the right end of rope A is pulled so that the force sensor 
shows 12 N. What do the sensors on B and C show?

We can predict the answer. We know that the momentum current 
flowing through rope A flows further through B and C. Therefore
FA = FB + FC .
Because the whole arrangement is symmetrical, the following is also 
valid:
FB = FC .
As a result we have
FB = FA/2 
and
FC = FA/2 .
If FA = 12 N, then FB = 6 N und FC = 6 N.
The dashed lines in Fig. 7.2 show the paths of the momentum in the 
ropes. The arrows next to the lines show the orientation of the mo-
mentum. These arrows are parallel to the ropes. 

The loop can be pulled more strongly or less strongly. The force 
sensor in rope A will then show greater or smaller values. However, 
the magnitudes of the momentum currents in ropes B and C also 
change so that  
FB = FC = FA/2
is always valid.
Of course, nothing changes if ropes B or C are pulled instead of A, 
Fig. 7.3.  

We will now deal with a more complicated case, Fig. 7.4. 

We pull on rope A and find out that no matter how hard we pull, the 
sensor in A shows the same as the one in B. In spite of this, the 
momentum currents in A and B are not the same. They have the 
same magnitude but different directions. Momentum always has the 
same direction as the rope it flows in. In rope A, 30-degree momen-
tum flows toward the pulley wheel, and in rope B, 0-degree momen-
tum flows toward the pulley wheel. 
The sum of both types of momentum flows through the mounting of 
the wheel, and into the ground. By “sum” we mean the sum of the 
vectors, Fig. 7.5. 

Because the magnitudes of vectors  

FA  and  


FB  are the same,  


FC   

has the direction of the bisectrix of the angle between the two ropes.
Fig. 7.6 shows a variation of the situation in Fig. 7.4. Because the 
pulley wheel is attached to the wall by a rope (and not rigidly fixed), 
Conductor C must have the same direction as the momentum flow-
ing there. This is noticed when A is pulled. Rope C adjusts itself so 
that the direction is the bisectrix of the angle between A and B.   

The three spring force sensors show that

 

FC  =  


FA  +  


FB

and 

 

FA =  


FB  .

We summarize:

The rule emphasizes the fact that the wheel must spin freely. Do you 
know why? Imagine that the wheel in Fig. 7.4 is blocked and the 
rope cannot slide over it. Rope A could be pulled without rope B no-
ticing anything: The currents  


FA and  


FB do not have the same mag-

nitudes anymore. 
What can be done with pulleys?
A weight is to  be hoisted by a motor, Fig. 7.7. The rope the weight is 
hanging from is attached to the motor over two pulley wheels. In all 
three parts of the rope, the magnitude of the momentum current is 
the same, but the direction is not.  

This application of pulleys is so simple that we do not need to use 
any complicated physical considerations to  understand it. However, 
there are more difficult applications.
Again a weight is lifted by a motor, Fig. 7.8. The rope moves differ-
ently than before though. 

The momentum current flowing in rope C is 
FC = m · g = 50 kg · 10 N/kg = 500 N.
What is the current in A and B?
According to our rule, the momentum currents in A and B are the 
same. The ropes run parallel to  each other, so not only the magni-
tudes but also their directions are the same. Therefore:

 

FA =  


FB .

Since

 

FA  +  


FB  =  


FC

we have

 

FA  =  


FB  =  


FC /2 .

Each of the ropes A and B has only 250 N flowing through it. This is 
interesting because in order to lift the weight, the motor only needs 
to be half as strong as it would need to be if the pulley wheel wasn’t 
there. 
This trick, used for reducing the momentum current in a rope, is 
even more effectively applied by using a pulley (or rather, an entire 
pulley block).
Fig. 7.9 shows a somewhat unusual but easy to understand version 
of a pulley block. 
The bearing supports of the four pulleys are attached to  the ceiling. 

The ones below are attached to  a rod. The weight is hanging from 
this rod. The first eight parts of the rope are numbered consecutively 
from 1 to 8. The traction rope has the letter Z and the weight is la-
beled L.  
In order to raise the weight, Z must be pulled. What is the momen-
tum current in Z?
We work step by step toward a solution. Rope sections 1 and 2 be-
long to one rope running over a wheel (wheel on the left, below), the 
currents in these parts must therefore be the same:

 

F1 =


F2  .

You see how it continues. We then have:

 

F1 =


F2 =


F3 =


F4 =


F5 =


F6 =


F7 =


F8 =


FZ .

Our next step is to consider the rod where the lower wheels rotate, 
as a node or junction. The momentum current FL coming from the 
weight, flows into the rod, and the currents F1 to  F8 flow out. The 
junction rule now tells us that: 
FL = F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8.
Because the currents F1 to F8 are all the same, the following is valid:
F1 = F2 = F3 = F4 = F5 = F6 = F7 = F8 = FL/8.
FZ has the same magnitude as F1 through F8. Therefore
FZ = FL/8.
Only 1/8 of the momentum current flowing through the weight is 
needed to lift it. Lifting something with a pulley block is much easier 
than without it. 
A real pulley block is hardly different from the one we have just in-
vestigated, Fig. 7.10. The upper pulley wheels are all on a common 
axis. Each wheel spins freely. The same is true for the lower pulley 
wheels.  

These kinds of pulley blocks can be seen at freight harbors where 
cranes lift very heavy weights.
A pulley block is a very useful thing. We gain something: Out of a 
small momentum current we have created a large one. 
However, as far as energy goes, we have not gained anything. 
In the next section we will deal with the energy balance of a pulley 
block.

Exercises

1. Sketch a pulley block where the momentum current through the 
hook holding the weight is four times as large as in the pull rope. 
2. What is the momentum current in the pull rope of the pulley in Fig. 
7.11? 
3. What is the disadvantage of the pulley block in Fig. 7.12?

If a rope runs over a freely rotating wheel (a pulley wheel), the 
momentum currents in both parts of the rope are of equal mag-
nitudes.

Fig. 7.1
 Sensor A shows twice as much 
as B or C do.

Fig. 7.2
The momentum current coming 
from the right branches at the 
wheel into two equal parts.

Fig. 7.3
It doesn’t matter if you pull A, B 
or C.

Fig. 7.4
Here, as well, the sensors A and B  
show the same value. However, 
the currents are not equal.

Fig. 7.5
Vector addition of momentum cur-
rents in the ropes of Fig. 7.4.

Fig. 7.7
The motor is underneath. In order 
to raise the load, the rope is 
looped around tow wheels.

Fig. 7.8
The momentum current in the pull-
rope is half that in the rope carry-
ing the weight.

Fig. 7.9
An impractical but clearly ar-
ranged pulley block.

Fig. 7.10
Pulley block

Fig. 7.11
For Exercise 2

Fig. 7.12
For Exercise 3

Fig. 7.6
Rope C adjusts itself so it is the 
bisectrix of the angle between A 
and B.



7.2 The balance of energy in a pulley block
The traction rope in Fig. 7.9 is pulled in such a way that its end 
moves the distance sZ. According to our old formula, the amount of 
energy sent through the rope is:
EZ = sZ ⋅ FZ . ! ! ! ! ! ! ! ! (1)
Energy comes out of the pulley where the weight hangs from the 
rope. The amount is
EL = sL ⋅ FL . ! ! ! ! ! ! ! ! (2)
We want to compare EZ and EL. To do this, we use the relation
FZ = FL/8.! ! ! ! ! ! ! ! ! (3)
We must also find the relation between sL and sZ. We ask: By what 
distance sL does the weight move upward when the traction rope is 
pulled so that its end moves downward by the distance sZ?
When Z is pulled, the rope sections 1 to 8 all shorten by the same 
amount. Each part contracts by sZ/8. Each rope gets shorter by the 
distance sL by which the weight is lifted. Therefore
sZ = 8sL.! ! ! ! ! ! ! ! ! (4)
We now insert (3) and (4) into (1) and obtain:
EZ = 8sL ⋅ FL/8 = sL ⋅ FL.
The amount of energy EZ, which is put into the pulley through the 
traction rope Z, is equal to sL  ⋅ FL. According to equation (2), it is 
equal to the amount of energy EL.
The energy we put in at Z comes out again at L. This doesn’t sur-
prise you, does it? 
In other words, the price we pay for a small momentum current is a 
longer path. If we want to lift a weight 1 m, we must pull 8 meters of 
rope out of the pulley block. 

Exercises

1. In Fig. 7.11, we lift a 100 kg weight 1 m with a pulley block. How 
many meters must the rope be pulled? How much energy is neces-
sary?
2. The traction rope Z in Fig. 7.13 is moved 1 m upward. How much 
energy flows through the pulley block in the process?
3. Fig. 7.14 shows how a weight can be lifted by using two motors. 
The weight is 200 kg. The motor on the left pulls so that the traction 
rope Zleft moves at 0.2 m/s. The one on the right pulls so that rope 
Zright moves at 0.4 m/s. What are the momentum currents in Zleft and 
Zrightt?  What are the energy currents in each of the ropes?

Fig. 7.13
For Exercise 2

Fig. 7.14
For Exercise 3



7.3 The law of the lever

We know a lot about pulley wheels. We know that in Fig. 7.15, the 
momentum current flowing through A branches off into  two equal 
parts. Because in this case nothing is moving, we could just as well 
be using a rod instead of a pulley wheel. Nothing would change 
about the momentum currents, Fig. 7.16. 

Here, too, the following is valid
FB  = FA/2 
and
FC = FA/2.
If this still isn’t clear to you, test it experimentally.
We change the setup still more. We attach rope A asymmetrically in-
stead of in the middle, as in Fig. 7.17. We call rB and rC the lengths 
of the lever arms. As before, the current which comes from A must 
be distributed over B and C. However, this time it does not divide 
into equal parts.

Direct measurement yields
rB ⋅ FB  = rC ⋅ FC .
This can be changed into
FB
FC

= rC
rB

In words:

That is the law of the lever.
In the case of Fig. 7.17,
rB  = 0,3 m
and 
rC  = 0,6 m.
Therefore
FB

FC
= 0.6 m

0.3 m
=  2.0

This means that FB  = 2 ⋅ FC.
In addition, because 
FB  + FC  = 120 N
it follows that 
FB   = 80 N
und 
FC  = 40 N .
The lever rule can be put into a simpler form. To do this we will once 
again describe the arrangement in Fig. 7.17 but in somewhat differ-
ent words and with other letter symbols, Fig. 7.18. 

We have a rigid, unmoving rod. Momentum currents flow into  the rod 
at three points. One of these points we call the pivot. We label it by 
P. The distances of the two other points from P are the lever arms. 
We refer to them as rR  and rL.  The strengths of the currents flowing 
over the outer inlets we call FR  and FL. Up to now there is nothing 
new to us.
Now here is an important new concept: The products rR ⋅  FR and 
rL ⋅  FL are called torques. rR ⋅ FR is the right torque and rL ⋅ FL is the 
left torque. 
Why do we use the names pivot and torque? What does our prob-
lem have to do with rotation? The rod is mounted at P so that it can 
rotate. Let’s imagine that the rope below is not there. The upper one 
would set the rod in a rotation to the left. This is where the name left 
torque comes from. If we imagine the upper rope not to be there, 
then the rod would be set into  a rotation to the right by the lower 
rope.   
Using the new letter symbols, the lever rule looks like this:
rR ⋅ FR = rL ⋅ FL

and in words:

If the lever rule is so formulated, it can be applied to the rod in yet 
another way, Fig. 7.17. To do so you should know that it doesn’t 
matter where you set P. 
Fig. 7.19 shows the same rod as in Fig. 7.17. However, here the 
pivot is set at the lower inlet. Rope A tries to turn the rod to  the right 
at the new pivot and rope B tries to turn left. The lever arms are 
therefore
rR  = 0.6 m   and   rL  = 0.9 m.

We already know the momentum currents. They are
FR  = 120 N   and   FL  = 80 N.
The right torque
rR ⋅ FR = 0.6 m ⋅ 120 N = 72 Nm
is indeed equal to the left torque
rL ⋅ FL = 0.9 m ⋅ 80 N = 72 Nm.
Notice that the unit for torque is the Nm (Newton-meter).
Finally, we set the pivot at the upper inlet, Fig. 7.20. Now rope C 
tries to turn to the right and rope A tries to turn left. The lever arms 
are correspondingly 
rR  = 0.9 m   and   rL  = 0.3 m.

The corresponding momentum currents are
FR  = 40 N   and   FL  = 120 N.
The resulting right torque is
rR ⋅ FR = 0.9 m · 40 N = 36 Nm
and the left torque is:
rL · FL = 0.3 m · 120 N = 36 Nm.
Again, the torques are equal and the law of the lever has been ful-
filled.

Example: A stressed rod
A heavy body (m = 80 kg) hangs from a horizontal rod, Fig. 7.21. 
The rod’s weight is so small compared to that of the body that we do 
not need to take it into account. How strongly stressed are the sup-
porting points of the rod?

We choose the point on the rod from which the object hangs to be 
the pivot. 
The momentum current from the object to point P is
FP  = m · g = 80 kg · 10 N/kg = 800 N.
Support C tries to turn the rod to  the left and support B tries to turn it 
to the right. Therefore the lever arms are:
rR  = 4.5 m    and  rL  = 1.5 m.
The lever rule yields
FL

FR
= rR
rL

= 4.5 m
1.5 m

=  3.0

Hence: FL  = 3FR.
The current of 800 N flowing into the rod at P divides so that the 
momentum flowing to support C is three times that flowing to B. 
In order to satisfy FR  = FR  + FL, one must have FR  = 200 N
and 
FL  = 600 N. 

Example: Pliers
Pliers are made up of two levers connected by a hinge, Fig. 7.22. 
We will consider one of these, the lever 1. In order to cut a nail, the 
handles of the pliers are pressed together 20 cm from the hinge. A 
momentum current of 30 N flows into  the handles. The cutting edges 
of the pliers are 3 cm from the hinge. We set P at the hinge so that
rR  = 0.2 m,  rL  = 0.03 m and FR  = 30 N.

The momentum current at the nail calculates to 

FL =
rR
rL
FR = 0.2 m

0.03 m
· 30 N =  200 N

The law of the lever can be used in completely different situations as 
well: The inlets do not need to be in a straight row and the three vec-
tors of the momentum currents do not need to be parallel.  
Fig. 7.23 shows a body with three momentum currents leading into 
it.  We set the pivot at the support attached to the wall. The upper 
rope tries to create a turn to the left and the lower one attempts a ro-
tation to the right.   

What are the lever arms here? One draws a straight line through 
each of the two points where the ropes are attached so that their di-
rections are the same as the corresponding current vectors, Fig. 
7.24. 

The lever arms are now simply the distances between the straight 
lines from pivot P.

Example: A relay arm
What is the momentum current in the horizontal rope in Fig. 7.25? 

We arbitrarily choose the point where the relay arm is attached to 
the wall as our pivot, Fig 7.26. The horizontal rope tries to  create a 
rotation to  the right, the vertical one tries to create a rotation to  the 
left around P.  In Fig. 7.26, auxiliary lines and the lever arms are 
drawn. From the Figure we see that:
rR = 0.2 m   and   rL  = 0.4 m.

The momentum current in the vertical rope is:
FL  = m · g = 24 kg · 10 N/kg = 240 N.
Using the lever rule we have
FL

FR
= rR
rL

= 0.2 m
0.4 m

=  0.5

One could ask how strongly stressed the mounting is or in other 
words, what the momentum current at P is. Because the current 
vectors in both ropes are not parallel to each other, we cannot sim-
ply add up FR and FL. We must add up the vectors:

 

FP =


FR +


FL . 

Exercises

1. Fig. 7.27 shows part of a vehicle brake. One pulls a lever on a rod. 
The lever is connected to a rope that pulls on the brakes attached to 
the wheels. What does the momentum current in the pulling rod need 
to be so that a current of 50 N flows into the brake rope?
2. The overhead crane in Fig. 7.28 spans the entire 12 m wide factory 
space. 9 tons is hanging from the crane (1 ton = 1000 kg). How 
strongly stressed are the two tracks on either side  (in addition to the 
weight of the crane) when the weight is hanging in the middle? How 
strongly are they stressed when the weight hangs four meters from 
the track on the left?
3. The handles of the nutcracker in Fig. 7.29 are pressed together 15 
cm from the nut. In order to crack the nut, a momentum current of 80 
N must flow through it. How hard do we have to press?
4. A weight hangs from a horizontal pole. The pole is mounted at two 
places, Fig. 7.30. The pole presses down at A and presses up at B. 
This means that the momentum current vectors in A and B lie verti-
cally, just as in the rope holding the weight does. How strongly 
stressed are points A and B?  (What are the momentum currents that 
flow out of the pole at A and B?) Set the pivot in A  in order to calculate 
the momentum current at B and set it in B to calculate the momentum 
current at A. 
5. A pole supported by a rope holds a lamp weighing 8 kg, Fig. 7.31. 
What is the momentum current flowing through the rope? Set the 
pivot at the place where the pole is attached to the wall.
6. What is a screw wrench good for? Why doesn’t one simply tighten 
the nut with one’s hands?

A lever can make a large momentum current out of a small one.

The momentum currents are inversely proportional to  the lever 
arms.

Right torque equals left torque.

Fig. 7.22
Pliers are made up of two levers. 
Each of these has one short and 
one long arm.

Fig. 7.18
As in Fig. 7.17; only the names 
have changed.

Fig. 7.15
The momentum current coming in 
at A branches at the wheel into 
two equal parts.

Fig. 7.16
The wheel can be replaced by a 
rod without the momentum current 
changing.

Fig. 7.19
Rope A would like to rotate the rod 
to the right around pivot P, rope B 
wants it to rotate to the left.

Fig. 7.20
Rope C tries to rotate the rod to 
the right around pivot P, rope A 
tries to rotate it to the left. 

Fig. 7.21
The momentum current flowing 
from P to C is three times as 
strong as the one flowing to B.

Fig. 7.23
The inlets of the momentum cur-
rents do not need to lie in a 
straight line, and the current vec-
tors do not need to be parallel to 
each other.

Fig. 7.24
As in Fig. 7.23, but with auxiliary 
lines and lever arms.

Fig. 7.25
Deflection lever

Fig. 7.26
Enlarged section of Fig. 7.25, with 
auxiliary lines and lever arms.

Fig. 7.27
For Exercise 1

Fig. 7.27
For Exercise 2

Fig. 7.29
For Exercise 3

Fig. 7.30
For Exercise 4

Fig. 7.31
For Exercise 5

Fig. 7.17
The momentum current coming in 
through rope A branches into two 
parts of different values.



7.4 Equilibrium
In Fig. 7.32, everything is in order. A momentum current of 50 N 
flows from the right and 50 N flows from the left into the rod. At P, 
100 N flow out. The lever rule
rR ⋅ FR = rL ⋅ FL

is obeyed. 

We will now try to break the law of the lever. No one can stop us 
from hanging objects of two  different weights from the rod, Fig. 
7.33a. However, nature defends itself when we try to break the lever 
rule.  As you probably predicted, Fig. 7.33b shows what actually oc-
curs. The objects along with the rod are set in motion. In other 
words, the arrangement does not stay in equilibrium, as opposed to 
the arrangement in 7.32. 

In Fig. 7.34, the lever rule is followed and the arrangement stays in 
equilibrium but this time with lever arms of different lengths. 

We can now make a more exact formulation of the lever rule: 

Exercises

1. Calculate the right and left torques for the rod in Fig. 7.35. Is it in 
equilibrium?
2. A girl tries to lift a 500 kg stone by a lever in Fig. 7.36. Assume that 
half the mass of the stone is resting on the lever. Will the girl manage 
to do it? (She weighs 50 kg.)

A suspended body capable of rotation is in equilibrium when 
the right and left torques are equal.

Fig. 7.32
The law of the lever is satisfied. 
The rod is in equilibrium.

Fig. 7.33
(a) An attempt to break the law of 
the lever. (b) Bodies and rod are 
set in motion.

a b

Fig. 7.34
Equilibrium with lever arms of dif-
fering lengths. 

Fig. 7.35
For Exercise 1

Fig. 7.36
For Exercise 2



7.5 Center of mass
The rod in Fig. 7.37a is in equilibrium. Compare it to the situation in 
7.37b. The only thing to change is that the balls don’t hang from two 
strings anymore, but are attached to the rod. In combination with the 
rod, they make up one body, a kind of dumbbell.  

This dumbbell is also in equilibrium. Two momentum currents are 
flowing into the ends of the dumbbell. (They come from the Earth 
and through the gravitational field). The momentum currents meet at 
the pivot and leave the dumbbell at that point.
In other words: We have suspended a body at one point so that it 
could rotate and this body is in equilibrium. It does not start to rotate 
by itself. 
We turn the dumbbell a little, Fig. 7.38. What happens when we let it 
go? Nothing. It stays in its new position. It is in equilibrium again. 

This can be seen in Fig. 7.38b. The inlets of both momentum cur-
rents from the Earth are where the two balls are. The current vectors 
lie vertically. That is why the auxiliary lines are vertical. The two lever 
arms rR and rL are shorter than in part ‘a’ of the figure.  They have 
shortened by the same amount, though: rR has shortened by half by 
turning and so has rL.
FR and FL stayed the same during rotation, naturally. The torques 
rR ⋅   FR and rL ⋅ FL have reduced to half of their previous values. As 
before, this means that 
rR ⋅ FR = rL ⋅ FL

is valid. The dumbbell has stayed in equilibrium. We can rotate the 
dumbbell any way we wish and it will always stay in equilibrium. 
If the mounting at the pivot allows, we can also rotate it in the third 
dimension, Fig. 7.38, out of the plane of the drawing. This also 
changes nothing. It stays in equilibrium. 

We take the same dumbbell again, Fig. 7.39a, but with a different 
pivot this time. Of course it is no longer in equilibrium, nor is that the 
case in Fig. 7.39b. There is only one pivot for which it stays in equi-
librium no matter what its orientation. This point is called the center 
of mass. 
Not just dumbbell shaped bodies have centers of mass. Every object 
has a single center of mass. If the object is suspended at that point 
so that it can rotate, it is in equilibrium and stays there no matter 
how it is rotated.   
An object’s center of mass is often inside the object. How can a 
body be suspended to rotate around a point like this?
One drills a hole through the point of center of mass and puts an 
axle through the hole. The axle is mounted so it can rotate. The 
body is now in equilibrium, no matter how it is rotated, Fig. 7.40.  

There are many possibilities for drilling such holes. It is unimportant 
how the holes are drilled, but they must pass through the center of 
mass, Fig. 7.41. 

In summary:

If an object is highly symmetrical, the location of the center of mass 
is easy to predict. 

For a sphere, a cube, a cylinder or a cuboid it is simply the geomet-
rical center, Fig. 7.42, provided that the mass in the body is distrib-
uted evenly. If half of a cube is composed of lead and half of alumi-
num, Fig. 7.43, its center of mass C is not in its geometrical center 
but shifted toward the part with the lead. 

For many objects, the center of mass C lies outside the material 
making up the body. Examples would be a circular ring or a U 
shaped object, Fig. 7.44. 

Exercises

1. Where is the center of mass of a bicycle wheel? 
2. Where is the Earth’s center of mass?
3. Take a few different objects and try to find their centers of mass by 
holding them between your middle finger and thumb so that they can 
rotate.
4. The Earth and the Moon can be considered a kind of dumbbell with 
the “rod” between them being the gravitational field. Where is the cen-
ter of mass of this object? (Earth’s mass: about 100 times the mass of 
the Moon, distance from Earth to Moon = 380,000 km).

Every body has exactly one center of mass. If it is suspended 
to rotate around it’s center of mass, the body stays in equilib-
rium, no matter what direction it is turned in. 

Fig. 7.37
 (a) The rod is in equilibrium. (b) 
The dumbbell shaped body is in 
equilibrium. 

a b

Fig. 7.38
By turning, the lever arms have 
shortened to half.

a b

Fig. 7.39
Again, the body of Fig. 7.37b. 
Only the pivot point has changed.

a b

Fig. 7.40
The axis runs through the center 
of mass. The body is in equilib-
rium no matter what position it is 
in. 

Fig. 7.41
Various axes through the center of 
mass. The body is always in equi-
librium.

Fig. 7.42
The center of mass C in these 
bodies is the geometric center.

Fig. 7.43
The center of mass C is not the 
geometric center of the cube.

Fig. 7.44
In both of these cases, the center 
of mass C lies outside the body 
itself.



7.6 Stable equilibrium
We suspend an object so that it can rotate and intentionally do  not 
set the pivot at the center of mass. For simplicity, we again take a 
dumbbell for this. To prevent the pivot from coinciding with the cen-
ter of mass C, we bend the dumbbell, Fig. 7.45. 

What happens when the dumbbell is turned into  the position shown 
in Fig. 7.46a? Your feelings surely tell you that it will not remain 
hanging like that: It will begin to rotate and gradually level off to the 
position shown in Fig. 7.45b.  

You do not need to rely upon your feelings to come to  this conclu-
sion, though. Fig.7.46b shows that the lever arm rL is longer than rR. 
Because the two spheres are of equal weight, this means that the 
left torque is greater than the right torque. For this reason, the 
dumbbell begins to  rotate to the left. In the process of rotating, the 
lever arms change length. When the dumbbell has reached the posi-
tion shown in Fig. 7.45, the two arms are equally long. This is the 
position of equilibrium. At first, the dumbbell will swing out past this 
position of equilibrium, but it will gradually settle down there. 
What is the center of mass doing during all this? It is moving down-
ward.
If we rotate the body out of the position of equilibrium, the position of 
the center of mass rises. It does not matter if we turn the body to the 
right or to the left. In equilibrium the center of gravity is obviously in 
the lowest possible position. Moreover, it lies directly underneath the 
pivot.
There is still another position of equilibrium for the dumbbell: when 
the center of gravity is directly above the pivot, Fig. 7.47. If it is ro-
tated just slightly out of this position, it doesn’t return to it by itself, 
but removes itself more and more from it and eventually settles 
down in the lower position of equilibrium. The upper position of equi-
librium is unstable and the lower one is stable. 

We now have a very simple way of determining the center of mass 
of a body. One suspends the body from an arbitrary point, so that it 
can rotate, Fig. 7.48. It settles down so  that its center of mass is ver-
tically below the pivot. We then have a first straight line that the cen-
ter of mass must be lying upon. We then suspend it again to rotate, 
but from another point, and let it settle down. Again, we obtain a 
straight line through the center of mass. The body’s center of mass 
must be at the intersection of these two straight lines.

Exercises

1. Try to find the centers of mass for a few different objects by sus-
pending them from two different points on or in them so they can ro-
tate. 
2. Two forks are stuck into a cork. The cork is mounted onto the point 
of a nail, Fig. 7.49. Why doesn’t the cork with the forks fall down? 

A body is suspended so that it can rotate. If the pivot is verti-
cally above the center of gravity, the body is in stable equilib-
rium. If it is rotated out of this position, it finds its way back 
there by itself. 

Fig. 7.45
 The pivot point P does not coin-
cide with the center of mass C. 
The body is in stable equilibrium.

Fig. 7.46
(a) The body does not stay in this 
position. (b) One lever arm is 
longer than the other.

a b

Fig. 7.47
Unstable equilibrium

Fig. 7.48
The body adjusts in such a way 
that its center of mass lies verti-
cally under the pivot point.

Fig. 7.49
For Exercise 2



7.7 Center of mass and energy
It takes energy to bring a body out of a position of stable equilibrium. 
This is because the body’s center of mass must be moved upward. 
This is similar to how an object is lifted, Fig. 7.50. Also in that case, 
the center of mass is shifted upward, and this needs energy.

This energy is stored in the gravitational field. When the body starts 
moving downward again, the gravitational field gives the energy 
back.

Why does the process shown on the left in Fig.7.51 happen on its 
own and the one on the right does not? Why does the process on 
the left in 7.52 happen on its own and the one on the right does not?

The reason for this is that it is always easier to get rid of energy than 
it is to obtain it. (Energy and money are similar in this way). The en-
ergy that is given up in the transition to the stable state of equilib-
rium is used to  create heat. This process cannot be reversed. Heat 
cannot be destroyed. For this reason the transition from equilibrium 
to a state of non-equilibrium does not happen by itself. We must 
supply the energy from elsewhere. 
We will use a couple of examples to observe the transition to a state 
of equilibrium. 

In Fig. 7.53a, a sphere rolls down to the lowest point. Its center of 
mass finds the lowest possible position. The vehicle in Fig. 7.53b 
shifts into a horizontal position. The wheels on the left need to move 
a bit upwards to achieve this. In the process, the center of mass 
moves downward, though. The crate in Fig. 7.54a cannot remain in 
that position. It tips to the left. In doing so, its center of mass moves 
downward. The object in Fig. 7.55a cannot remain like that because 
its center of mass can move further downward, Fig. 7.55b.

Sometimes one needs to lift a body’s center of mass only slightly to 
put it into a position where it can move much further downward by 
itself. In other words: Very little energy needs to be introduced into 
the body to make a lot of energy come out of it. 

Fig. 7.56 shows such a situation. Very little energy is needed to 
move the sphere up the small ridge. After that, it rolls by itself down 
the outer side of the mountain. Another well-known example is an 
object that is easily tipped, Fig. 7.57. In this case, as well, the center 
of mass need only be brought slightly upwards, bringing the vase 
into a position from where the center of mass goes much further all 
by itself.  

We now have a method for determining the mass of a body. Fig. 
7.58 shows an old balance. The middle pivot lies somewhat higher 
than the two pivots holding the scales. 

If the scales have equal weights on them, the balance eventually 
levels off and the bar holding them becomes horizontal. The center 
of mass is then at its lowest point.   
There is a set of weights for scales: A set of bodies of known mass, 
from which various quantities of mass can be compiled. This is simi-
lar to different amounts of money that can be put together using dif-
ferent coins and bills.  
In order to weigh an object, it is put onto one of the scales. On the 
other side, weights are placed so  that the bar holding the two scales 
is horizontal. Now, the mass of the object is equal to the total mass 
of the weights.

Exercises

1. If a body’s center of mass keeps its height when the body is 
moved, the body is in so-called indifferent equilibrium. In this case, 
the body  is in a state of rest no matter where it is put. Give examples 
of this.
2. A bicycle that is not supported tips over. A car does not. Why?
3. Is the body in Fig. 7.59 in a stable state of equilibrium? If not, in 
which direction does it start moving?
4. Does the object in Fig. 7.60 tip over? 
5. Balances can have arms of different length, Fig. 7.61. The weights 
are put onto the scale hanging from the longer arm. How does one 
find the mass of the object to be weighed? What advantage does this 
balance have over one with arms of equal length?

Energy is needed to  move the center of mass of a body up-
ward.

Fig. 7.50
It takes energy to move the center 
of mass of an object upwards.

Fig. 7.51
The process taking place on the 
left happens by itself, the one on 
the right does not.

Fig. 7.52
The process on the left occurs by 
itself, the one on the right does 
not.

Fig. 7.53
(a) The sphere rolls to the deepest 
point of the depression. (b) The 
vehicle adjusts so that it is hori-
zontal.

a b

Fig. 7.54
The crate tips to the left. In the 
process, the center of mass 
moves downward.

a b

Fig. 7.55
The object tips to the right be-
cause thereby its center of mass 
lowers.

a b

Fig. 7.56
Very little energy is needed to roll 
the ball over the edge.

Fig. 7.57
Very little energy is necessary to 
make the vase fall over.

Fig. 7.58
A balance. The middle pivot point 
lies somewhat higher than the 
outer pivot points. 

Fig. 7.59
For Exercise 3

Fig. 7.60
For Exercise 4

Fig. 7.61
For Exercise 5



8
Angular momentum and angular 
momentum currents

This chapter deals with a special type of motion called rotational mo-
tion. It will become clear to  you that rotational motion occurs in many 
situations and is especially important. 
We will make an interesting discovery: Describing rotation is very 
similar to describing linear motion. One could say that there is an 
analogy between the corresponding fields of mechanics. This anal-
ogy allows us to save ourselves a lot of work.



8.1 Angular momentum and angular velocity
A wheel is mounted upon an motor shaft, the motor is turned on and 
the wheel rotates uniformly, Fig. 8.1. What does “uniformly” mean? 
With constant velocity, you might say. What is the velocity then? 
Point B at the edge of the wheel moves very fast, point A, near the 
axle, moves more slowly. This shows that there really is no uniform 
velocity at all. What we are looking for is a reasonable way to meas-
ure the velocity of a rotation.   

A sensible way of measurement is to  use the angle which is “passed 
over” per second by a radius, Fig.8.2. The angular velocity is the ra-
tio of the angle and the interval of time needed by the wheel to turn 
by this angle.

angular velocity = angle
time interval

Various units measurements are used for the angle itself. The best 
known of these is the degree. For our purposes, though, it is more 
practical to take the full rotation of 360 degrees as the unit. We give 
the angular velocity in “rotations per second”. 
We consider a freely turning wheel on good ball bearings. For ex-
ample, the wheel of an overturned bicycle, Fig.8.3. It turns at a de-
termined velocity, i.e., at a certain number of rotations per second. 
We can ascertain the value of the angular velocity with a stopwatch. 
We have now described rotational motion of a wheel.   

Angular velocity is to  rotation what usual velocity is to linear motion. 
For the description of linear motion we have introduced a second 
quantity: momentum. It is a measure of the body’s impetus. 
In the same manner, it is possible to say our rotating wheel has im-
petus: something that is put in when it is set in rotational motion and 
that comes out again when the wheel brakes. This type of impetus is 
called angular momentum.
Angular momentum and usual (linear) momentum are not the same. 
If the wheel in Fig. 8.4a had usual momentum, it would move like the 
one in Fig. 8.4b. 

Let us investigate the characteristics of angular momentum. What 
does it depend upon? What paths does it take in different proc-
esses?
Two identically built wheels rotate at different angular velocities, Fig. 
8.5. Which of the wheels has more angular momentum? The faster 
one, of course.  

The two wheels in Fig. 8.6 have the same form, but they are made 
of different materials. One of them is very light and the other is very 
heavy. They are set in motion so that they rotate at the same angu-
lar velocity. Which one has more angular momentum? It is the heav-
ier one of course. 

Two bodies can have the same mass, rotate at the same velocityv 
and nevertheless contain different quantities of angular momentum. 
We will see how this is possible when we have a bit more experi-
ence in dealing with angular momentum. 
We now consider a simple experiment, Fig. 8.7. We need two 
wheels, the axle of one of them is fixed to a table and the other one 
can be carried around. The two wheels can be connected to each 
other by a kind of friction clutch where one wheel takes the other 
along with it. 

At first the two wheels are separate. One of them is made to rotate, 
the other is not. The clutch discs are brought into  contact with each 
other. What happens?
The rotating wheel becomes slower and the other, which was not ro-
tating before, starts to rotate. After the clutch discs have slipped 
relative to each other for a while, the wheels reach the same angular 
velocity.  
That was the observation. What is the explanation? What happened 
with angular momentum during this process?
The angular momentum stored in the wheel that was turning at the 
beginning, was reduced. The angular momentum of the wheel that 
was not turning at the beginning, increased. Angular momentum 
must have been gone from one to the other. 

The angular momentum that was stored in only one wheel at the 
beginning, distributed evenly between the two wheels.

Again, we consider a single wheel fixed to  an axle. The axle has 
good ball bearings. The wheel is set in rotational motion, it is 
charged with angular momentum. Now one grasps the rotating axle 
and ‘brakes’ the motion, Fig. 8.8. After a while, the wheel comes to 
rest. Where did the angular momentum go? 

This is very similar to  a situation you are already familiar with when 
an automobile moving straight along, brakes. The momentum of the 
car flows into the ground in exactly the same way that the angular 
momentum flows into the ground.
The same would have happened if we had not stopped the wheel 
deliberately. The angular momentum would have flowed through the 
ball bearings to the ground, but more slowly. 
You see what wheel bearings are good for: They should hold an axle 
without allowing angular momentum to flow into the ground. 

We go back now to the experiment with the two wheels, Fig.8.7. We 
set the wheel attached to the table in rotational motion. We then also 
set the movable wheel in rotational motion, but in the opposite direc-
tion. We set the number of rotations per second equal for both 
wheels.
Again we bring the two wheels into contact by clutch discs. How 
does the final state look this time? Both wheels stand still. The ex-
planation? There was angular momentum before, but where is it 
now?
At the beginning, each wheel had a quantity of angular momentum 
not equal to zero. If the quantity of angular momentum of one wheel 
is given the opposite sign of the other, then the total amount of an-
gular momentum at the beginning was already zero. We can con-
clude from the experiment that: 

We can arbitrarily choose which value we wish to be positive and 
which is said to  be negative. How do we reach such a decision, 
though? A practical possibility would be the right-hand-rule, Fig. 8.9:

Exercise

Find the rules written in bold for linear motion in section 3.2 of this 
book that correspond to the rules written in bold in the section we 
have just completed. Put them into a table to compare them.

Angular momentum can go from one body to another.

The greater the angular velocity, the more angular momentum 
is contained in a body. 

One grasps the rotational axis with the right hand so that the 
bent fingers point in the direction of the rotation. If the thumb 
then points in the positive x-direction, the angular momentum is 
positive. If it points in the negative x-direction, the angular mo-
mentum is negative.

Fig. 8.1
Point B at the edge of the wheel 
moves faster than point A.

Fig. 8.2
The angular velocity is the angle 
covered by the radius r divided by 
the time span.

Fig. 8.3
The rotating wheel has a certain 
amount of angular momentum.

Fig. 8.4
(a) The wheel has angular mo-
mentum. (b) The wheel has linear 
momentum.

a

b

Fig. 8.5
The wheels rotate at different ve-
locities. Which one has more an-
gular momentum?

Fig. 8.6
The wheels have the same form 
but different weights. Which one 
has more angular momentum?

The greater the mass of a body, the more angular momentum it 
contains.

Fig. 8.7
As soon as the clutch discs touch, 
the angular momentum begins to 
flow from the wheel on the right to 
the one on the left. 

Angular momentum can be distributed over several bodies.

Fig. 8.8
The angular momentum flows into 
the ground.

If a wheel has bad bearings so that it comes to rest on its own, 
the angular momentum is flowing out of it and into the ground.

Angular momentum can have positive and negative values.

Fig. 8.9
The right-hand rule



8.2 Angular momentum pumps
Angular momentum flows out of a rotating wheel by itself. It flows 
over the bearings (which are never perfect) and into the ground. In 
order to put angular momentum into the wheel, effort is needed. The 
wheel will not start turning by itself.
A wheel can be charged with angular momentum by hand turning it 
with a crank. Another possibility would be to use a motor, Fig. 8.10.  

In both cases, something is used that forces the wheel to be 
charged with angular momentum: an angular momentum pump. In 
the first case, the person works as an angular momentum pump, in 
the second case it is the motor.
Where does the angular momentum pump get its angular momen-
tum? It is the same as with linear momentum: It can be gotten from 
the Earth. An experiment shows this clearly.
We set the x-axis vertically upwards. We need a revolving chair and 
a large wheel with good bearings that can be comfortably held by its 
axis.  The person doing the experiment stands next to the revolving 
chair, holds the wheel so that the axis is vertical and sets it in mo-
tion. Then he sits on the chair, Fig. 8.11, and slows the wheel down 
until it stops rotating. One sees that in the process, the chair with 
him on it begins to rotate. The explanation: During the process of 
braking, angular momentum flows out of the wheel and into the per-
son and the revolving chair. It flows no further than this. It could not 
flow into  the ground because the chair is insulated from the ground 
by its bearings.

If the person’s feet are on the floor while he is braking the wheel, the 
angular momentum flows directly into the ground.
Now we will try a variation of this experiment. The person sits in the 
revolving chair and holds the wheel, Fig. 8.12. Chair and wheel are 
at rest. The person now sets the wheel in motion. What happens? 
When the wheel starts rotating, the chair with the person on it begins 
turning as well. However, it rotates in the opposite direction of the 
wheel.  

Obviously the person pumped angular momentum out of the chair 
and out of himself and into the wheel. The person and the chair now 
have negative angular momentum.  
If the person puts his feet on the ground while charging the wheel, 
the chair will not rotate. The angular momentum must have been 
pumped directly out of the Earth and into the wheel.

Exercise

The person in Fig. 8.13 holds a rotating wheel in each hand, with the 
axes pointing upward. The wheels are identical. They have the same 
amount of angular momentum but their directions of spin are opposite 
to each other. The person brakes the wheels simultaneously  while 
sitting on the revolving chair. What happens? What would happen 
during braking if the two wheels had rotated in the same direction be-
fore?

Fig. 8.10
8.10. (a) The person acts as a 
pump for angular momentum. (b) 
The motor acts as an angular 
momentum pump.

a b

Fig. 8.11
(a) Only the wheel has angular 
momentum. (b) Angular momen-
tum flows out of the wheel into the 
person and chair.

a b

Fig. 8.12
(a) Wheel, person, and chair with-
out angular momentum. (b) Angu-
lar momentum is pumped out of 
the person and chair into the 
wheel.

a b

Fig. 8.13
For the exercise



8.3 Flywheels
A rotating wheel contains angular momentum. It is a storage device 
for angular momentum. Some wheels have the sole purpose of stor-
ing angular momentum. These are called flywheels. 
What are flywheels be used for? Steam engines and combustion 
engines (automobile engines) do not pump angular momentum 
evenly, but intermittently. An automobile engine produces about 50 
thrusts of angular momentum per second. There are short time in-
tervals between these thrusts when it is not ‘pumping’. It has a fly-
wheel in order to override these idle times. While the engine is run-
ning, part of the angular momentum goes into the flywheel. It comes 
out again during the pauses. In this way, the engine shaft creates a 
more or less constant current of angular momentum.     
How can the maximum amount of angular momentum be put into  a 
flywheel? We have already seen that the faster a body rotates, and 
the heavier it is, the more angular momentum it contains. Therefore, 
a flywheel must rotate fast and have a large mass. 
We will consider a simple and somewhat crude way of comparing 
amounts of angular momentum. The body we wish to investigate sits 
upon an axis with good bearings, Fig. 8.14. We take the axis be-
tween our thumb and forefinger and brake as strongly as we can. It 
takes a certain interval of time for the body to come to  a stop. The 
more angular momentum it has, the longer it takes for all of the an-
gular momentum to flow out. 

We will now compare two rotating bodies in each of the following 
cases.
1. The bodies are built identically. One rotates quickly and one 
slowly. Of course it takes longer to  bring the quickly rotating one to a 
stop than it does the other one because it contains more angular 
momentum.
2. The bodies rotate at the same angular velocity but have different 
masses. It takes longer to brake the heavier one than it does to 
brake the lighter one because the heavier one has more angular 
momentum. 
3. We now compare two bodies with the same mass and the same 
angular velocity. The only difference is that a part of the mass of one 
body is further out than the other’s, Fig. 8.15. The result is notice-
able: It takes longer to slow down the one whose mass is further out. 
It contains more angular momentum than the other one.  

We have found a new relationship:

We have discovered a rule that must always be taken into account 
when constructing a flywheel: The mass must be as far out as pos-
sible. A flywheel with a large storage capacity would look like this: A 
large and heavy ring with thin spokes attached to its hub, Fig. 8.16.

Exercises

1. Wheels can have different functions. Storing angular momentum is 
just one of these. What else are wheels used for? Name several dif-
ferent uses for them.
2. Name some examples of uses for flywheels.
3. It is not possible to store an unlimited amount of angular momen-
tum in a flywheel just by making it rotate faster and faster. Why not?

The further out the mass of a body is, the more angular 
momentum it contains. 

Fig. 8.14
 The longer it takes for the rotating 
body to come to rest, the more 
angular momentum it contains.

Fig. 8.15
 The body whose mass is further 
out, contains more angular mo-
mentum. 

Fig. 8.16
Flywheel. The spokes hold a 
heavy ring. 



8.4 Angular momentum conductors
Fig. 8.17 shows how a flywheel is charged with angular momentum. 
The angular momentum is drawn from the ground by the motor. It 
then flows over the drive shaft and into  the flywheel. We see that 
drive shafts serve to transport angular momentum. They are angular 
momentum conductors. 

What is the property of the drive shaft that enables it to conduct an-
gular momentum? What material must it be made of? The only re-
quirement is that it be a solid material. Any kind of solid bar can be 
used as an angular momentum conductor.  

We will now look at a couple of other devices that have to do with 
transporting angular momentum. 
A bearing serves to hold an drive shaft in place so that no angular 
momentum flows into the ground. 

Fig. 8.18 shows a clutch. The connection between the motor and the 
flywheel can be opened or closed by a lever. 

Every automobile has a clutch. It can be found between the motor 
and the gearbox, Fig. 8.19. When the clutch pedal is pressed on (far 
left in a car) it takes the car out of gear and the connection between 
the motor and the gearbox is interrupted. 

One needs to declutch before changing gears. If this is not done, the 
strong angular momentum current from the motor to the tires will 
damage the gearing mechanism.  
We allow angular momentum to flow through a drive shaft to a fly-
wheel. Does it make any difference to the drive shaft whether or not 
an angular momentum current is flowing? Does the drive shaft “feel” 
the angular momentum current? Does it matter if it flows right to left 
or left to right?
If it is a thick shaft, you cannot tell by looking at it. Therefore, we will 
use a bendable, elastic object for this, possibly a plastic ruler, Fig. 
8.20a. How does the ruler react when an angular momentum current 
flows through it? It twists because it is under a special kind of stress. 
We call this torsion stress. Even a solid object where no twisting can 
be seen when angular momentum is flowing through it, is under tor-
sion stress. 

The direction of twist depends upon the direction of the flow of angu-
lar momentum. In Fig. 8.20a, the wheel is charged with positive an-
gular momentum. This means that the angular momentum in the 
ruler is flowing from left to right. 
The wheel in Fig. 8.20b also has positive angular momentum flowing 
into it. In this case it is coming from the right and is flowing to the 
left. What is the difference between the two rulers?
The edges of both rulers make a spiral. As you might already know, 
there are two types of spirals: right spirals and left spirals, Fig. 8.21. 
A right spiral is the kind that looks like a corkscrew, or a normal 
screw thread. A left spiral makes a so-called left-handed thread, or a 
mirror image of a corkscrew.

Now, back to our angular momentum currents. In Fig. 8.20a, angular 
momentum flows from left to right. The ruler is twisted like left-
handed thread. In Fig. 8.20b, the angular momentum flows from 
right to left. The ruler is twisted like a right-handed thread.

Exercises

1. Design an experiment to show whether or not water conducts an-
gular momentum.
2. Design an experiment to prove that magnetic fields conduct angu-
lar momentum. 
3. Air conducts almost no angular momentum. Describe an experi-
ment or name a device that shows that air does conduct angular mo-
mentum a little bit.
4. Drive shafts are angular momentum conductors. A car has a num-
ber of drive shafts. They have different names for each function. 
Name some of these. What purpose do they serve?
5. Why are some drive shafts thicker and some thinner?

Bearings serve as angular momentum insulators.

An angular momentum conductor can be interrupted by using a 
clutch. 

Angular momentum to the right: 
! !      conductor is twisted like a left-handed thread;
Angular momentum to the left: 
! !      conductor is twisted like a right-handed thread.

Solid materials conduct angular momentum.

Fig. 8.17
The angular momentum flows 
through the drive shaft to the fly-
wheel.

Fig. 8.18
The connection between motor 
and flywheel can be interrupted by 
the clutch. 

Fig. 8.19
Part of the propulsion system of 
an automobile.

Fig. 8.20
(a) Angular momentum flows from 
left to right. (b) Angular momen-
tum flows from right to left.

a

b

Fig. 8.21
(a) Spiral to the right. (b) Spiral to 
the left. (c) Corkscrew and mirror 
image.

cba



8.5 Angular momentum circuits
Fig. 8.22 shows how a coffee grinder is constructed. A real coffee 
grinder is a little more compact, but essentially, it looks like the one 
in the figure. 

The grinder is powered by an electric motor. The motor pumps an-
gular momentum through an axle to the grinder. Does the angular 
momentum increase in the grinder? No, because it would need to 
rotate faster and faster which it does not do. 
Where does the angular momentum go? It must flow out of the 
grinder. This is no surprise. After all, there is a lot of friction between 
the rotating inner part of the grinder and the unmoving outer part of 
it. Friction is like a very bad bearing, meaning one that lets angular 
momentum flow off easily. 
This means we have a closed angular momentum circuit: The motor 
pumps angular momentum out of the casing of the device, through 
the shaft and to the grinder. From there it goes to the casing of the 
grinder. It flows from there back to the motor.
Of course the motor as well as the grinder must be well mounted to 
the casing.
The situation is very similar to the turbine and generator in a power 
plant, Fig. 8.23. 

Fig. 8.24a shows how someone drills a hole in a board. Angular 
momentum flows out of the Earth, through the man, over the drill 
and into the board. From there it flows over the vise and back into 
the ground.

Fig. 8.24b shows what happens when the angular momentum circuit 
is not closed. The board was taken out of the vise. The angular mo-
mentum cannot flow off anymore. The motor runs but it doesn’t 
pump anymore. The board rotates but it doesn’t get faster; it does 
not get any new angular momentum.

Exercises

1. What path does the angular momentum take in an electric fan?
2. Someone sharpens a pencil. What path does the angular momen-
tum take?

Fig. 8.22
Coffee grinder. The angular mo-
mentum flows in a closed circuit.

Fig. 8.23
Turbine and generator in a power 
plant. The angular momentum 
flows in a closed circuit.

Fig. 8.24
(a) The angular momentum cur-
rent circuit is closed. (b) The an-
gular momentum current circuit is 
interrupted (open).

a b



8.6 Angular momentum as an energy carrier
We will now consider the coffee grinder again, but will take a new 
viewpoint: We will perform an energy balance. The motor receives 
energy and gives it to the grinder. What are the energy carriers? 
Electricity is the carrier by which the energy reaches the motor.  
It is now clear how it continues. In addition to energy, angular mo-
mentum flows between the motor and the grinder. In this case, an-
gular momentum must be the energy carrier, Fig. 8.25. 

In other words: In an electric motor, the energy is transferred from 
the carrier electricity to the carrier angular momentum. Energy trav-
els from the motor to the grinder along with angular momentum. 
Within the grinder, the energy leaves the angular momentum and 
the angular momentum travels back to the motor via the casing. 
Fig. 8.26 shows the flow diagram of a hydroelectric plant.  

We will now apply the balance of angular momentum and energy to 
a flywheel. The flywheel in Fig. 8.27 is charged with angular momen-
tum. This means that the motor pumps angular momentum out of 
the ground, over the axle and into the flywheel.

By now we have realized that not only angular momentum but also 
energy flows through a rotating axle. Where does this energy go? 
Because the flywheel has no  outlet for the energy, the energy must 
also accumulate in it. The flywheel stores angular momentum and 
energy simultaneously. 
A rotating flywheel, meaning one that has been charged with angular 
momentum and energy, can be used to drive a dynamo, for exam-
ple, Fig. 8.28. 

Of course you have seen toy cars with flywheel drives. They just 
need to be pushed strongly once across the floor. In the process, the 
flywheels get charged with angular momentum and energy. The cars 
can then travel a while on their own using the energy in the flywheel.

Exercises

1. Sketch the flow diagrams of a water turbine, a windmill, a water 
pump and the blades of a ventilator.
2. Name some energy sources that give up energy with the carrier 
angular momentum. How do you recognize them?
3. Name some energy recipients that receive energy with the carrier 
angular momentum.
4. How do you recognize devices which receive energy from a person 
by the carrier angular momentum? 

Angular momentum is an energy carrier.

Fig. 8.25
Energy gets with the carrier angu-
lar momentum to the grinder.

Fig. 8.26
Flow diagram of a 
hydroelectric power 
plant.

water
turbine

ENERGY

water

ENERGY

angular
momentum

generator ENERGY

electricity

Fig. 8.27
A flywheel is being 
charged with en-
ergy and angular 
momentum.

ENERGY

angular
momentum

ENERGY

electricity

fly wheel
electric 
motor

Fig. 8.28
A flywheel is driving 
a dynamo.

dynamo
ENERGY ENERGY

angular
momentum

electricity

fly wheel



9
Compressive and tensile stress



9.1!The relation between pressure and 
momentum current

A block K is clamped between two walls by a spring F, Fig. 9.1. A 
momentum current flows through this setup. Whenever a momen-
tum current flows, the conductor is under mechanical stress: Either 
compressive or tensile stress.  You remember our rule that momen-
tum flow to the right means compression and momentum flow to the 
left means tension.

Let us consider the stress in our block. Because the momentum cur-
rent is distributed over the entire block, every part of it is under com-
pressive stress. Every part of it ‘feels’ the pressure, Fig. 9.2. 

In Fig. 9.3, we compare blocks K1 and K2. The two springs are to-
tally identical and the same momentum currents flow in each of 
them. Let’s assume that this current is 200 Hy/s = 200 N. Block K2 
has a larger cross sectional area than K1. The momentum current 
distributes over a larger surface here. The momentum current per 
surface area is therefore smaller. In block K1 
200
25

 Hy/s = 8 N

flow through each square centimeter of the surface area, and 
200
100

 Hy/s = 2 N

flows through each square centimeter of the cross sectional area of 
K2.

This means that any given part of the material of K1 ‘feels’ a higher 
pressure than a corresponding piece of K2.!  
We see that in order to characterize the mechanical stress at a point 
somewhere inside a body, the momentum current per surface area 
can be used. This quantity, i.e., the ratio of the momentum current to 
the surface through which it flows, is called pressure. It is the same 
quantity we have already been introduced to in a different way.
Because pressure is expressed by p, we have
p = F

A
 .

If the momentum current is given in Newtons (N) and the surface 
area in m2, the resulting unit for pressure is N/m2. This unit is called 
a Pascal, abbreviated to Pa. Therefore

Pa = N
m2

1 Pa is a very small pressure. Larger units are often used instead
1 kPa = 1000 Pa
and
1 MPa = 1 000 000 Pa
or the bar: 
1 bar = 100 000 Pa.
Now back to our blocks. The pressure, or the compressive stress, in 
block K1 is 
p1 =

F
A1

= 200 N
0.0025 m2 =  80 000 Pa = 80 kPa .

The result for block K2 is

p2 =
F
A2

= 200 N
0.01 m2 =  20 000 Pa = 20 kPa

(The areas A1 and A2 must be expressed in m2 for the resulting 
pressure unit to be Pa.)
In Fig. 9.4, a momentum current of 200 N flows in the negative di-
rection through body K. In calculating the quantity p, this is taken 
into account by putting a minus sign in front of the current value. 
Therefore
p = –200 N

0.01 m2 =  –20 000 Pa = –20 kPa

A negative stress value means tensile stress. 

Summary:

Exercises

1. A car is being towed. Fig. 9.5 shows the hook on the car being 
towed, a piece of metal wire and a piece of plastic rope knotted to it. 
A momentum current of 420 N flows into the car. Calculate the stress 
in the ropes at locations 1, 2, and 3. Watch for the algebraic sign: 
compressive or tensile stress?
2. The ropes in Fig. 9.6 have a cross section of 1.5 cm2. The crate 
has a mass of 12 kg. Calculate the tensile stress at locations 1, 2, 
and 3. 
3. You push a thumbtack into a wooden board. Estimate what the 
pressure is at the middle of the nail halfway up. What is the pressure 
at the tip of the thumbtack?
4. Estimate the compressive stress at the tip  of a nail being hit by a 
hammer.

Pressure equals momentum current per surface area. 

Fig. 9.2
The momentum current distributes over 
the entire cross section of the block.

Fig. 9.3
 The momentum currents in K1 
and K2 are the same. The mo-
mentum current per cross sec-
tional area (pressure) is greater in 
K1 than in K2.

Fig. 9.4
The block is under tensile stress. 
The pressure is negative.

Fig. 9.1
Block K is under compressive 
stress.

F

Fig. 9.5
For Exercise 1

Fig. 9.6
For Exercise 2



9.2 Stress in three directions
We wish to  put a body under both compressive and tensile stress. 
You might think that this cannot be done, that a body can only be 
under either compressive or tensile stress and that to  put a body 
under both is impossible. We will try anyway and find we are suc-
cessful.

We take the object, a sponge, for example, in both hands and press 
our fingers together. At the same time, we pull apart with our hands, 
Fig. 9.7. The interior of the sponge actually feels both compressive 
and tensile stress: compressive stress in the horizontal direction and 
tensile stress in the vertical direction. Fig. 9.8 shows a similar situa-
tion. Block K is under tensile stress in the horizontal direction and 
under compressive stress in the vertical. It is, of course, possible to 
put it under tensile stress in both directions and under compressive 
stress in both directions. The compressive and tensile stresses in 
the horizontal and vertical directions can also have different values.  

In the case of Fig. 9.9, the horizontal pressure has the value

p1 =
50 N

0.01 m2 =  5000 Pa = 5 kPa

and the vertical one is 

p2 =
300 N

0.015 m2 =  20 000 Pa = 20 kPa

Finally, it is possible to put the block under compressive or tensile 
stress in a third direction as well, Fig. 9.10. For example, this could 
be
p1 =    5000 Pa
p2 =    2000 Pa
p3 = 40 000 Pa.

You might ask whether it is possible to just continue in this way, to 
create more and more compressive stress values in more and more 
spatial directions. Why not five different compressive or tensile 
stresses in five different directions, Fig. 9.11? Because it is not pos-
sible. It is difficult to  show the proof of this so we will just have to  ac-
cept it:

As soon as you try to change the stress in a fourth direction, the 
stresses in the first three directions automatically change. 
This statement is valid for every point inside of a body. However, 
mechanical stress can change from location to location. In the case 
of the pressed sponge in Fig. 9.7, the stresses in the middle are dif-
ferent from those at the upper and lower ends of it. 
If the pressure in three mutually perpendicular directions has the 
same value, say 12 kPa, then the pressure is equal to  12 kPa in all 
other spatial directions. 
Every material has only a certain tolerance for compressive or ten-
sile stress. It is often so that a material can be put under higher 
compressive stress than under tensile stress. 
Concrete, for example, tolerates a compressive stress of about 
50 MPa, but only 1/20th of this value as tensile stress. Sometimes a 
concrete support is expected to take tensile stress at certain points. 
Fig. 9.12 shows a concrete support mounted at both ends and carry-
ing a load in the middle. This is a typical situation. The concrete on 
the upper part of the support is under horizontal compressive stress. 
The lower part is under horizontal tensile stress. Since it cannot tol-
erate the high tensile stress it is reinforced by steel. Steel tolerates 
high tensile stress. 

For the same reason, some synthetic materials are reinforced with 
carbon fibers in order to raise their tensile strength. Such materials 
are used in the manufacturing of skis, diving boards for swimming 
pools, and for gliders.
There are many materials that cannot tolerate the same stress in dif-
ferent directions. A good example of this is wood. Pine can tolerate a 
tensile stress of 10 MPa in the direction of its grain, but only 1/20th 
of that in the perpendicular direction. 

Exercises

1. Name some materials which have high tolerance for tensile stress 
but low tolerance for compressive stress.
2. Name some materials having high tolerance for compressive but 
low tolerance for tensile stress. 
3. Name some materials that tolerate strongly different compressive 
and tensile stresses in different directions. 

It is possible to fix independent compressive or tensile stress 
values in three mutually perpendicular directions.

Fig. 9.7
 The sponge’s interior is under 
tensile stress vertically and under 
compressive stress horizontally.

Fig. 9.8
 The block is under compressive 
stress vertically and, horizontally, 
under tensile stress.

Fig. 9.9
The pressures differ vertically and 
horizontally.

Fig. 9.10
Pressure can be given in three 
mutually perpendicular directions.

Fig. 9.11
No more than three pressures are 
allowed in three dimensions (in 
two dimensions, only two).

Fig. 9.12
The upper part of the support is 
under compressive stress in the 
horizontal direction; in the lower 
part, there is tensile stress.



9.3 Pressure in liquids and gases
Up to now we have only considered mechanical stress in solid ob-
jects. (A sponge is a ‘solid’ object because it is neither liquid nor 
gaseous.) Now we wish to put a liquid, e. g. water, under pressure. 
At first we will do this awkwardly and try to proceed as we did with 
the block in Fig. 9.1. We press from above in the middle of the wa-
ter, Fig. 9.13. The result is as expected: the water moves sideways.  

We then try a new approach and contain the water in such a way 
that it cannot move sideways, Fig. 9.14. If the piston has a cross 
sectional area of A = 5 cm2 and the momentum current is F = 200 N, 
a pressure of

p = F
A

= 200 N
0.0005 m2 =  400 000 Pa = 0.4 MPa

results in the horizontal direction.

The water tries to move in the direction transverse to  the direction of 
pressure, thus creating a compressive stress in this transverse di-
rection. This stress has the same value as the one in the direction of 
the piston. In every other direction, as well, the pressure has the 
same value.
The experiment shown in Fig. 9.15 shows this very clearly.

The same holds for gases because they also move sideways if they 
are not prevented from doing so.

At any location in a liquid, the pressure is the same in every di-
rection.

Fig. 9.13
Water cannot be put under pres-
sure in this manner. It gets out of 
the way sideways.

Fig. 9.14
The piston is under pressure only 
horizontally, but the water is under 
pressure in all directions.

Fig. 9.15
Water sprays in all directions be-
cause there is pressure in all di-
rections.



9.4 Density
We consider a body of uniform composition. It has a mass m and a 
volume V. The ratio of mass to volume is the density ρ:
ρ = m

V
 .

An object made of iron has a greater density than one made of 
wood, since a cubic meter of iron has a greater mass than a cubic 
meter of wood. Density is independent of the object’s size and 
shape because it is the mass divided by its volume. It depends only 
upon the material it is made up of. It is a material property. 
This is why we do not need to say that the iron object has a density 
of 7800 kg/m3. It is enough to say that iron has this density.
In order to have something concrete to think about here, we have 
spoken about solid bodies. The ratio m/V can just as well be used to 
characterize a liquid or a gas.  
There are a lot of other material characteristics that can be ex-
pressed as numerical values such as electric conductivity, thermal 
conductivity, the ability to be heated, the ability to be magnetized, 
color, absorptivity…



9.5 Hydrostatic pressure
Remember: the pressure at any given location in a liquid is the same 
in all directions. However, this does not mean that the pressure must 
be the same at every location. We will get to know a situation where 
the pressure changes from place to place.
Fig. 9.16 shows a cylindrical container filled with water. The pres-
sure of the water increases from top to bottom. We wish to measure 
the pressure at a distance h from the water’s surface.

In our minds, we make a cut S through the water. The surface area 
of the cut is A. Our first question is how strong the momentum cur-
rent through this area is. 
This momentum current comes from two different sources:
1. Because the pressure of the air above the water’s surface is pair

pair = 1 bar = 100 000 Pa,
a momentum current of 
F1 = pair · A
flows into and through the water.
2. According to our old equation
F = m · g! ! ! ! ! ! ! ! ! (1)
a momentum current flows through the gravitational field into every 
part of the water, and it flows down through the water as well (m = 
mass, g = strength of gravitational field). The entire momentum cur-
rent flowing into  the water from above flows through our cross sec-
tion. To calculate this momentum current we have to use the mass 
of the water above the cut in Equation (1):
F2 = pabove · A! ! ! ! ! ! ! ! (2)
The mass mabove can be calculated easily. To do this, we solve the 
relation
ρ = m

V
for m and put for ρ  the density of the water and for V the volume of 
that part of the water which is above the cross section:
mabove = ρ water · Vabove .
Now we have
Vabove = A · h .
Therefore,
mabove = ρ water · A · h .
Inserting this into equation (2) yields
F2 = mabove · g = ρwater · A · h · g .
The total momentum current F is comprised of both F1 and F2:
F = F1 + F2 = pair · A + ρwater · A · h · g = (pair + ρwater · h · g)· A .
We can now calculate the pressure at the height of the cross section 
by using p = F/A:
p = F

A
= (pair + ρwater· g ·h)A

A
= pair + ρwater· g ·h

The pressure at distance h from the water’s surface is therefore:
p = pair + ρwater · h · g! ! ! ! ! ! ! (3)
Since the momentum current is made up of two parts, also the pres-
sure is made up of two parts:
–!of the air’s contribution pair above the water;
–!of the contribution pS = ρwater · h · g, which has its origins in the 

weight of the water. The water below feels the weight of the water 
lying above it. This contribution pS is called the hydrostatic pres-
sure of the water.    

The calculated pressure is actually a vertical pressure. Because we 
have considered a liquid here, the same pressure must rule in the 
horizontal directions as well. 
Of course these considerations are valid for other liquids as well, not 
just for water. It is only necessary to  use the density ρ of the liquid 
being considered in place of the density of water (ρ water). In general 
we have

Let us calculate the hydrostatic pressure in water numerically. We 
set
ρ = 1000 kg/m3 und g = 10 N/kg
and obtain
pS = 1000 kg/m3 ⋅ 10 N/kg ⋅ h = 10 000 ⋅ h ⋅ N/m3

If the distance to the water’s surface is
h = 10 m,
then
pS = 100 000 N/m3 = 100 000 Pa = 1 bar.
The total pressure is
p = pair + pS = 1 bar + 1 bar = 2 bar.
At 10 m below the surface of the water, the pressure is 1 bar higher 
than at its surface. At 20 m depth, it is 2 bar higher, etc. 
Fig. 9.17 shows the pressure as a function of the depth h. The zero 
point of h is at the water’s surface.

Just as the pressure of water decreases upwardly, air pressure also 
decreases upwardly from the Earth’s surface. The pressure of the 
air around us is the hydrostatic pressure of the air. In this case 
though, the reduction in pressure with altitude is not linear. We can-
not calculate air pressure with altitude using the formula 
pS = ρ ⋅ g ⋅ h
any longer, because the density of the air decreases with altitude. 
Fig. 9.18 shows the (hydrostatic) pressure of the air as a function of 
altitude. Notice that the height axes of Fig. 9.17 and 9.18 have dif-
ferent units. 

Fig. 9.19 shows the pressure as a function of the height above and 
below the ocean’s surface. The vertical scale begins 100 m below 
the water’s surface. At this point, the pressure is 11 bar. At the sur-
face, the pressure reduces to 1 bar. This is the hydrostatic pressure 
of air at sea level. This pressure decreases as one goes on moving 
upward. However, it decreases slowly because air has a low density. 

Fig. 9.19
Pressure as a function of the altitude above and below the ocean’s surface. The zero point lies 
at the ocean’s surface.

Exercises

1. What is the hydrostatic pressure of water at the bottom of a swim-
ming pool of 4 m depth? What is the total pressure?
2. At its lowest point, the ocean is 11 000 m deep. What is the pres-
sure there? 
3.  What is the pressure at the bottom of the container in Fig. 9.20? 
The piston dividing the two liquids can be moved easily. It is so small 
and light that its influence upon the pressure at the bottom can be ig-
nored. Mercury’s density is 13,550 kg/m3.

The hydrostatic pressure in a liquid is:
pS = ρ  ⋅ g ⋅ h

Fig. 9.16 
Pressure increases from top to 
bottom.

Fig. 9.20
For exercise 3

Fig. 9.17
Pressure as a function of the 
depth of water. The zero point of 
depth lies at the water’s surface.
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Fig. 9.18
 Air pressure as a function of alti-
tude. The altitude is counted posi-
tive in the upward direction.
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9.6 More complicated containers
In order to find the formula
pS = ρwater · g · h
we considered a container with vertical walls. We might conclude 
that our formula holds only for this type of container.
Fig. 9.21a shows a container made up of two parts. The parts are 
connected by a pipe. What is the hydrostatic pressure at A and what 
is it at B? We apply our formula and find that 
at A: pS,A = ρwater · g · hA ,
at B: pS,B' = ρwater · g · hB' .

The pressure values which we have calculated, are correct. How-
ever, it must understand what kind of pressure has been calculated. 
For the moment, we will ignore the fact that air presses down with 
1 bar upon the surface of the water. 
pS,A is the hydrostatic pressure caused by the water in the upper 
container at location A. What about pS,B'? pS,B' is the hydrostatic 
pressure at B as a result of the water in the lower container. How-
ever, we must also take into  account that the water in the container 
above presses upon the water in the container below through the 
thin pipe connecting them. This means that the pressure in B is not 
only determined by the water in the lower container. Because of the 
connecting pipe, it is influenced by the water in the upper one as 
well. 
Instead we can say that the pressure at B is the hydrostatic pressure 
of all of the water, that in the higher container plus that in the lower 
container:
pS,B = pS,A + pS,B' = ρwater · g · (hA + hB') = ρwater · g · hB .
The pressure at B is the same we would find if we had a unique con-
tainer of height hB, Fig. 9.21b. In other words: The height h which we 
must use in the equation 
pS = ρwater · g · h
is the vertical distance to the water’s surface. It does not matter if 
the surface lies above the considered point or if it is displaced from 
it, and it does not matter how large the surface is. 
At any point in the water at a given depth below the surface, the 
pressure is the same. This is shown in Fig. 9.22.  

The fact that the pressure in a liquid is the same everywhere at a 
certain depth holds only if there are no currents in it. If the liquid (or 
gas) flows, the pressure is no longer constant because a current is 
produced by a pressure difference. 
We conclude:

This principle agrees with something everyone has seen: In con-
nected containers, the water levels are the same, Fig. 9.23. 

The hydrostatic pressure of both water surfaces is 0 Pa, meaning 
the values are the same. Our rule tells us that the surfaces must be 
lying at one and the same level. 

Exercises

1. What happens if the valve in Fig. 9.24 is opened? Why?
2. In Fig. 9.25, there is water in the container on the left and alcohol 
on the right. They border between the liquids lies in the horizontal 
pipe. The level of the alcohol in the container on the right is higher 
than the water level in the container on the left. Why? What is the 
level difference? (ρwater = 790 kg/m3)

In liquids and gases at rest, the pressure is the same at every 
point on a horizontal level.

Fig. 9.21
The pressure at point B in the 
container on the left is the same at 
that at point B in the one on the 
right.

a b

Fig. 9.22
In a continuous amount of fluid, 
the pressure is the same at all 
points on a horizontal plane.

Fig. 9.23
 In communicating containers, the 
surfaces of the liquid have the 
same heights.

Fig. 9.24
For exercise 1

Fig. 9.25
For exercise 2



9.7 Buoyant force
A ball is pressed down into water. One feels that the ball “wants” to 
come up. Why is this so? The water is pressing upon all sides of the 
ball. However, water pressure increases with depth, so the pressure 
at the bottom of the ball is stronger than at its top. The result is the 
ball being pushed upward, Fig. 9.26. 

Not only very light objects (like a ball) experience a buoyant force, 
but every other body put into a liquid does as well.
A piece of iron is hung from a scale and then immersed in water, Fig. 
9.27. The reading of the scale decreases. The water pushes the 
piece of iron upward, and it seems to become lighter. 

A momentum current of
F = miron · g
flows through the gravitational field into the piece of iron. In Fig. 
9.27a, the momentum arriving in the body leaves again through the 
string. In Fig. 9.27b, only a part of this momentum current flows off 
through the string. The rest of it flows into the water. The strength of 
the momentum current flowing through the water is called buoyant 
force. We will calculate it.
In order to do this, we first consider the water without any object 
immersed in it, but we imagine the space the object would occupy in 
it. (You could imagine this part of the water being separated from the 
rest by a thin plastic bag.) This ‘body of water’ is suspended, it does 
not float to the surface nor does it sink to the bottom. This means 
that it does not receive or lose any net momentum. 
The total momentum current of 
Fin = mwater · g
flowing in (the object receives it through the gravitational field) flows 
off again through its surface into the surrounding water and from 
there, into the Earth. Therefore, the momentum current Fout flowing 
away, must be equal to
Fout = mwater · g
We now replace our phantom body made of water with the original 
one of iron. A momentum current of
Fin = miron · g
flows into the iron body.
The same current flows away from it as before because the 
pressure distribution on the surface of the iron body is the same as 
on the surface of the phantom water body. Therefore, a current of
Fout = mwater · g
flows away. This time the net current is not zero, but 
Fnet = Fin – Fout = (miron – mwater) · g!! ! ! ! (1)
The inflowing momentum current is reduced by mwater · g as a result 
of the immersion. This is the buoyancy force FA we are looking for: 
FA = mwater · g .
We remember what mwater means: It is the mass of our phantom 
body made of water, or in other words, the mass of the water 
displaced by the iron body. 
These considerations are also valid when our immersed body is not 
made of iron and our liquid is not water. In Equation (1), we use mK 
instead of miron for the mass of the body, and mliq instead of mwater for 
the liquid. We obtain:
Fnet = (mK – mliq) · g ! ! ! ! ! ! ! (2)
The buoyant force is the part subtracted from mK ⋅ g, so that:
FA = mliq · g .
We can also express it this way:

We will change Equation (2) to  a more convenient form. We replace 
the two masses mK and mliq with the help of the equation
m = ρ · V ,
which results from
ρ = m/V .
Therefore
mK = ρK · V ,! ! ! ! ! ! ! ! (3)
and
mliq = ρliq · V .! ! ! ! ! ! ! ! (4)
The volume V of the body is the same as that of the displaced liquid.
Introducing Equations (3) and (4) into (2) yields:
Fnet = (ρK – ρliq)· V · g .
This equation tells us that the net momentum current is positive 
when ρK is greater than ρliq. It is negative when ρK is smaller than 
ρliq . A positive net momentum current into a body means that the 
body begins to  move downward: It sinks. A negative net momentum 
current means that it begins moving in the negative direction, 
meaning upward: It rises, it floats. Only when ρK = ρliq,  is Fnet 0, and 
the body remains suspended.

Exercises

1. Calculate the buoyant force FA of a piece of iron having a volume 
of  5 cm3, that is totally  submerged in mercury. Does the iron float or 
sink? By how many grams does the mass of the piece of iron seem to 
be reduced?  (Density  of iron: 7900 kg/m3, density of mercury: 
13,550 g/m3.) 
2. A granite boulder with a mass of 150 tons lies at the bottom of the 
ocean (Density of granite: 2600 kg/m3). What is the buoyant force? 
How much smaller does its mass appear to be than it would be on dry 
land? 
3. A stone with a density of  2400 kg/m3 lies at the bottom of a 
swimming pool. In the water, it “weighs” 1.4 kg. What is its real mass?
4. The density  of wood is less than that of water. This is why a piece 
of wood submerged in water rises to the top. When a piece of the 
wood protrudes out of the water, it stops rising. Why?
5. A ship weighs 1500 tons. What is the mass of the displaced water?
6. First, a ship sails down a river and then out to sea. The density of 
seawater is somewhat greater than the density  of the river water. 
What consequences does this have for the ship?

The apparent mass is smaller than the actual mass by the 
mass of the liquid displaced.

ρK > ρliq : The body sinks.
ρK < ρliq : The body floats.
ρK = ρliq : The body is suspended.

Fig. 9.26
The pressure is higher at the 
underside of the ball than on it’s 
upper side.

Fig. 9.27
A piece of iron hanging from a 
scale is immersed in water. It 
appears to be lighter.a b



9.8 Tensile stress in gases and liquids
When you drink soda through a drinking straw, you have the feeling 
of pulling on the soda, Fig. 9.28. How else could it rise through the 
straw? When you start to drink, there is still air in the straw. You suck 
and the soda rises. It looks like you could also pull on the air. 

We will see that this is an erroneous conclusion. You cannot pull on 
either air or on the soda. More generally:

Why do we draw the wrong conclusion here? How does the soda 
get into our mouths if not by pulling?
The air in the cylinder in Fig. 9.29a is under normal pressure: p = 1 
bar. The air outside, though, is under pressure of 1 bar as well. Al-
though the air inside presses against the piston, we do not need to 
hold it in place because the air pressure from outside presses ex-
actly as strongly and balances out the pressure from inside. 

We now pull the piston a little to the right and hold it there, Fig. 
9.29b. The pressure inside decreases, but of course, the pressure 
outside does not. We have the impression of the piston being pulled 
left and we need to hold onto it. Actually, it is only being pressed to 
the left by the air outside. In the interior, the pressure remains posi-
tive, but it is smaller than before. There is no tensile stress. 
You could think that it might be possible to produce a tensile stress 
inside if you pull far enough, if the piston is moved far enough to the 
right, Fig. 9.30. The experiment shows that this doesn’t work. The 
pressure decreases, but more and more slowly. It never reaches the 
value of 0 bar. It always remains positive. 

Instead of pulling a piston, a vacuum pump could be attached to the 
cylinder, Fig. 9.31. The pressure decreases as the pump runs and 
only after all the air has been pumped out does the pressure reach 
the value 0 bar. Pumping more does not produce a negative pres-
sure. No wonder: When all the air is gone, nothing more is there to 
be under tensile stress.

Something else happens when one tries to pull on a liquid, water for 
example, Fig. 9.32. The piston cannot be pulled outward as easily 
as it would be with a gas. Again, the reason is not a tensile stress 
inside, but the outside air pressure upon the piston. If one pulls hard 
enough and overcomes the outside air pressure, the piston will 
move indeed. However, it can be seen that the liquid does not ex-
pand like the air does in Fig. 9.29. Rather, a bubble forms, a space 
where there is no liquid water. This cannot be an air bubble. Where 
would the air come from? Actually, this space is almost totally empty. 
A close investigation shows that it is not quite empty: There is a 
slight amount of water vapor (water in the form of gas) in it. 

Now back to our soda. By sucking on a drinking straw, one removes 
air from it. The pressure in the air in the straw decreases. The air 
pressure outside presses upon the soda and it rises in the straw. 
The soda is not pulled up the straw, it is pushed up.  
A suction pump functions similarly to this, Fig. 9.33. The pump ap-
pears to  pull the water upward. Actually, it is only lowering the pres-
sure at the top so that the outside air pressure can push the water 
upward. 

Exercises

1. A  glass is pressed under water with its opening downward. Why 
doesn’t it fill up with water?
2. A glass is held under water so that it fills with water. It is then pulled 
out of the water with the opening pointing downward, Fig. 9.34. Why 
does the water stay in the glass?
3. In Fig. 9.35, what is the pressure of the water at A? What is the 
pressure at B? What happens if the faucet is opened?

Gases and liquids cannot be put under tensile stress.

Fig. 9.28
The soda in the drinking straw is 
pushed upward, not drawn up-
ward.

Fig. 9.29
Air presses from inside and from 
outside on the piston. (a) The 
pressure is the same inside and 
outside. (b) The pressure outside 
is greater than inside.

a

b

Fig. 9.30
No matter how far the piston is 
pulled outward, the pressure in 
the cylinder stays positive.

Fig. 9.31
A vacuum pump cannot create 
negative pressure either.

Fig. 9.32
There is water in the cylinder. 
When the piston is pulled, a bub-
ble containing water vapor forms.

water 
vapor

Fig. 9.33
The pump reduces the positive 
pressure at its inlet. The air over 
the water’s surface pushes the 
water upward through the pipe.

Fig. 9.34
For exercise 2

Fig. 9.35
For exercise 3



9.9 Hydraulic transport of energy
We are now able to understand why hydraulic machines are so 
practical. 
We will first investigate the simplest hydraulic transport of energy 
imaginable, Fig. 9.36. This is a pipe with a piston at each end and a 
liquid between them. You can think of water as the liquid, but oil is 
normally used. The advantages of oil are obvious: It freezes at much 
lower temperatures than water, and it lubricates the pistons. 

If the piston on the left is pushed to the right, the piston on the right 
moves as well. If the right-hand piston is able to  move freely, almost 
no energy is transported. The small amount of energy put into the 
left side is necessary to overcome friction. 
If the piston on the right is driving something, moving the one on the 
left becomes more difficult. Energy is put in on the left and it comes 
out again on the right. 
We wish to calculate the strength P of the energy current from left to 
right. This means we will express it by easily measured quantities. 
We wish to find the energy current flowing through the imagined 
cross-section S. How many Joules are flowing through this area per 
second?
The liquid moving in the pipe is equivalent to a rod, and the energy 
current for a rod is
P = v ⋅ F
Here, v is the velocity with which the rod moves, and F is the mo-
mentum current in it. 
This formula is also valid for hydraulic liquids. The velocity at which 
the liquid moves is v. F can be expressed by the pressure p and the 
cross sectional area A of the pipe: 
F = A ⋅  p
The energy current is then
P = v ⋅ A ⋅ p
This formula is very useful because it can be used to calculate the 
energy current at every location in a pipe of any form and diameter. 
We consider a pipe that is somewhat more complicated: A pipe 
whose cross sectional area increases from A1 to  A2, Fig. 9.37. We 
also compare the energy currents at locations 1 and 2. At 2, the liq-
uid flows more slowly than at 1. This means that v2 is smaller than 
v1. It is not difficult to find the relation between v1 and v2. 

If the piston on the left is moved a distance Δx1, a liquid volume of 
ΔV1  =  A1 ⋅  Δx1

is pushed to the right. The piston on the right must now make space 
for the same amount of liquid that the piston on the left displaced. 
This means that  
ΔV1  = ΔV2  
or
A1 ⋅ Δx1 = A2 ⋅  Δx2. ! ! ! ! ! ! ! (1)
Now, if the left hand piston is moved at a constant rate and the time 
needed to push it a distance Δx1 is Δt, then the velocity of the left 
hand piston is v1 
v1 =

Δx1
Δt

                                         !! ! ! ! (2)

and the velocity v2  of the right hand piston is
v 2 =

Δx2
Δt

                                                  !! ! ! (3)

We divide both sides of equation (1) by Δt and obtain      
Δx1
Δt

·A1 =
Δx2
Δt

·A2  .

Using Equations (2) and (3), we get
v1 ⋅  A1 = v2 ⋅  A2 .
We now multiply both sides of this equation by the pressure p of the 
liquid which is the same on the right and the left:
p ⋅  v1 ⋅  A1 = p ⋅  v2 ⋅  A2 ! ! ! ! ! ! ! (4)
We saw before that the energy current is
P = v ⋅ A ⋅ p!! ! ! ! ! ! ! ! (5)
In Equation (4), the strength of the energy current on the left is the 
one at section 1, and on the right, it is the one at section 2. The 
equation tells us that both are equal: The energy put in on the left 
comes out on the right. This surely doesn’t surprise you. 
The energy current is the same everywhere in the pipe. The place 
where the cross sectional area is smaller, the fluid velocity is greater 
and where the cross sectional area is larger, the fluid velocity is 
smaller. The energy current, though, is the same everywhere. 
Equation (5) shows us how to transport a lot of energy (per second). 
We need a high pressure, a large cross sectional area for the pipe, 
and a high velocity. All of these factors have their limitations, though. 
If the pressure is too high, the pipe or hose will break. A large cross 
sectional area can be impractical because the hose would be too 
clumsy to handle. High velocity has the disadvantage of large en-
ergy losses by friction.  
For these reasons, one seeks a compromise where the disadvan-
tages are acceptable. We consider a typical example: The energy 
transfer from the pump to the arm of a power shovel. The pressure 
in the power shovel’s hoses is about 150 bar = 15 MPa, the cross 
sectional area of the hose is 6 cm2 = 0.0006 m2 and the flow velocity 
is 0.5 m/s. The resulting energy current is
P = v ⋅ A ⋅ p = 0.5 m/s ⋅ 0.0006 m2 ⋅ 15 MPa = 4500 W.
It is possible to transport energy easily by using hydraulic equip-
ment. Such equipment also has other advantages. We will look at 
one of them.
The momentum current in piston 1 in Fig. 9.38 is
F1 = A1 ⋅  p, 
and in piston 2, it is
F2 = A2 ⋅  p.

Combining the equations, we obtain
F1
F2

= A1
A2

By pushing on the left hand piston, a momentum current is produced 
in the right hand piston which is stronger by a factor of A2/A1. This 
effect can be used to lift heavy charges. The car in Fig. 9.39 is lifted 
by hand but with the help of hydraulics. Don’t forget, though, energy 
is not gained as a result of this. Lifting the car is easier with hydrau-
lics than it would be if you tried it the direct way, Fig. 9.40, but it 
takes longer. 

Exercises

1. There is a pressure of 150 bar in the hose of a power excavator’s 
hydraulic system. The cross section of the hose is 5 cm2, and the ve-
locity of the hydraulic oil is 20 cm/s. How much energy is being trans-
ported? How strong is the momentum current in the hose?
2. At the entrance to a water turbine there is a pressure of 80 bar. The 
diameter of the pipe is 1 m. The turbine receives 12 MJ of energy per 
second. How fast is the water flowing in the pipe?

Fig. 9.36
Energy transport with a flowing 
liquid

Fig. 9.37
Energy transport in a pipe with an 
increasingly large cross sectional 
area.

Fig. 9.38
A stronger momentum current 
flows in the piston on the right 
than in the one on the left.

Fig. 9.40
It is difficult to lift a car by hand.

Fig. 9.39
It is easy to lift a car by hand.



10
Entropy and entropy currents

The second main area of physics that we will now turn to is thermo-
dynamics – the science of heat. The name already gives away what 
the subject is all about: the phenomena having to do with an object 
being hotter or colder. Similarly to  how we accounted for momentum 
in mechanics, we will learn to  count quantities of heat in thermody-
namics, i.e., we will make use of a law of balance for heat. 
Thermodynamics is important for understanding natural phenomena 
as well as technical devices and machines.  
Life on Earth is possible only because of the huge current of heat 
coming from the Sun. Climate and weather on Earth are determined 
essentially by thermal processes. (By ‘thermal’ we mean having to 
do with thermodynamics.) 
Countless machines function according to the principles of thermo-
dynamics. Some of these are automobile engines, steam turbines in 
power plants, and heat pumps in refrigerators.
Heat loss and the sources of heat in heating systems of houses can 
be quantitatively described by using thermodynamics.
Heat also plays an important role in chemical reactions.
Thermodynamics deals with different phenomena than mechanics 
does. For this reason, thermodynamics uses different physical quan-
tities. However, this does not mean that we can forget about me-
chanics completely when working with thermodynamics. For one, 
there are quantities that are common to both subjects such as en-
ergy and energy currents. There are also principles, relationships 
and rules in mechanics that have corresponding ones in thermody-
namics. It is not necessary to  begin learning all over again in order 
to understand thermal physics.



10.1 Entropy and temperature
As always, when we begin with a new field of physics, we must get 
to know our most important tools: the physical quantities we will be 
working with. In mechanics we began with two quantities to describe 
the state of motion of a body. These were velocity and momentum. 
Similarly, we can use two quantities to  describe the thermal state of 
a body.  
You already know one of these quantities, temperature. It is abbre-
viated by the Greek letter called Theta and looks like this: ϑ. Tem-
perature is measured in the unit °C (degrees Celsius). The sentence 
“The temperature is 18 degrees Celsius” can be shortened to 
ϑ = 18°C.
The second quantity is also known to  you, but by another name than 
the one used in physics. This is what in everyday language we call 
‘quantity of heat’ or just ‘heat’. We will make a simple experiment to 
show the difference between quantity of heat and temperature, Fig. 
10.1. Glass A contains 1 l of water at 80°C. We pour half of this wa-
ter into another empty glass B. What happens with the temperature 
and the amount of heat? The temperature of the water in glasses A 
and B is the same as it was in glass A before it was poured. How-
ever, the amount of heat was distributed over the water in both 
glasses after pouring. If there were 10 units of heat in glass A at the 
beginning, afterwards there are 5 units in A and 5 units in B.

We see that temperature describes the state of being warm (or cold) 
of a body, independent of its size. The quantity of heat is what is 
contained in the body.
What we call “quantity of heat” in everyday language, has a special 
name in physics. It is called entropy. The symbol used for entropy is 
S and its unit is the Carnot, abbreviated to Ct. If a body contains 20 
Carnot of entropy, it can be written like this:
S = 20 Ct.
This unit is named after Sadi Carnot (1796 – 1832), a physicist who 
made important contributions toward the discovery of entropy.
In the following, when we are investigating the properties of entropy, 
just remember that it deals with what we call heat in everyday lan-
guage. 
We compare the two water glasses in Fig. 10.2. Both contain the 
same amount of water. The water in the glass on the left is hot, hav-
ing a temperature of 70°C. The water in the glass on the right is 
cool. It has a temperature of 10°C. Which glass contains more en-
tropy? (In which glass is more heat?) Of course, it is the one on the 
left.  

Now we will compare the water glasses in Fig. 10.3. In this case, the 
temperatures are the same, but the mass of the water is different in 
each glass. Which glass contains more entropy? Again, it is the one 
on the left. 

Which of the glasses in Fig. 10.4 contains more entropy cannot be 
determined yet. 

We will consider an experiment like the one in Fig. 10.1. In glass A, 
there is 1 l of water with 4000 Ct of entropy. We pour 1/4 of the wa-
ter, or 250 ml, into the other empty glass B. How much entropy is in 
A after pouring? How much is in B? Entropy is distributed according 
to the ratio of the amounts of water. This means that glass B re-
ceived 1000 Ct, and 3000 Ct stayed in A.  
Exactly what is 1 Carnot? Is this a lot or a little entropy? 1 Carnot is 
a very handy unit: 1 cm3 of water at 25˚C contains 3.88 Ct. A general 
rule:

Exercises

1. The air in a room A having a volume of 75 m3 has a temperature of 
25°C.  The air temperature in another room B having a volume of 
60 m3 is 18°C. Which room contains more entropy?
2. There is 3900 Ct of entropy  contained in the coffee in a full coffee 
pot. Coffee is poured into three cups. Each cup then has the same 
amount of coffee and the pot is half full. How much entropy is con-
tained in the pot after pouring into the three cups? How much is con-
tained in each cup?

1 cm3 of water at normal temperature contains about 4 Ct.

The higher the temperature of an object, the more entropy is 
contained in it.

The greater the mass of an object, the more entropy is con-
tained  in it.

Fig. 10.1
Half of the water in container A is 
poured into container B.

Fig. 10.2
 The water in the glass on the left 
contains more entropy than the 
one on the right.

Fig. 10.3
The water in the glass on the left 
contains more entropy than the 
one on the right.

Fig. 10.4
 It is not easy to decide which of 
these glasses contains more en-
tropy.



10.2!Temperature difference as driving force for 
an entropy current

We place a container A with hot water into  a container B with cold 
water, Fig. 10.5. We will observe what happens and then explain our 
observations.  

First the observation: The temperature of the water in container A 
decreases, and the temperature in B increases. The temperatures 
approach each other and finally become equal. The temperature of 
B increases, but not beyond that of A. 
Now the explanation: Entropy flows from A to B and does so until the 
temperatures become equal. 
This experiment can be repeated with other types of containers, Fig. 
10.6a and b. The water temperature will always be the same in both 
containers in the end. In the case of Fig. 10.6a, the end temperature 
is closer to the initial temperature of B, in Fig. 10.6b it is closer to the 
initial temperature of A. In every case, the final result is that 
ϑA = ϑB.

Of course it is possible to begin with the inner container A having the 
lower temperature and the outer container B having the higher one.  
In this case, as well, the temperatures approach each other and fi-
nally reach the same value. We conclude that:

This sentence is certainly familiar to you. If you look back in this 
book you will find two more versions of it. (We will meet it again fur-
ther on, as well.) A temperature difference ϑA  – ϑB can be under-
stood as the driving force for an entropy current. 

It is now easy to  understand why the entropy currents finally stopped 
flowing in Figs. 10.5 and 10.6. As soon as the temperatures became 
equal, the driving force for the entropy current vanished. 
The state of equality of temperatures reached at the end is called 
thermal equilibrium.
You have a cup of tea in front of you. The tea is still too hot to drink 
so you wait for it to cool off. What actually happens in cooling? Be-
cause the temperature of the tea is higher than that of the air or the 
table, an entropy current flows from the tea into the environment. 
Does the environment become warmer because of this? To be pre-
cise: yes, it does. However, the entropy that comes from the tea dis-
tributes so widely and is so diluted that we hardly notice it.
Touch various objects in your classroom. Some feel cool: the metal 
of the furniture, pillars made of concrete. Others seem to be less 
cool to the touch, for instance, a wooden chair. Others seem almost 
warm: a woolen glove or a piece of styrofoam. The temperature of a 
metal object appears to be lower than one made of wood. This 
statement should get your attention. We just stated that “Entropy 
flows by itself from a place of higher to a place of lower tempera-
ture.” According to this, entropy should continually flow from the 
wooden parts to the iron parts of a chair in the classroom. By doing 
so, the iron would become warmer and the wood cooler until....? Un-
til the temperatures became equal.  
Before we speculate any further, we will determine the temperatures 
of various objects in the room by measuring them. This way, we do 
not have to rely only upon our feelings. The result is surprising. All of 
the temperatures are the same. Iron, wood, and styrofoam all have 
the same temperature assuming that they were in the room long 
enough for their temperatures to have become equal.  
Only in winter do the objects that are higher up in the room have a 
slightly higher temperature than the ones below. This is due to the 
heated air rising upward. The adjustment to thermal equilibrium is 
constantly disturbed by heating. In summer, equilibrium is generally 
easy to accomplish. We come to the following conclusion: Our feel-
ing for ‘warm’ and ‘cold’ misled us. How this happens, and that we 
are actually not misled, will become clear in the next section.

Exercises

1. (a) Entropy goes from the hot plate into the pot when you cook 
something. Why? (b) The pot is put on a mat on the table. Entropy 
then goes from the pot into the mat. Why? (c) A cooled soda bottle is 
placed upon a table. The place on the table where the bottle is stand-
ing becomes cold. Why?
2. A big metal block A has a temperature of 120°C, a smaller block B, 
made of the same metal, has a temperature of 10°C. The blocks are 
brought into contact with each other so that the entropy  from one of 
them can flow into the other one. From where to where does it flow? 
Is the final temperature closer to 120°C or 10°C? 
3. You have a small hot metal block and a larger cooler block in front 
of you. (a) Can you say which one contains more entropy? (b) You 
bring the two blocks into contact with each other. What happens with 
temperature and entropy? (c) At the end, which block contains more 
entropy? 

Entropy flows by itself from places of higher temperature to 
places of lower temperature.

Fig. 10.6
In both cases, entropy flows from 
the inner to the outer container.

a b

Fig. 10.5
Entropy flows out of the inner con-
tainer A into the outer container B.

A temperature difference is the driving force for an entropy 
current. 



10.3 The heat pump
The fact that entropy flows by itself from an object of higher to an 
object of lower temperature does not mean that it cannot flow in the 
opposite direction as well, meaning from cold to hot. It can, but not 
by itself. To achieve this, you must force it: An entropy pump is nec-
essary. The customary name for such a device is heat pump.
Nowadays every house has a heat pump. It is part of the refrigerator 
and serves to transport the entropy from inside to outside. Before we 
take a closer look at a refrigerator, we must first get to know some 
principal aspects of heat pumps.  
Like any other pump, a heat pump has two connections for whatever 
is being pumped: an intake (or inlet) and an outlet. A water pump 
has an intake and an outlet for water and a momentum pump has an 
inlet and an outlet for momentum. Correspondingly, a heat pump 
has an intake and an outlet for entropy, Fig. 10.7. The inlet and the 
outlet are both made up of coiled metal pipes through which a liquid 
or a gas flows. In this way, entropy is transported into  or out of the 
pump.   

Cooling an object means that entropy is removed from it; heating an 
object means that entropy is introduced into  it. Fig. 10.7 shows that 
a heat pump can be used to cool as well as to heat. In fact, heat 
pumps are used for both purposes.  
We look more closely at the refrigerator, Fig. 10.8. The heat pump 
itself is at the bottom toward the back of the refrigerator. The entropy 
outlet can also be seen at the back. It is the coiled pipe taking up 
most of the backside of the refrigerator. A metal grating is placed be-
tween the pipes in order to better help the entropy to go into the air.  
As long as the refrigerator is running, these coiled pipes stay warm 
and we can tell that entropy is flowing out of the refrigerator. The in-
take for entropy is inside the refrigerator. It is a coiled pipe inside the 
walls of the freezer compartment.

Some houses are heated with a heat pump. Entropy is taken from 
the air outside or from a stream or river flowing nearby. The water in 
some indoor swimming pools is also heated in this way. 
An air-conditioner is another device that makes use of a heat pump. 
An air-conditioner sets a certain temperature and a certain humidity 
inside a building. One of its functions is to  cool the air inside. It does 
so by use of a heat pump. Fig. 10.9 shows a simple climate control 
unit that can only cool the air inside a room.

Exercises

1. Examine the refrigerator you have at home. Look for the heat pump 
and the intake and outlet for the entropy. Hold your hand on the coiled 
pipe of the entropy outlet.
2. What happens to the entropy when the refrigerator door is left open 
for a long time?

A heat pump transports entropy from a place of lower to a place 
of higher temperature.

Fig. 10.7
The heat pump has an inlet and 
an outlet for entropy.

Fig. 10.8
A refrigerator seen from behind, 
showing the heat pump and the 
coils, through which the heat 
leaves the refrigerator.

Fig. 10.9
A simple air conditioner. The fans 
inside and outside are there to 
improve heat exchange with the 
air.



10.4 Absolute temperature
How much entropy can be pumped out of an object? How much en-
tropy does it contain? 
We must be clear about the fact that these are two different ques-
tions.
If only positive entropy exists, only as much entropy can be pumped 
out of the object as there is in it. In the same manner, only as much 
air can be pumped out of a container as it contains to begin with. 
It would be different if there were such a thing as negative entropy. 
Then it would be possible to take out entropy even when the entropy 
content were at zero Carnot. For example, if a further 5 Ct were 
pumped out, the resulting entropy content would equal minus 5 Car-
not. That this is conceivable, we know from our observations of mo-
mentum. Momentum can be taken out of a body at rest (a body with 
momentum of zero Huygens). Its  momentum then becomes nega-
tive.    
We will now replace the questions we asked at the beginning with 
another one: Is there such a thing as negative entropy? (It might be 
said that negative entropy is what is called ‘coldness’ or ‘quantity of 
coldness’ in everyday language).
Actually, the answer to this question is easy to find. All that is 
needed is a very good heat pump. One takes an object, a brick for 
example, and pumps the entropy out of it for as long as possible. Let 
us try it with the refrigerator. The brick’s temperature sinks to per-
haps –5°C. It can go no further because the refrigerator’s heat pump 
cannot do more. More entropy can be extracted from the brick if it is 
put into the freezer compartment: The temperature decreases down 
to –18°C. Better and more expensive heat pumps do exist and even 
lower temperatures can be achieved with them. These kinds of heat 
pumps are called refrigerating machines. 
Some types of refrigerating machines are able to bring the tempera-
ture of our brick down to  –200°C.  Air is in liquid form at these tem-
peratures. Such machines are used to liquefy air. There are refriger-
ating machines that can take even more entropy out of our brick. 
Further decrease of the temperature is proof of this. It is possible to 
keep decreasing to –250°C, and then to –260°C, etc. 
With even greater effort, the temperature can fall all the way down to 
–273.15°C. At that point, however, it stops. No matter how great the 
effort made, this is the lowest the temperature can go.
The explanation for this is simple:
1) At this temperature, our brick does not contain any entropy any-
more.
2) Entropy cannot have negative values.

After discovering that a lowest pos-
sible temperature exists, it was con-
sidered sensible to introduce a new 
temperature scale. This new abso-
lute temperature scale is shifted 
with respect to the Celsius scale so 
that its zero point is at –273.15°C. 
The symbol for absolute tempera-
ture is T and its unit is Kelvin, ab-
breviated to K. Fig. 10.10 shows the 
relation between the two scales. No-
tice that a temperature difference of 
1°C equals a temperature difference 
of 1 K.
The boiling temperature of water on 
the Celsius scale is
ϑ = 100°C.
And on the absolute scale, it is
T = 373.15 K.

Fig. 10.11 shows the relation between the temperature of and the 
amount of entropy contained in a piece of 100 g of copper.

Exercises

1. Convert the following Celsius temperatures into absolute tempera-
tures:
" 0 ˚C " (melting point of water)
" 25 ˚C " (standard temperature)
" 100 ˚C " (boiling point of water)
" – 183 ˚C " (boiling point of oxygen)
" – 195,8 ˚C " (boiling point of nitrogen)
" – 268,9 ˚C " (boiling point of helium)
" – 273,15 ˚C " (absolute zero point)

2. Convert the following absolute temperatures into Celsius tempera-
tures:
" 13,95 K " (melting point of hydrogen)
" 20,35 K" (boiling point of hydrogen)
" 54,35 K" (melting point of oxygen)
" 63,15 K" (melting point of nitrogen)

3.  How much entropy does 1 kg of copper at a temperature of 20°C 
contain? Use Fig. 10.11 to answer the question.

On the absolute scale, zero is at 
–273.15°C. The unit of absolute 
temperature is the Kelvin. 

The lowest temperature that an object can have is –273.15°C. 
The object contains no entropy at this temperature. 
At ϑ =  –273.15°C, S = 0 Ct.

Fig. 10.10
The Celsius scale and the absolute 
temperature scale.

Fig. 10.11
 Temperature as a function of the 
entropy content for 100 g of cop-
per.
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10.5 Entropy production
A heat pump can be used to heat a room: Entropy is brought in from 
outside the house. In fact, most room heaters don’t do this. They 
burn fuels, for example heating oil, coal, wood or natural gas. Burn-
ing is a chemical reaction by which the combustible fuel and oxygen 
change into other substances, mostly carbon dioxide and water in 
gaseous form. Where does the entropy that is given off by the 
flames come from? It was neither in the fuel nor in the oxygen at the 
beginning because both of them were cold. Apparently, it comes into 
being during burning. Entropy is created in the flames, Fig. 10.12.  

Another type of heating is electrical. A strong electric current is sent 
through a thin wire and the wire is heated up. Entropy is created in 
the wire, Fig. 10.13. Many electrical appliances operate on this prin-
ciple. Some examples of these would be hot plates, irons, immer-
sion heaters, night storage heaters, hair-dryers, and light bulbs. 

You know another way of creating entropy, namely, mechanical fric-
tion. If you slide down a rope hanging from the ceiling, you feel the 
creation of entropy in a very unpleasant way. It is noticeable when 
one tries to drill with a dull drill, or uses a dull saw. Entropy is pro-
duced at the contact surface of two objects rubbing against each 
other. 
In all of these processes, entropy is newly created and not brought 
from somewhere else. 

Actually, all of these processes can be looked at as kinds of friction. 
Whenever something flows through a conductor which poses a re-
sistance to the current, there is ‘friction’. In mechanical friction, mo-
mentum flows from one body to another one through a connection 
which is a bad conductor. Electric heating appliances have electricity 
flowing through a wire that resists the electric current. A kind of fric-
tion which is called reaction resistance needs to be overcome in 
chemical reactions. 
We have discussed the question of where we get the entropy to heat 
a room or an object. Now we deal with the opposite problem of cool-
ing an object. We already know one method. We pump entropy out 
of the object with a heat pump. 
A second method works when the object is warmer than its envi-
ronment (when its temperature is higher). What does one do when 
tea is too hot? One simply waits. The entropy flows off by itself.
In both cases, meaning with and without a heat pump, the entropy 
that disappears from the object being cooled appears again at an-
other place. Would it be possible to  somehow make the entropy dis-
appear altogether? Can it be made to disappear so that it does not 
reappear somewhere else? Can it be destroyed? After all, we saw 
before that it can be created out of nothing. 
Many inventors and many scientists have tried unsuccessfully to do 
this. Today, we firmly believe that entropy cannot be destroyed. 

At this point we will remind ourselves of two other quantities: energy 
and momentum. We have taken for granted the fact that these quan-
tities can neither be created nor destroyed. When the amount of en-
ergy increases at a location, it decreases at another place, and if it 
decreases somewhere, it increases somewhere else. This is true of 
momentum as well. 

The fact that entropy can be produced poses interesting questions 
and has curious consequences.
Here is a first problem. Entropy can be created and is newly pro-
duced in countless processes that take place on Earth. An especially 
productive source of entropy is burning. Remember, burning not only 
takes place in ovens, heating boilers and car engines. It happens on 
a much larger scale in nature. In every form of life, from microbes to 
mammals, constant oxidation (burning) processes are going on, and 
thereby entropy is created.   
Wouldn’t the Earth’s amount of entropy constantly increase because 
of this and wouldn’t the Earth gradually become warmer? Actually, 
except for very small fluctuations, the temperature of the Earth has 
remained constant for millions of years. For an explanation it is not 
enough to consider only the Earth. First, it perpetually receives en-
tropy with the light from the Sun. (In this case, entropy flows from a 
place of higher to a place of lower temperature: The sun has a sur-
face temperature of about 6000 K, and the Earth’s surface tempera-
ture is around 300 K.) Second, the Earth constantly gives entropy to 
outer space. (Again, entropy flows from a higher to  a lower tempera-
ture. Space has a temperature of about 3 K.) The entropy given off 
by the Earth is carried by light, but in this case it is invisible infrared 
light. This infrared light carries off exactly the amount of entropy 
needed to keep the temperature of the Earth constant. The question 
remains of what happens to  space if its entropy constantly in-
creases. This question remains unanswered. It is actually a small 
problem compared to  the unanswered questions concerning struc-
ture and development of the cosmos. 
There is another odd consequence of the fact that entropy can be 
created but not destroyed. If you are shown a silent film, but no one 
tells you if it is running backwards or forwards, can you tell what di-
rection it is running in? If you observe it in the right direction, the 
‘film’ in Fig. 10.14 shows a burning candle. Observed in the wrong 
direction, it shows something that is impossible in the real world: a 
candle that becomes larger by itself. The film shows an irreversible 
process. Why is this process irreversible? Because entropy can only 
be created. A reversal would mean that entropy is destroyed and 
that is impossible.

Another irreversible process is shown in the series of pictures in Fig. 
10.15. A person slides down a rope. This process is also irreversible 
because entropy is created. 
There are processes that run forwards as well as backwards. These 
are processes where entropy is not created. Fig. 10.16 shows a ball 
flying by a window. Does the ball move from left to  right as shown in 
the film? Or is the film running backwards and the ball was actually 
moving from right to left? 

Exercises

1. A lamp is connected to a battery. The lamp burns and the battery 
slowly  empties. Describe the opposite process. (Assume that it is not 
forbidden to destroy entropy.)
2. Describe in detail which processes would take place if we reversed 
the process of a car driving along a street (allow entropy to be de-
stroyed).
3.  A person riding a bicycle brakes. What would happen, in detail, if 
the process ran backwards? (Assume that entropy can be destroyed.)

Entropy can be created but not destroyed.

Energy can be neither created nor destroyed.
Momentum can be neither created nor destroyed.

Entropy can be created 
– by chemical reactions (for example, burning);
– in a wire with an electric current;
– by mechanical friction.

Fig. 10.12
Entropy is produced in the flame

Fig. 10.13
An electric current flows through 
the wire, producing entropy.

Fig. 10.16
The process of the ball flying by is reversible.

Fig. 10.15
Are the pictures here in the right order?

Fig. 10.14
The burning down of a candle is an irreversible process.

Processes that produce entropy are irreversible.



10.6 Entropy currents
The left end of the metal rod in Fig. 10.17 is heated and the right 
end is cooled. In other words, entropy flows into the rod from left to 
right, from a higher to a lower temperature. We say that an entropy 
current is flowing. The number of Carnot flowing per second through 
the rod gives us the entropy current strength:
entropy current strength = entropy

time interval
We use the symbol IS for the entropy current. Using it we can write:

The unit for entropy currents is Carnot per second, abbreviated to 
Ct/s.

What does the strength of the entropy current between two points A 
and B depend upon? Let us take a look at Fig. 10.18. In the ar-
rangement above, the temperature difference between A and B is 
greater than in the setup below. Otherwise everything is the same. 
The driving force for the entropy current is greater above than below, 
so the current is stronger there as well. 

The greater the temperature difference between two points (the 
greater the driving force), the stronger the entropy current flow-
ing from one to the other.

IS  = S
t

Fig. 10.17
An entropy current flows from the 
hot end to the cold end of the rod.

Fig. 10.18
In the upper arrangement, the 
temperature difference between 
bodies A and B is larger.A

A B

B
80˚C 20˚C

30˚C 20˚C



10.7 Thermal resistance
Entropy currents can be different when the temperature difference is 
the same. It does not depend only upon the difference of tempera-
ture, but also upon the type of connection, i.e., upon the thermal re-
sistance of the connection, Fig. 10.19. What does the thermal resis-
tance of a connection depend upon though?

Fig. 10.20 shows two entropy conductors, a and b. There is the 
same temperature difference of 60 K between the ends of each of 
them. The cross section of conductor b is twice the size of the cross 
section of conductor a.  In each half of conductor b (i.e., in the upper 
half and the lower half) as much entropy is flowing as in conductor a. 
This means that in both halves of b together, twice the amount of en-
tropy is flowing as in conductor a.  

Again, two conductors a and b are represented in Fig. 10.21. In this 
case, conductor b is twice as long as conductor a. We compare one 
half of b, say, the left side, to conductor a. They are both built identi-
cally, but there is a greater temperature difference in a than in the 
half we have chosen of b. Therefore, a weaker entropy current is 
flowing through b than through a. The other half of b has a weaker 
entropy current flowing through it as well. 

Fig. 10.22 shows two conductors that are of the same length and 
have the same cross sectional areas. The temperature difference 
between their ends is also the same. In spite of this, a smaller en-
tropy current flows through b than through a. This is because b is 
made of wood and a is made of copper. 

Fig. 10.23 is a summary of what entropy currents and thermal resis-
tance depend upon.

We will now investigate some materials to see whether they have a 
low or a high thermal resistance, i.e., if they are good or bad thermal 
conductors. We hold a small rod made up of a certain material in our 
fingers. We hold the other end in a flame, Fig. 10.24. Depending 
upon the thermal resistance of the material the rod is made up of, 
we will feel it getting hot more quickly or more slowly. 

We notice that wood, glass and plastic have a rather high thermal 
resistance. Metals, on the other hand, have a low thermal resis-
tance. They are good thermal conductors. Air and other gases have 
a very high thermal resistance. This is why materials with a high air 
content, such as bricks with cavities, gas-aerated concrete, frothed 
plastic and fibrous insulation material, are used for insulating build-
ings. A wool pullover keeps us warm because wool contains so 
many cavities filled with air.
We can now find out why a metal object feels colder than a wooden 
one.
First we want to state that this observation only holds for low tem-
peratures. We put a piece of wood and a piece of metal into boiling 
water, so that they both reach a temperature of 100°C. We take both 
of them out of the water and touch them with our fingers. The metal 
one feels hotter than the wooden one. How can this be explained?
Touch a piece of wood and then a piece of metal, both at a tempera-
ture of 10°C, with your 25°C fingers. At first, entropy flows from your 
fingers to the object, Fig. 10.25. The wood becomes warm quickly at 
the place you touch it. It takes the temperature of your finger be-
cause it cannot conduct the entropy away. On the other hand, in the 
metal the entropy flows away into it from the point being touched, 
and the place being touched warms up only very little. 

If you touch an object that is a bad conductor, you do not feel the 
temperature it had before you touched it. You feel the temperature it 
takes from your fingers touching it. 

Exercises

1. How should a house be built so that the heat loss (entropy loss) is 
kept as small as possible?
2. In a radiator of a central heating unit, the entropy should flow as 
easily  as possible from the water inside the radiator to the outside. 
How can this be achieved? Name some other objects where good 
heat conduction is of interest.

Every conductor has resistance to the entropy current flowing 
through it. The smaller the cross section of the conductor, and 
the longer it is, the greater the thermal resistance. The resis-
tance also depends upon the material the conductor is made of.

Fig. 10.24
The right end of the little rod will 
become hot more or less quickly 
depending upon its thermal resis-
tance.

Fig. 10.20
A stronger entropy current flows 
through the thicker conductor.

A

A

B

B

80˚C 20˚C

80˚C 20˚C

a

b

Fig. 10.19
 Connections with different ther-
mal resistances

Fig. 10.21
A stronger entropy current flows 
through the shorter conductor.

A

A

B

B

a

b

80˚C 20˚C

20˚C80˚C

Fig. 10.22
A stronger entropy current flows 
through the conductor made of 
copper than through the one 
made of wood.

Fig. 10.25
The two objects have the same 
temperature before they are 
touched, but not afterwards.10˚C 25˚C

25˚C

10˚C
10˚C

25˚C

Fig. 10.23
Relation between current, tem-
perature difference, and charac-
teristics of the conductor.

entropy current
depends upon

temperature difference thermal resistance
depends upon

cross sectional area     length     material       



10.8 Transport of entropy by convection
A temperature difference is the driving force for an entropy current. If 
entropy should flow from A to B, it is enough to make sure that A has 
a higher temperature than B. This kind of entropy transport is called 
conduction of heat. It is, so  to speak, the normal way for entropy to 
get from A to B.
If we observe our environment carefully, we can see that most 
entropy transports, and especially transports of entropy over large 
distances, are not accomplished this way. There is another way of 
transporting entropy called convective entropy transfer or simply 
convection.
A liquid or a gas is heated and transported from A to B by means of 
a pump. The entropy is carried along with the substance being 
transported. In this case, no temperature difference is necessary as 
the driving force, but a driving force for the liquid or gas currents is 
needed.
An example of convective transport of entropy is a central heating 
unit, Fig. 10.26. Water is heated, possibly by burning oil, in the boiler 
which is usually in the cellar of the house. The heated water is 
pumped through pipes to the radiators in the various rooms. It gives 
off a part of its entropy in the radiators and then flows back through 
pipes and to the boiler again.

It is much easier to realize convective entropy transports than the 
usual kind driven by temperature differences. The reason for this is 
that there are no really good thermal conductors. Even copper, 
which is generally considered to be a relatively good conductor, is 
actually a very bad thermal conductor. For example, it would be 
impossible to transport the entropy with copper rods from the boiler 
in the cellar into the various rooms of the house. By contrast, it is 
absolutely no problem to transport air or water together with their 
entropy over large distances. 

There are many examples of convective entropy currents in nature 
and in technology. 
Entropy should distribute over a room being heated by a radiator or 
space heater. How can this happen? Air is actually a very bad 
thermal conductor. Here, entropy is transported convectively with the 
air. In this case, the air moves without needing a pump. Heated air 
rises from a heater because warm air has a lower density than cold 
air, Fig. 10.27. 

Every automobile engine needs to be cooled, meaning that entropy 
must be taken away from it, Fig. 10.28. Most car engines are water 
cooled. The entropy is transported with water from the motor to the 
radiator, similar to  the process in central heating units. The water is 
circulated by a cooling water pump. The entropy is given off in the 
radiator to the air flowing by.  

All of the large transports of entropy in nature, those that determine 
our weather, are convective transports. Entropy is moved over very 
large distances in the atmosphere by winds, i.e., by moving air.
The gulf stream is another good example of convective entropy 
transfer. It brings entropy from the Caribbean to Europe, Fig. 10.29. 
The result of this is a milder climate in Europe than would be 
expected by considering its geographic latitude.

We will once more contrast transport of entropy by conduction to 
convective transport by following the path of the entropy in a house 
with central heating. The entropy produced in the flames reaches 
the outer wall of the boiler by convection. It moves through this wall 
in the normal way, driven by a temperature difference. It then flows 
with the water convectively to the radiators. It must, once again, flow 
through the radiator wall in the normal way. It flows further, 
convectively, from the surface of the radiator with the air to distribute 
over the room. We see that on its long way from the flames of the 
boiler into the room being heated, only tiny distances of a few 
millimeters are bridged by normal thermal conduction.    

Exercises

1.  Describe the paths along which a house loses heat. Which losses 
are due to thermal conduction and which are due to convection? 
2. Describe the path of entropy from inside a car engine until it 
reaches the air in the environment. Where on its path does the en-
tropy flow because of a temperature difference, where does it flow 
convectively?
3. How does the heating in a car work? Describe the path of the en-
tropy.

All transport of entropy over large distances is done
 convectively.

Convective entropy transport: Entropy is taken along by a 
flowing liquid or a flowing gas. No temperature difference is 
needed to transport entropy convectively.

Fig. 10.28
Cooling of a car engine. The en-
tropy goes convectively from the 
motor to the “radiator”.

Fig. 10.26
Central heating unit. The entropy 
reaches the radiators convectively 
from the boiler.

Fig. 10.27
 Entropy is distributed in the room 
convectively.

Fig. 10.29
 The gulf stream. Entropy is 
brought from the Caribbean to 
Europe by a flow of water.
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Entropy and energy



11.1 Entropy as energy carrier
We will consider the laws of balance for an electric heating unit. An 
electric heater is nothing more than a wire through which electricity 
flows, making it warm. As you know, this type of heating has many 
applications: hot plates, irons, light bulbs...
We know that a heater produces entropy. While it is running, the 
heater gives up entropy. We also know that a heater “uses” energy, 
meaning that the energy flows into the heater through the electric 
cable. The carrier for the energy flowing in is electricity. 
The energy flowing continuously into the device with electricity must 
come out again. We ask the question we have asked so often be-
fore: What is the carrier of this energy?  
The answer is self-evident. Along with the energy, entropy flows out 
of the heater. This entropy is the carrier we are seeking. We can 
make a general statement about this: Wherever and whenever an 
entropy current flows, an energy current is flowing. 

Electric heaters belong to the category of devices that we earlier 
called energy transfer devices or energy exchangers. The energy 
goes into  the appliance with the carrier electricity. Entropy is pro-
duced in the appliance, and the energy leaves it with this entropy. 
The energy is transferred from electricity to entropy. Fig. 11.1 shows 
a schematic of our heater.

In one aspect, the flow diagram is incomplete. The carrier of the en-
ergy flowing in (the electricity) must also come out of the heater, be-
cause electricity can be neither produced nor destroyed. For this 
reason, in Fig. 11.2, the electricity has an outlet as well as an inlet. 
Notice that energy and electricity both have an inlet and an outlet, 
while entropy has only an outlet. Another way of saying this would 
be: In an electric heater, energy is transferred to the newly produced 
entropy.  

The results of these considerations can be carried over to other 
processes where entropy is produced. Fig. 11.3 shows the flow dia-
gram of an oil heater. Energy flows into the heater with the carrier 
“heating oil plus oxygen”. When the energy is released, the oil and 
oxygen transform into exhaust gases (water vapor and carbon diox-
ide). Entropy is produced during combustion, and the energy leaves 
the heater with this entropy. 

Exercises

1. Sketch the energy flow diagram for the process of friction in Fig. 
11.4. Hint: The “energy exchanger” is the bottom of the crate rubbing 
against the floor.
2. A tower of building blocks collapses. During which part of this proc-
ess is entropy produced? Where does the energy  needed for this 
come from?

Entropy is an energy carrier.

Fig. 11.4
For Exercise 1. Entropy is pro-
duced on the underside of the 
crate.

Fig. 11.3
Energy flow diagram of an oil 
burneroil

burner
ENERGY

heating oil + oxygen

ENERGY

entropy

exhaust gases

Fig. 11.2
A more complete energy flow dia-
gram of an electric heater

electric
heater

ENERGY

electricity

ENERGY

entropy

Fig. 11.1
Energy flow diagram of an electric 
heater

electric
heater

ENERGY

electricity

ENERGY
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11.2!The relationship between energy currents
and entropy currents

Every entropy current is accompanied by an energy current. How do 
the strengths of these currents relate to each other? A partial answer 
to this question is easy: A strong entropy current is related to a 
strong energy current. This can be expressed more precisely. Two 
entropy currents of the same strength carry twice the amount of en-
ergy that only one of them does. In mathematical terms:
P ~ IS .      ! ! ! ! ! ! ! ! ! (1)
Of course, this is not the complete relation between P and IS. In or-
der to  find the still missing part we will again consider laws of bal-
ance. However, this time we will not do this for an electric heater, but 
for an electric heat pump. It is better suited to what we are doing for 
the moment.  
Fig. 11.5 shows a flow diagram of this energy exchanger. This time, 
for every current flowing out of it there is one of the same strength 
flowing in. This holds for the entropy current as well. Energy flows 
with the carrier electricity into the appliance. The electricity leaves 
the appliance again after it has released its energy. The energy ar-
riving with the electricity is transferred to the entropy flowing into the 
heat pump. This energy leaves the heat pump with the entropy flow-
ing out.

We will take a closer look at the right side of the flow diagram. The 
energy arrow on the right represents only the energy taken over 
from the electricity. The right side of the diagram could be depicted 
in more detail, as in Fig. 11.6. The entropy flowing into the heat 
pump also carries energy. However, the entropy flowing out carries 
more energy than the entropy flowing in because it carries the en-
ergy taken over from the electricity as well. Fig. 11.5 shows only the 
“net energy current”.

We see in Fig. 11.6 that two entropy currents of the same strength 
can carry different amounts of energy. The one flowing in carries lit-
tle energy, and the one flowing out carries a lot of energy. This 
means that the energy current depends upon more than just the 
strength of the entropy current. 
What is the difference between the entropy inlet and the entropy out-
let? It is the temperature. Therefore, the energy current depends 
upon the temperature of the conductor through which the entropy is 
flowing. We could also say that the factor of proportionality which 
makes relation (1) into an equation, depends upon the temperature.
We have expressed the facts in an unnecessarily complicated way. 
Actually, the factor of proportionality is just the absolute temperature 
itself:

A coincidence? Absolutely not. The temperature scale that everyone 
uses and that we have already used a lot is defined by equation (2).

Equation (2) shows that the temperature can be interpreted in the 
following way:

We can now establish an exact, quantitative energy balance for the 
heat pump. We call the high temperature at which the entropy is 
flowing out of the machine TA, and the low temperature at which the 
entropy is flowing in, TB. An energy current of
PB = TB · IS
flows in along with the entropy at low temperature. At the exit (high 
temperature) the energy current is
PA = TA · IS .
The resulting net energy current is
P = PA – PB = TA · IS – TB · IS .  
Or otherwise expressed 

This net current must be equal to the energy current flowing over the 
electric cord and into  the heat pump. Equation (3) gives the energy 
used by the heat pump. We interpret equation (3) as follows: 

Example: A heat pump heating a house transfers 30 Ct per second 
from the outside to the inside of the house. The temperature outside 
is 10°C. The temperature inside the house is 22°C. What is the en-
ergy consumption (the “power”) of the pump?
In this case, we do not need to convert the Celsius values to abso-
lute ones, because the differences are the same on both scales. We 
have TA – TB  = 12 K. From this we obtain
P = (TA – TB )· IS  = 12 K · 30 Ct/s = 360 W.
We will now assume that the same house is heated with a standard 
electric heater. This means that entropy is not pumped in from out-
side, but is produced in the house. Again, the temperature in the 
house should be 22°C, and of course we need 30 Ct/s again in the 
house because exactly this amount is lost through its walls. The en-
ergy current coming out of the electric heater is calculated with 
equation (2), where T = (273 + 22) K = 295 K and IS = 30 Ct/s:
P = T · IS  = 295 K · 30 Ct/s = 8850 W.
According to our calculations, the energy consumption by a normal 
electric heater is much greater than that of a heat pump. In reality, 
the difference is not as great as it appears though, because in every 
heat pump there is some entropy production due to friction and elec-
trical resistance.

Exercises

1. A house heated by an oil heater to a temperature of 20°C, loses 
heat at 35 Ct/s. What is the energy consumption of the heater?
2. A  car’s radiator has a temperature of 90°C. It emits 60 Carnot per 
second into the air. What is the energy current flowing out of the ra-
diator into the air?
3. The temperature on the sole of a 1000-W iron is 300°C. How much 
entropy per second is coming out of the iron?
4. A  swimming pool is heated by a heat pump. The heat pump  takes 
entropy out of a stream flowing nearby. The temperature of the water 
in the stream is 15°C, and the water in the swimming pool is 25°C. 
The water in the swimming pool continuously loses entropy at a rate 
of 500 Ct per second into the environment. In order to keep this tem-
perature, the heat pump must continuously replace the lost entropy.  
What is the energy consumption of the heat pump?
5. (a) A house is heated with a heat pump. The temperature outside is 
0°C and the temperature inside is 25°C.  The heat pump  transfers 
30 Ct/s. What is the energy consumption? 
(b) The same house is heated by a standard electric heater. This 
means that 30 Ct/s are produced inside the house, rather than 
pumped in from the outside. What is the energy consumption?

P = T · IS! ! ! ! ! ! ! ! ! (2)

The temperature specifies how much an entropy current is 
charged with energy.

The more entropy the heat pump must transfer, the more en-
ergy it uses.
The greater the temperature difference to be overcome, the 
more energy is used.

An entropy current IS  carries an energy current T ⋅ IS. 

P = (TA – TB )· IS  .! ! ! ! ! ! ! (3)

Fig. 11.5
Energy flow diagram of a heat 
pumpENERGY

entropy

ENERGY

electricity

heat pump

Fig. 11.6
A heat pump. The energy currents 
flowing with the entropy are indi-
vidually represented.
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11.3 Entropy production by entropy currents
An entropy current flows through a rod made of a well conducting 
material, Fig. 11.7. The current is sustained by a temperature differ-
ence. The sides of the rod are insulated so that they do not lose en-
tropy there. At the beginning of the experiment, the temperature will 
change at points along the rod. After a while these changes stop and 
the so-called steady-state is attained. 

The equation relating the entropy and energy current to  each other 
leads us to a surprising statement here. 
We observe three different locations on the rod: The cold right end, 
the middle, and the hot left end. The values related to these three 
locations are indicated by a “1”, a “2”, and a “3”. An energy current 
having a value P3 flows into the rod from the left. Because steady-
state has been attained, energy does not build up anywhere in the 
rod. The energy current must have the same value everywhere:
P3 = P2 = P1 .! ! ! ! ! ! ! ! (4)
Now we know that the energy current P is related to the entropy cur-
rent IS by
P = T · IS                                                 ! ! ! ! (5)
We replace the energy currents in equation (4) with help from equa-
tion (5) and obtain
T3· IS3 = T2· IS2 = T1· IS1 .! ! ! ! ! ! (6)
We know that the temperature T3 is greater than T2, and T2 is 
greater than T1:
T3 > T2 > T1 . !
In order for equation (6) to be valid, we must have
IS3 < IS2 < IS1 .
Thus, the entropy current increases to  the right. On the right, where 
the water cools the rod, more entropy is flowing out than is flowing in 
at the left, where the flame is. This must mean that entropy is being 
produced in the rod. How is this possible?
Basically, this result isn’t as surprising as it may appear at first. We 
learned earlier that entropy is always created when some sort of fric-
tional process occurs, when a current meets some resistance. Ex-
actly this is going on here. In this case though, no gas or liquid is 
flowing, nor are momentum or electricity, but the entropy itself. 
When entropy flows through something having a thermal resistance, 
entropy is created.
In our minds, we can divide the entropy at the exit of the rod (at the 
right end), into  two parts. We have the part that flowed in from the 
left, and the part that was newly created on the path from left to 
right. Therefore
IS1 = IS3 + IS produced

The amount of entropy produced per second in the rod is repre-
sented by IS produced.

Example: The heating wire of a 700-W immersion heater, Fig. 11.8, 
has a temperature of 1000 K (727°C). The entropy current coming 
out of the wire has a value of

IS = P
T

= 700 W
1000 K

=  0,7 Ct/s .

The surface of the immersion heater has the same temperature as 
the water. We assume that the water temperature is 350 K (77°C). 
The entropy current at the surface of the heater is therefore

IS = P
T

= 700 W
350 K

=  2 Ct/s .

On the short path from the heating wire to the surface of the immer-
sion heater 
(2  – 0.7) Ct/s = 1.3 Ct/s
are created. 0.7 Ct/s are created in the wire by the electric current. 
More is produced by the entropy on its way to the outside than is 
created by the electric current.

Exercises

1. A house is heated with 20 kW. The temperature inside is 20°C, the 
temperature outside is –5°C.
(a) What is the entropy current flowing out of the house at its inner 
wall?
(b) What is it at the outer wall?
(c) How much new entropy is produced per second as a result of the 
entropy flowing out?

2. The heating wire of a 1000-W  hot plate has a temperature of 
1000 K. 
(a) How much entropy is produced per second in the wire?
(b) A pot of water with a temperature of 373 K is on the hot plate. How 
much entropy per second flows into the water?
(c) How much entropy is produced on the way from the heating wire 
to the water?

If entropy flows through a thermal resistor, additional entropy is 
produced.

Fig. 11.7
More entropy comes out at the 
right end of the rod than flows in 
at the left.

Fig. 11.8
 An immersion heater. A cross 
section on the right (simplified and 
enlarged).



11.4 Heat engines
An energy flow diagram best explains what a heat engine is, Fig 
11.9: It is an energy exchanger which receives energy with the car-
rier entropy and gives it away with the carrier angular momentum. 
The fact that the energy carrier at the exit of the machine is angular 
momentum means that the energy comes out through a rotating 
shaft. The machine is there to drive something. 

The following belong to the category called heat engines:
– steam turbines;
– reciprocating steam engines;
– all combustion engines (Otto and Diesel engines);
– jet engines;
– other, less used engines.

Later we will see how these engines work in detail. For the moment, 
we will consider only what all heat engines have in common. We will 
begin with a little detour.
Fig. 11.10 shows an energy flow diagram of a water turbine. This 
isn’t a heat engine. Water at high pressure flows into the water tur-
bine, and flows out again at a low pressure. The water at high pres-
sure carries a lot of energy, the water at low pressure carries little. 
While the water in the turbine is “falling” from high to low pressure, it 
releases energy. This energy leaves the turbine through the shaft 
with angular momentum as the energy carrier. 

A comparison of Fig. 11.10 and Fig. 11.9 shows that the heat engine 
and the water turbine both have something in common. Entropy 
flows at a high temperature into  the heat engine. This is entropy car-
rying a lot of energy. The same entropy flows out of the device at a 
low temperature, meaning it has little energy. While the entropy in 
the machine “falls” from a higher temperature to a lower tempera-
ture, energy is released. This energy also leaves through a rotating 
shaft. This means that it comes out with the carrier angular momen-
tum.   

We will calculate the energy emitted per second by a heat engine. At 
the entrance for the entropy, the machine receives an energy current 
of TA · IS at the high temperature TA. At the entropy exit, it then emits 
an energy current of TB · IS at the low temperature TB. The difference 
is the current of the energy transferred to  the angular momentum. 
An energy current having a value of
P = TA · IS – TB · IS = (TA – TB )· IS
leaves the engine with the angular momentum.

In most electric power plants, the generator is driven by a heat en-
gine. The flow diagram of the devices connected to each other is 
shown in Fig. 11.11. The two energy exchangers can be represented 
by just one box, Fig. 11.12. Compare this flow diagram to the one of 
the electric heat pump, once again shown in Fig. 11.13. (It is the 
same as the one in Fig. 11.5.) The only difference in the two flow 
diagrams is the direction of the arrows.

The power plant does exactly the opposite of what a heat pump 
does. While the electric heat pump transfers energy from the carrier 
electricity to the carrier entropy, in the power plant in Fig. 11.12, the 
energy is transferred from entropy to electricity.  
A thermal power plant transfers energy from entropy to electricity. 
Such a power plant is a large and complicated construction. There 
are some devices that do exactly the same thing, namely, transfer 
energy from entropy to electricity, but they are small, handy, and ro-
bust at the same time. They are called Peltier devices.
A Peltier device can even run in reverse, as a heat pump. It is a heat 
pump which is uncomplicated, rather inexpensive, and compact all 
at the same time. 
Unfortunately, Peltier devices lose a lot of energy. For this reason, 
they are only appropriate for applications where loss is not consid-
ered important.

In a heat engine, energy is transferred from the energy carrier 
entropy to the energy carrier angular momentum.

The stronger the entropy current flowing through the engine, 
and the greater the temperature difference through which the 
entropy current flows down in the engine, the more energy will 
be given up by the heat engine together with the angular mo-
mentum.
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11.5 Entropy sources for heat engines
There are always two problems to  solve when a heat engine is to  be 
operated:
1) A source of entropy at a high temperature is needed.
2) It must be possible to get rid of the entropy at a lower tempera-
ture. There must be a so-called “trash dump” for the entropy.
These problems can be solved in different ways.

Natural sources of entropy
This is the solution least damaging to our environment: Natural 
sources of entropy at high temperatures are exploited.
There are places on Earth where hot steam is contained in layers of 
rock at depths that are not too great. This steam is allowed to  flow to 
the Earth’s surface through drilled holes and can be used to drive 
power plants. Unfortunately, there are not many such sources of this 
geothermal energy. 
The huge amounts of entropy at very high temperatures received by 
the Earth with sunlight provide another possibility. This entropy is 
being exploited in solar power plants. Although this entropy source is 
inexhaustible, it presents us with some problems that are not easy to 
solve. One of these is that sunlight is thinly distributed. This means 
that the entropy, and the energy with it, is strongly diluted. It must 
therefore be “collected” on large surfaces that the Sun shines upon. 
This collecting can be accomplished by erecting mirrors so that the 
light is concentrated on a boiler. Another problem related to solar 
energy is that the Sun does not always shine. It does not shine at all 
in the night, and in winter, when energy is most needed, it shines 
only weakly. 

Artificial entropy sources
Most of the entropy used to drive heat engines today is acquired in a 
less elegant manner: It is produced by burning fuels or by nuclear 
fission. 
Heat engines are widely used, and present not only the problem of 
how to acquire entropy but also the problem of “thermal trash”. We 
will see how these problems are solved for the most important heat 
engines. 

Thermal power plants
Most power plants operate with steam turbines. In coal-fired power 
stations, entropy is produced in a steam boiler by burning coal. En-
tropy is produced in nuclear power plants by splitting the atomic nu-
clei of uranium and plutonium. 
When entropy leaves the power plant, its temperature is only slightly 
higher than the temperature of the surrounding environment. The 
entropy is mostly released into the water of a large river. If no river is 
available, or if a river’s water does not suffice, the entropy is given 
up to the air in cooling towers.

Combustion engines
Entropy is created by burning gasoline or diesel oil inside an engine. 
Most of it leaves the engine with the exhaust fumes. The flow dia-
gram in Fig.11.9 doesn’t actually describe a combustion engine be-
cause the entropy is not introduced to the engine from outside.  

Piston steam engines
These were the most important engines before electric and combus-
tion engines were invented. They were used in steam locomotives, 
steam ships, steam rollers, and steam plows. They also  drove 
threshing machines. Piston steam engines were used to drive the 
machines in many factories as well. 
Entropy was produced for these engines in the boiler by burning 
coal. The steam driving the engine was commonly allowed to es-
cape into the air after it had done its job. The entropy escaped to the 
air with the steam.

Jet engines
These are used to drive almost all large airliners. Jet engines do not 
exactly satisfy our definition of a heat engine. They don’t give up 
their energy through a shaft with angular momentum, but together 
with momentum, Fig. 11.14. These engines „pump“ momentum out 
of the air and into the airplane.

As with combustion engines, the entropy is produced in the engine 
by burning fuel, and it leaves the jet engine with the exhaust gases.

Exercises

1. An entropy current of 100 Ct/s flows through a heat engine. At the 
entrance, the temperature is 150°C, at the exit it is 50°C. How much 
energy per second does the engine emit with the energy carrier angu-
lar momentum?
2. A power plant gives off an energy  current of 1000 MW  with electric-
ity. The temperature of the steam at the entrance to the turbine is 
750 K, at the exit it is 310 K. What is the entropy current that flows 
away with the cooling water? What is the energy current carried by 
this entropy current?
3. Think of some possibilities for applications of entropy with high 
temperature found in nature. Also discuss possibilities you might con-
sider unrealistic. 
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11.6 Energy loss
On the way from the faucet to the nozzle, Fig. 11.15, water is lost. 2 
liters per second come out of the faucet but only 1.8 liters per sec-
ond get to  the nozzle. The difference, i.e., 0.2 liters per second, 
flows out of the hole in the hose. We have a loss of 0.2 l/s. Usually, 
loss is expressed as a percent of the original quantity. The loss, 
which we express as a percentage, is symbolized by V. Therefore, 
in our case,
V = 0,2 l/s

2 l/s
·100% = 10% .

In most devices, where energy is transferred from one carrier to an-
other, and in most conductors for transferring energy, energy gets 
lost. What does this mean? Energy cannot be destroyed! It is similar 
to the water in Fig. 11.15. A part of the energy does not get where it 
should go. It seeps out, so to say. 
Energy loss is almost always connected to creation of entropy. We 
consider a water turbine. So far, we have sketched the flow diagram 
of a water turbine like the one shown in Fig. 11.16 (also see Fig. 
11.10). This is actually a perfect, idealized turbine as we would 
never see it in the real world because in every real turbine, entropy 
is produced unintentionally. This happens at various locations: by 
friction created by the water rubbing against the walls of the pipe, by 
water rubbing against itself (“fluid friction”) and by friction in the 
bearings of the turbine shaft. The entropy produced also  leaves the 
turbine by various paths: partly in the water flowing away and partly 
into the surrounding air. 

Energy flows away with this entropy. Fig. 11.17 shows the energy 
flow diagram of a real turbine. The strengths of the currents are indi-
cated by the thicknesses of the energy arrows.  

The value of the energy current due to loss is called PV. The relation 
between the produced entropy and the lost energy is then
PV = T · IS produced

and the device’s percentage loss is

V = PV
Pin

·100%  .! ! ! ! ! ! ! (7) 

The energy current flowing into the engine is indicated by Pin.
Fig. 11.18 shows the energy flow diagram of a real (not idealized) 
electric motor. Here as well, entropy is created unintentionally. A part 
of this entropy is created in the wires (entropy is always produced 
when an electric current flows through a wire). Another part is cre-
ated in the bearings.  

The energy loss in a simple electric cable is also calculated with 
Equation (7).
We have seen that energy loss depends upon entropy production. 
Of course one would wish to avoid this loss. Therefore remember:

The loss in some energy exchangers is very large. Table 11.1 shows 
some typical values. 

You probably wonder about the high losses in power plants. This is 
due only to a small extent to the losses in steam turbines and the 
generator. They occur mostly because of the entropy produced in 
the burner or in the reactor. How can we define loss in this case? 
Don’t we need to  create this entropy in order for the power plant to 
run? Not necessarily.
It is possible to transfer the energy of coal (or maybe uranium) di-
rectly to  electricity without taking the detour through entropy and an-
gular momentum. The devices that do this are called fuel cells. A 
fuel cell functions similarly to a battery. It actually represents a kind 
of battery where the substances being used up are constantly re-
newed. Up until now, fuel cells have worked only with fairly pure liq-
uid and gaseous fuels, and not with coal. Moreover, the life span of 
these fuel cells is not yet long enough for them to compete with the 
power plants in use today. 

Exercises

1. An automobile engine emits 20 kW  through its shaft. Only 18 kW 
reach the wheels because entropy is produced (by  friction) in the 
bearings and the gearbox. What is the percentage loss?
2. An electric motor with a loss of 40% uses 10 W. How much energy 
does it emit with angular momentum? How much entropy is produced 
per second? (The ambient temperature is 300K.)
3. A generator with a loss of 8% gives up  an energy current of 46 kW 
with the electricity. What is the energy current that flows over the en-
gine shaft into the generator? What is the energy current due to loss? 
What is the current of the produced entropy? (Ambient temperature is 
300 K.)

Avoid creating entropy.

loss

Large steam turbine 10 %

Large electric motor 10 %

Toy electric motor 40 %

Solar cell 90 %

Coal fired power plant 57 %

Nuclear power plant 67 %

Table 11.1
Typical values of energy loss

Fig. 11.15
Water gets lost through the hole in 
the hose.
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11.7! The relationship between entropy content
and temperature

If entropy is added to a body, its temperature rises. At least, this was 
the case of the objects we have dealt with so far. Later on we will get 
to know cases where things are different.
What factors determine how much the temperature of a body will 
rise if it is given a certain amount of entropy?
The first factor is naturally the size of the body, or rather, its mass. 
Its influence can be expressed in this way: Two bodies A and B are 
made of the same material. A has twice the mass of B. At the same 
temperature, A has twice the entropy of B. 
Second, the entropy content also depends upon the material the ob-
ject is made of. Fig. 11.19 shows how the temperature increases 
with the entropy content for a body of copper and one of aluminum. 
They both have a mass of 1 kg.  We see in the figure that less en-
tropy is needed to bring copper up to a certain temperature than is 
needed for aluminum. For example, at a temperature of 300 K, cop-
per contains 500 Ct, but aluminum contains 1000 Ct, i.e., twice that 
of copper.   

The diagram shows that, with a given amount of entropy, copper 
warms up more than aluminum. With 500 Ct, copper reaches a tem-
perature of 300 K, but aluminum reaches only about 150 K. 
If we are only interested in what happens in the vicinity of normal 
ambient temperature, it is more useful to use a graph where the axis 
does not start at zero, i.e., an enlarged section of the original figure. 
Fig. 11.20 shows such a section for 1 kg of various materials: cop-
per, iron, aluminum, heating oil, and water. The steeper the curve, 
the less entropy is needed to produce a given temperature change. 

Exercises

1. A kilogram of copper and a kilogram of aluminum with initial tem-
peratures of 25°C  each receive 80 Ct. Which material heats up more? 
By what factor do the temperature changes differ?
2. How much entropy is needed to heat 100 l of water from 20°C to 
100°C? (1 l of water has a mass of 1 kg)

Fig. 11.19
Temperature as a function of the entropy content for 1 kg of copper and 1 kg of aluminum
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11.8! The relation between adding energy and
 change of temperature

If water is to be heated, entropy must be added. Energy also  goes 
into the water with the entropy. This fact is probably known by most 
people: It costs money to heat water, and one pays for the energy.
We will now set up a formula that gives us information about energy 
use in heating water. We call the amount of energy added to the wa-
ter in the heating process ΔE. This should not be mistaken for the 
total amount of energy contained in the water. In order to heat 1 kg 
of water from 20°C to 100°C, a certain amount of energy is neces-
sary. We need double this amount of energy to heat 2 kg of water 
from 20°C to 100°C. Therefore:
ΔE ~ m.
The energy needed for heating is proportional to the mass of the wa-
ter.
Moreover, the energy ΔE also depends upon by how much we wish 
to increase the temperature. If the temperature is to be raised by 
20°C, more energy is needed than would be if it should only in-
crease by 10°C. We put an immersion heater into  a given amount of 
water and measure the increase of temperature ΔT as a function of 
the added energy ΔE. We find that ΔT is proportional to ΔE :
ΔE ~ ΔT.
This relation is no longer valid at very high or very low temperatures 
although it is satisfied between 0°C and 100°C.  Together with the 
previous proportionality, we have:
ΔE ~ m · ΔT .
In order to make an equation out of this proportional relation, we in-
sert a factor of proportionality c :

c is called the specific heat. 
In order for the left and right sides of the equation to both have the 
same unit, c must be measured in J/(kg · K).
The value of c still depends upon the material of the body being 
heated or cooled. For water it is
c = 4180 J/(kg · K).

Exercises

1. A half liter of water is to be heated by  a 500-W immersion heater 
from 25°C to 100°C. How much time is needed for this? (1 l of water 
has a mass of 1 kg.)
2. How much energy is used in a five minute shower? 
First calculate how many l liters of warm water are used during the 
five minutes. Assume that 0.1 l per second of water comes out of the 
shower head. Also assume that the water flows into the water heater 
at 15°C and flows out again at 45°C.

ΔE = c · m · ΔT .
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12.1 Phase transitions
We put an immersion heater in a glass of water, turn it on and 
measure the temperature of the water, Fig. 12.1. While the immer-
sion heater is delivering entropy to the water, the water’s tempera-
ture increases, at least at first. When the temperature reaches 
100°C, the water begins to boil. The temperature does not increase 
anymore although the immersion heater continues to emit entropy. 
Why is that?

When water boils, liquid water transforms into gaseous water, or 
steam. The steam has the same temperature as the boiling liquid 
water, that is 100°C. The entropy added to the water is apparently 
used to vaporize the water. We conclude that steam contains more 
entropy than liquid water.
Steam can be further heated. To do so, it is conducted through a 
pipe which is heated from outside, Fig. 12.2. 

In Fig. 12.3, the temperature of 1 kg of water is plotted as a function 
of the entropy content of the water. This is over a larger span of 
temperatures than in 11.20(e). From the curve, we see that 1 kg of 
steam contains about 6000 Ct more than 1 kg of liquid water.

The diagram also shows that a similar phenomenon occurs during 
the change from the solid to the liquid phase. Liquid water contains 
around 1200 Ct more than solid water (ice). It is necessary to add 
1200 Ct of entropy to transform 1 kg of ice at 0°C into 1 kg of liquid 
water at 0°C (in other words, to  melt the 1 kg of ice). The opposite is 
also true: In order to transform 1 kg of water into 1 kg of ice, 1200 Ct 
must be removed. 

A comment about wording: It is said that a substance appears in 
various phases. Water has a solid, a liquid and a gaseous phase. 
The gaseous phase is called steam, or vapor. Steam is water in its 
gaseous form. There are also special words for the transitions be-
tween phases:
solid → liquid:! melting;
liquid → solid:! solidifying or freezing;
liquid → gas: ! vaporizing;
gas → liquid:! condensing.
Water is not the only substance that has various phases. Other sub-
stances have too. You are already aware that metals can melt. They 
can even be vaporized. All substances normally appearing in gase-
ous form can be liquefied and brought into the solid phase. Table 
12.1 shows the melting temperatures and boiling temperatures of 
some substances. 

There are many more phases than just “solid”, “liquid”, and “gase-
ous”. Substances usually have several solid phases that differ from 
each other in many of their characteristics. Some substances have 
many liquid phases with very distinct characteristics.

Exercises

1. Using Fig. 12.3, find out how much entropy is in 1 kg of steam at 
100°C and how much entropy is in 1 kg of liquid water at 100°C. By 
what factor is the value for the steam greater than the one for the liq-
uid?
2. How much entropy is needed to transform 10 l of liquid water at 
90°C into steam at 100°C?
3. 6000 Ct is necessary to melt an ice block. What is the mass of the 
ice block?
4. A quarter of a liter of carbonated water is cooled from 20 °C to 0 °C 
by using ice cubes. How much of the ice melts in the process? (Car-
bonated water is mainly water.)
5. The steam jet of an espresso machine is used to heat a glass of 
milk (0.2 l) from 15°C to 60°C. How many grams of steam are used? 
(Milk is essentially water.)

1 kg of steam contains about 6000 Ct  more entropy than 1 kg
 of liquid water.

Fig. 12.1
Despite continued supply of en-
tropy, the temperature stops in-
creasing at 100°C.

Fig. 12.2
The water vapor (steam) that has 
an initial temperature of 100°C, is 
further heated.

1 kg of liquid water contains about 1200 Ct more entropy than
 1 kg of ice. 

Aluminum 660,0 2450,0

Copper 1083,0 2590,0

Iron 1535,0 2880,0

Water 0,0 100,0

Ethanol -114,5 78,3

Oxygen -218,8 -183,0

Nitrogen -210,0 -195,8

Hydrogen -259,2 -252,2

substance
melting
temperature (°C)

boiling
temperature (°C)

Table 12.1
Some melting 
and some 
boiling 
temperatures
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Fig. 12.3
Temperature as a function of entropy content for 1 kg of water at p = 1 bar



12.2 Boiling and evaporating
We have seen that water begins to boil at 100°C. It transforms to the 
gaseous state at lower temperatures as well, but more slowly. This 
process is called evaporation. Here are the different expressions 
again: The change from liquid to gas is always called “vaporization”. 
If the vaporization occurs at boiling temperature, meaning that it 
happens quickly, it is called boiling. If it happens below boiling tem-
perature, meaning more slowly, it is called “evaporation”.  
Why does vaporization by boiling go quickly and vaporization at 
lower temperatures more slowly? How do the processes differ? We 
consider a water surface at various temperatures, Fig. 12.4.   

At a temperature of 20°C, there is a slight amount of water vapor 
just above the water’s surface. In order for the process of vaporiza-
tion to  take place, this water vapor must disappear upward. It must 
move up to  where the air contains less water vapor. The process by 
which a gas (in this case water vapor) “pushes through” another one 
(in this case air) is called diffusion. The second gas represents a 
great resistance to the motion of the first one. In our case this 
means that the water vapor can hardly move away from the water’s 
surface.  
When the temperature is higher, there is more water vapor above 
the surface of the water. The driving force for the process of diffu-
sion is greater and the water vapor moves away more quickly. 
Therefore, the liquid water can replace it more quickly and evapora-
tion goes faster.
Finally, at 100°C there is only pure steam directly above the surface 
of the water. In order for this steam to move away from the surface 
of the water, it does not need to push through the air any longer. It 
does not need to  diffuse, but can freely flow like water in a pipe or 
air moved by the wind. The vapor moves as quickly now as it can be 
replaced by the liquid water, and the water does this as quickly as it 
receives the necessary entropy for vaporization from the heater. 
We can now understand an interesting phenomenon. If air pressure 
is less than 1 bar (normal pressure), water boils at a temperature 
lower than 100°C. If air pressure is lower, the steam coming off of 
the water’s surface can completely displace the air sooner, i.e., at a 
lower temperature.  
This phenomenon can be observed in the mountains. On a high 
mountain where air pressure is lower, the boiling temperature of wa-
ter is lower than 100°C. Air pressure is about 0.5 bar at an altitude of 
5400 m. The boiling temperature of water at this altitude is 83°C.

Fig. 12.4
When water boils, the steam 
pushes the air above its surface 
away.



12.3 Phase transitions in nature and engineering
During a phase transition, a substance absorbs entropy at a con-
stant temperature, or it emits it, depending upon the direction of the 
transition. This fact is often applied in technology. It is also the ex-
planation for some interesting natural phenomena.

Latent heat and evaporative cold
When you climb out of a swimming pool, and especially when the 
surrounding air is moving, you are chilly. The water on your skin is 
evaporating. It needs entropy to do this and this is taken from your 
body. The evaporation goes more quickly when the water which 
evaporates is carried away by the moving air around you.

Hot steam is more dangerous than hot water
It isn’t really a problem when you get a little bit of 100°C water on 
your finger. It is worse if you get 100°C steam on it. In both cases, 
entropy is transported to the finger causing possible burns. Steam is 
more dangerous because the steam condenses on the finger giving 
up an additional amount of entropy to the finger.

Freezing mixtures
Salt water freezes at lower temperature than standard, pure water. 
We put a small piece of crushed ice (or snow) in a glass. We meas-
ure the temperature and find (as expected) 0°C. We now put a large 
amount of salt into it and stir. The temperature sinks to below –10°C. 
With the addition of the salt, the melting temperature lowers. A part 
of the ice melts. Entropy is needed for this. Because we do not sup-
ply entropy from outside, the ice-water mixture cools down. More ice 
melts and the temperature decreases further. This process contin-
ues until the temperature reaches the new melting temperature and 
then comes to a stop. 

Entropy storage
It is possible to store entropy by heating an object. When the en-
tropy is released from the object, it cools down. This method is used 
in so-called night storage heaters, Fig. 12.5. A night storage heater 
is composed mostly of ceramic stones. At night, when energy is 
cheaper, the stones are charged with entropy. They heat up to over 
600°C. During the day, the entropy is retrieved by blowing air past 
the hot stones.

It would be desirable to store the entropy, which is available abun-
dantly in summer for use in winter. The night storage heater method 
is not suitable for this because the stones cannot store much en-
tropy.
A method with more potential makes use of a phase transition. A 
substance is chosen whose phase transition from solid to liquid 
takes place at an acceptable temperature. About 50°C would be 
convenient. (A phase transition of liquid to gaseous cannot be used 
because gases take up too much room.) A large amount of the sub-
stance is melted during the summer months by solar entropy (and 
energy). In winter, the entropy is retrieved to heat a house. 
When the price for energy strongly increases in the future, this 
method for using solar energy could become a competitive alterna-
tive. 

Cooling drinks with ice
A soda can be cooled in a refrigerator. The entropy of the soda is 
pumped out by the refrigerator’s heat pump. Sometimes we wish to 
cool a soda, or at least keep it cool, while it is standing on a table. 
You know how it is done: You throw an ice cube in. Why don’t you 
just pour some cold water into the soda? This would be much less 
effective. The ice in the soda melts. In order to melt, it needs entropy 
and it gets it from the soda. The melting process takes as long as 
needed for the soda to reach 0°C (assuming there is enough ice in 
the glass).   

Liquid nitrogen
If something must be cooled to a much lower temperature, but there 
is no appropriate refrigeration machine available, liquid nitrogen can 
be used. It is also inexpensive. 
The boiling temperature of nitrogen is 77 K (–196°C). How can liquid 
nitrogen exist when the ambient temperature is much higher? It is 
stored in well insulated containers. The slight amount of entropy that 
escapes through the insulation results in a constant very slow boiling 
of the nitrogen. The temperature of the liquid nitrogen remaining in 
the container always stays at 77 K, exactly in the same way that 
boiling water remains at a temperature of 100°C. Liquid nitrogen can 
be stored for days like this. 

Transport of entropy with phase changes
Earlier we saw that transport of entropy by convection is more effec-
tive than by conduction. There is, however, a means of transport that 
works even better than normal convection, Fig. 12.6. The substance 
in the pipes is vaporized on the left by the entropy source. In the 
process it absorbs a lot of entropy. It then flows to  the right through 
the upper pipe. It condenses in the coil on the right and gives up the 
entropy it had absorbed. Earlier central heating units functioned with 
this principle and were called steam heaters. They had some disad-
vantages though: They were hard to control and unpleasant noises 
occurred in the radiators during condensation of the steam. 

Today, this method is mostly used by heat pumps, as they are found 
in refrigerators. The coolant vaporizes in the coiled pipe inside the 
refrigerator, absorbing entropy in the process. In the coil on the out-
side it condenses and emits the entropy. (In order for condensation 
to occur where it is hotter, and evaporation where it is colder, a 
compressor is used to keep the pressure higher at the warm side, 
and lower at the cold side.)
Nature also uses this way of transporting entropy. Constant evapo-
ration and condensation processes take place in the atmosphere. 
When water evaporates, the temperature decreases. The vapor is 
carried away by winds to another place where it condenses making 
that place warmer. 

Fig. 12.5
Night storage heater

Fig. 12.6
On the left, a substance is vapor-
ized. In the process, it absorbs a 
lot of entropy which it emits during 
condensation on the right.



13
Gases



13.1 Gases and condensed substances
Substances can be solid, liquid or gaseous.
The liquid and the gaseous phases have something in common: 
Liquid and gaseous substances can both flow. When the wind 
blows, when a fan or hairdryer is running, air flows. Water flows in 
rivers and streams as well as in the oceans. It flows when we turn 
on the water faucet. Because liquid and gas flows have a lot in 
common, they have been combined into one class of substances 
called fluids. Fluids are considered the opposite of solids. 
However, solid substances have some characteristics in common 
with liquids. These are characteristics which differentiate them from 
gases. As we have learned earlier, solid and liquid substances have 
much higher densities than gases. For this reason, solid and liquid 
substances are often classified together and are called condensed 
substances. Condensed substances are the opposite of gases, Fig. 
13.1.

In the following, we will be interested in further characteristics which 
differentiate gases and condensed substances.

The tendency to disperse 
We pump the air out of a glass container and drip a little water into 
it, Fig. 13.2. The water falls downward just as it would in a non-
evacuated container. We repeat the experiment but let air instead of 
water into the container. In order to see where the air goes, we let it 
flow through a cigarette first (finally, something a cigarette is good 
for). These experiments show:

Simplification is often necessary when something should be ex-
pressed briefly. The sentence above is just such a simplification. The 
statement is valid most of the time, but not always. For instance, it is 
invalid for the air above the surface of the Earth. In theory, this air 
could disperse into  all of outer space but it does not leave the Earth. 
Why not?

Compressibility
There is air in a cylindrical container with a movable piston. When 
the piston is pushed in, the air is compressed, Fig. 13.3a. If there is 
water in the container instead of air, Fig. 13.3b, the piston cannot be 
pushed in. Water cannot be compressed. However, if you look very 
carefully, you can make out a tiny amount of compression that is so 
small it can be ignored for most purposes.

Even when a solid object is also put in the water, Fig. 13.3c, the pis-
ton cannot be pushed in because solid objects are (almost) incom-
pressible. Some solid bodies give the impression of being slightly 
compressible. Foam is an example of this. but it is the air in the 
pores of the foam and not the solid substance itself that is com-
pressed.   
We summarize our observations as follows:

“Compression” means that the volume of a given amount of sub-
stance is reduced while retaining the same mass. The formula 
ρ = m/V shows that the density of a substance increases when it is 
compressed. It is possible to increase the density of a compressible 
substance by raising the pressure. If a substance is incompressible, 
raising the pressure will not result in any change of density. We can 
summarize this as follows:

This fact has interesting consequences. For example, the density of 
water in a lake does not increase as one goes downward although 
the pressure does. The density of the water is just about the same 
no matter what the depth is. This is about 1000 kg/m3. It is a differ-
ent story, however, with the air above the Earth’s surface. Air pres-
sure decreases with altitude, and as a result, so does the density. 
For this reason, breathing becomes more and more difficult for peo-
ple climbing high mountains.

Thermal expansion
Gases and condensed substances react differently when entropy is 
added to them.
If a solid body is heated, its volume hardly changes. The same is 
true for liquids. It is different with gases, though. If air is heated in a 
container open at the top, Fig. 13.4a, it expands strongly and “over-
flows”. Because air is invisible, this overflowing cannot be seen. 
However, a trick can be used to make it visible, Fig. 13.4b. 

Exercises

1. Why do bicycles have tires filled with air? Why aren’t the tires filled 
with water?
2. Fig. 13.5 shows a hot air balloon. The balloon is open at the bot-
tom. The air in it is heated by a gas flame. Why does the balloon rise 
upward?

Gases fill the entire space available to them, condensed sub-
stances do not. 

Fig. 13.1
Two types of classification of sub-
stances

 solid            liquid
condensed  

 

               gaseous
fluid

  

Fig. 13.2
Gases take up all the room avail-
able to them. Liquids do not.

Fig. 13.3
Gases (a) are compressible, liq-
uids (b) and solid substances (c) 
are not.

a b c

Gases can be compressed, condensed substances hardly 
at all.

Gases expand when entropy is added to  them, condensed 
substances hardly at all.

The density of gases increases with increasing pressure, the 
density of condensed substances does (almost) not.

Fig. 13.4
Gases expand when entropy is 
added to them. In the experiment 
on the right, overflowing of air 
from a container is shown visually.

a b

Fig. 13.5
Hot air balloon (for Exercise 2)



13.2 Thermal properties of gases
In the previous section we have compared gases to condensed sub-
stances. From now on we will deal only with gases. They are more 
interesting than condensed substances with regard to thermal prop-
erties. 
First we will again add entropy to a gas. This time we hinder it from 
expanding by keeping it in a container with a fixed volume, Fig. 13.6. 
The manometer shows that the pressure increases while entropy is 
being added. We can summarize this observation and the last one 
from the previous section as follows: 

The temperature of the gas increases in both cases.

These processes can be symbolically described by indicating 
whether the four quantities, entropy, temperature, volume, and pres-
sure, stay constant, decrease, or increase: 
S  ↑!! T  ↑	
 	
 V  ↑	
 	
 p = const! (1)
S  ↑!! T  ↑	
 	
 V  = const	
 p ↑	
 	
 (2)
Once again, we compress the air in a cylinder. This time we meas-
ure the temperature, Fig. 13.7. We find that the temperature in-
creases as the air is compressed. If the air is allowed to  expand, the 
temperature goes down again.

This behavior is plausible because the entropy in the air is com-
pressed into a smaller space as well. A lot of entropy in a small 
space means a high temperature.

Expressed in symbols, the result  is
S = const! T  ↑	
 	
 V  ↓	
 	
 p ↑	
 	
 (3)
The expressions (1) to (3) describe various processes that can be 
carried out with gases. Of course, the reverses of these three ex-
pressions are also true. The reverse of (1) is:   
S  ↓!! T  ↓	
 	
 V  ↓	
 	
 p = const!
In each of the processes (1) to (3), a different quantity is kept con-
stant. In (1), it is the pressure, in (2) the volume, and in (3) the en-
tropy. The only process missing is the one where the temperature 
stays constant. This process is also  easy to perform. It is enough to 
compress the gas of Fig. 13.7 very slowly, Fig. 13.8. Actually, the 
compression would cause a rise in the temperature but if we push 
only very slowly, the temperature can constantly adjust to the tem-
perature of the environment. In the process, entropy flows from the 
gas into the environment. Therefore, there is less entropy in the air 
at the end than before. Expressed in symbols, we obtain:
S  ↓!! T  = const	
 V  ↓	
 	
 p ↑	
 	
 (4)

This statement is also interesting. It fits together with something we 
experienced earlier: The larger the volume of a portion of a sub-
stance is (at constant mass and temperature), the more entropy it 
contains. We encountered this behavior with the phase transition 
from liquid to gas. At the same temperature, the gas (large volume) 
contains more entropy than the liquid (small volume).  
In Fig. 13.9, the four processes (1) to (4) are once again summa-
rized along with their reverse processes.

Exercises

1. We need a bottle that can be well sealed and a bowl with hot water 
and a bowl with cold water (the two sections of a kitchen sink will do). 
a) The air in the open bottle is cooled by  the cold water. Then the 
bottle is sealed and pushed down into the hot water. The cap on the 
bottle is slightly  loosened so that it no longer sealed. What happens? 
What is your explanation?
b) The air in the open bottle is heated by the hot water. Then the bott-
le is sealed and pushed down into the cold water. The cap  on the 
bottle is slightly loosened so that it is no longer sealed. What hap-
pens? What is your explanation?
2. There are equal amounts of the same gas at the same temperature 
in two containers. The same amount of entropy is added to both the 
gases.  In one case the volume is kept constant, and in the other one 
the pressure is kept constant. Is the change of temperature in both 
gases the same? If not, which container has the greater change of 
temperature? Does the temperature go up or down? Give reasons!
3. How can the temperature of a gas be lowered even when entropy 
is being added to it?

The temperature of a gas increases if its volume is reduced.

If entropy is added to a gas at constant pressure, the volume 
increases.
If entropy is added to a gas with constant volume, the pressure 
increases. 

Fig. 13.6
If entropy is added to a gas at 
constant volume, the pressure 
increases.

Fig. 13.7
When a gas is compressed, its 
temperature increases.

Fig. 13.8
When the piston is pushed very 
slowly into the cylinder, entropy 
escapes from the gas.

Fig. 13.9
Symbolic representation of 
four processes. In each of 
them, one of the four quanti-
ties S, T, V, and p is kept 
constant.

S  ↑ T  ↑ V  ↑ p  = const 1a

S  ↓ T  ↓ V  ↓ p  = const 1b

S  ↑ T  ↑ V = const p  ↑ 2a

S  ↓ T  ↓ V = const p  ↓ 2b

S = const T  ↑ V  ↓ p  ↑ 3a

S = const T  ↓ V  ↑ p  ↓ 3b

S  ↓ T = const V  ↓ p  ↑ 4a

S  ↑ T = const V  ↑ p  ↓ 4b



13.3 The operating mode of heat engines
In section 11.4 we saw that in a heat engine, entropy goes from a 
higher to a lower temperature and in the process ‘drives’ something. 
This is similar to how water in a water turbine goes from high to  low 
pressure and drives something. 
How can entropy be brought from a higher to  a lower temperature in 
order to set something in motion?
It is no problem to bring entropy from a higher to a lower tempera-
ture without driving anything. This tends to happen by itself. One lets 
entropy simply ‘slide down’ a heat conductor from a higher to a 
lower temperature (see Section 11.3). The energy that one would 
like to transfer to  a useful energy carrier, angular momentum, for ex-
ample, goes away along with the newly produced entropy. It is 
wasted.
How can we bring entropy from a high to a low temperature without 
producing more entropy? Since we know the thermal characteristics 
of gases, this is no longer a problem for us. Fig. 13.10 shows how it 
is done. 

The entropy is put into a compressed gas, and then the gas is al-
lowed to expand. According to line (3b) in Fig. 13.9, the temperature 
falls and at the same time, the piston is pushed outward. The energy 
released by the entropy exits through the rod of the piston and to  a 
crank that sets a drive shaft in motion. 

This is the basic idea behind all heat engines. There are a number 
of various technical implementations of this idea: steam engines, 
steam turbines, gasoline engines, diesel motors, jet engines, and 
more. 
We will take a closer look at two of these machines. First, the steam 
engine because it has played a very important role in the past, and 
second, the gasoline motor because most cars are driven by one.

The reciprocating steam engine
The biggest problem to be solved in the realization of a machine 
built upon the principle of Fig. 13.10, is getting the entropy into and 
out of the machine quickly. In no way does it function as suggested 
in Fig. 13.10, namely that entropy is let flow by normal heat conduc-
tion into the cylinders. That would go much too slowly. We already 
know a trick for getting entropy quickly from one place to  another 
which is convection. It is done just this way in steam engines. 
The gas is heated up outside the cylinder and then allowed to flow 
along with its entropy into the cylinder. It expands there, at the same 
time supplying energy to the piston. Afterwards, it is released from 
the cylinder together with its entropy.
Fig. 13.11 shows the details of this process for a steam engine. The 
gas used is steam. The steam is produced in a boiler and then 
,overheated’. The slide valve controls the steam inlet and outlet of 
the cylinder. At first, the piston is all the way on the left (Fig. 13.11a). 
New hot steam flows from the left into the left-hand part of the cylin-
der. After the piston moves a little to the right (Fig. 13.11b), the 
steam inlet is closed. The steam pushes the piston further to the 
right expanding as it does so. Pressure and temperature both go 
down. The piston reaches the right-hand turnaround point (Fig. 
13.11c), and begins to move back. In the meantime, the outlet has 
been opened. The expanded, cooled steam is pushed out along with 
its entropy. 

Corresponding processes take place on the right-hand side of the 
piston. The steam on the right side pushes the piston to the left.
The parts of such a steam machine are easily recognizable in a 
steam locomotive, Fig. 13.12.

The Otto engine
In this case, the trick of getting entropy quickly into the cylinder is to 
produce it there by burning a mixture of gaseous gasoline and air. 
This combustion takes place explosively or in other words, very fast.
The cylinder must first be filled with the combustible gasoline and air 
mixture. This can be done by initially letting the engine work as a 
pump for one revolution. 
Each half revolution of the drive shaft is called a stroke. Charging 
the engine or pumping, takes two strokes. During the aspiration 
stroke, the gasoline and air mixture is sucked into the cylinder, Fig. 
13.13a. It is then compressed during the compression stroke, Fig. 
13.13b. At this point, the piston is at the upper dead center position 
and it is ready to work, Fig. 13.13c. The gasoline and air mixture is 
ignited by an electric spark produced by the spark plug. It burns in-
stantly. Entropy is produced in the process and temperature and 
pressure strongly increase. Now the hot gases push the piston 
downward whereby temperature and pressure decrease. This stroke 
is called the working stroke, Fig. 13.13d. Afterwards, during the ex-
haust stroke, the exhaust gases are pushed out the exhaust pipe 
along with their entropy, Fig. 13.13e. 

Such a single cylinder engine works only one quarter of the time, as 
you see, i.e., during the working stroke. The three other strokes run 
on momentum. An Otto engine works more smoothly when it has 
several cylinders that work alternately. Most car engines have four 
cylinders. When this kind of engine is running, at any given moment 
one of the cylinders has its working stroke.   
An Otto engine needs a series of auxiliary devices:
– A carburetor where the gasoline is evaporated and mixed with air;
–! the fuel pump that transports the gasoline from the tank to the 

carburetor;
–!spark coils and interrupters for producing the high electric voltage 

needed for the spark;
–! the ignition distributor which sets the high voltage for the correct 

spark plug.

Exercises

1. Imagine the “working substance” in the heat engine of Fig. 13.10 is 
not a gas but a liquid. Would the engine work? Give reasons!
2. A  diesel engine is built very similarly to an Otto engine. The differ-
ence: It has no spark plugs. The diesel fuel/air mixture ignites by it-
self. How is this possible?
3. Instead of closing the steam inlet of the cylinder of a reciprocating 
steam engine after it has moved a little to the right, it could be left 
open until the piston has moved all the way to the right. The engine 
would be stronger and would give off more energy. This mode of op-
eration is possible in steam locomotives. It is used to start motion and 
to move uphill. What is the disadvantage of this mode of operation?

A gas is allowed to expand in a heat engine. In the process, the 
pressure and temperature of the gas go down and the gas sup-
plies energy.

Fig. 13.10
Operation mode of heat engines.  
(a) Entropy is introduced into a 
compressed gas. (b) The gas re-
laxes, its temperature goes down 
and it supplies energy. (c) The 
entropy is given away at a lower 
temperature.

a b c

Fig. 13.12
A steam locomotive

Fig. 13.13
An Otto engine at five points of its working cycle

Fig. 13.11
A reciprocating steam engine at 
three different points in time.



13.4!Why the air above the Earth’s surface gets
cooler with altitude

It is colder on top of a high mountain than down in the valley. The 
higher one climbs, the lower the temperature. For every 100 meters 
of altitude gained, the temperature sinks about 0.6 °C. In airplanes, 
the captain often announces impressively low outside temperatures. 
For an airplane at 10,000 m altitude, it is about –55°C.
How can these low temperatures be explained? Shouldn’t the tem-
perature differences above and below balance out? As we know, en-
tropy flows from places of higher temperature to  places of lower 
temperature. There is an obstacle in this case, though. Entropy 
flows only when the resistance is not too great, and air is a highly in-
sulating material. A few millimeters of air between the layers of glass 
in a double glazed window is already very effective. There is a layer 
of air between the upper and lower parts of the Earth’s atmosphere 
which is several kilometers thick. Temperature equalization by heat 
conduction is practically impossible because of this. 
How does this temperature difference come about? We must apply 
our knowledge of the thermal characteristics of gases. The air in the 
Earth’s atmosphere is in constant motion. In the next section we will 
see what causes this. For the moment, let us just imagine that 
someone is constantly stirring it up.
We consider a certain portion of the air that is moving downward. It 
is compressed because pressure increases in the downward direc-
tion. Because the amount of entropy in the portion of air remains the 
same, the temperature must rise according to line (3a) of Fig. 13.9.
Exactly the opposite would happen with a portion of air that is mov-
ing upward: the temperature goes down.
A certain amount of air with a certain amount of entropy changes 
temperature by moving upward or downward. Further up, it is cooler, 
and further down, it is warmer. To every altitude belongs a certain 
temperature.



13.5 Thermal convection
Warm air rises, as everyone knows. Why is this? The explanation is 
easy now that we have become experts on the thermal properties of 
gases. We consider the radiator of a central heating unit. The air 
near the radiator is heated and expands (see section 13.2). In the 
process, its density becomes less than that of the unheated air 
around it. The heated air tends to move upward (see section 4.8). 
That is basically all there is to it.
Now, after the air has moved upward, something more happens with 
it. It gradually gives its entropy into the surrounding unheated air and 
objects in the room, cooling down while doing so. Its density in-
creases again, and it is displaced by the freshly heated air rising 
upward. It flows downward again and replaces the warm, rising air. 
In short: It circulates, Fig. 13.14. This kind of constant flow process 
is called thermal convection.

Thermal convection is responsible for many entropy transports in 
nature and technology. We have just looked at an example of this. 
Thermal convection makes sure that the entropy emitted by the ra-
diator is distributed over the entire room.  
Thermal convection plays an important role in the creation of winds. 
Some wind systems are produced in very complicated ways, but in 
other cases, simple thermal convection is responsible.
An example is a sea breeze. This is a wind that blows from the 
ocean to land during the day. Solar radiation greatly increases the 
temperature on land, but the temperature of the water only rises a 
little. This is because the entropy distributes over a much greater 
depth in water than on land. The air over land expands, becoming 
less dense and rising Fig. 13.15. Air flows from the ocean (where it 
is not expanding), in the direction of land. The air from land flows 
back to the ocean at a few hundred meters elevation where it sinks 
again. The Earth’s surface which is heated by the Sun corresponds 
to the radiator in our last example. 

Temperature differences that lead to different heating of air are not 
only to be found between land and ocean, but on many other places 
on the surface of the Earth. Wherever there is a place where the 
Earth is warmer than its surroundings, an updraft occurs. If the place 
is cooler than its surroundings, there is a downdraft. 
The updrafts that occur in warm places (so called thermals) are of-
ten used by birds and gliders for rising through the air.
Trade winds are an example of thermal convective flow, Fig. 13.16. 
Air is strongly heated near the equator. It rises and flows at a high 
elevation to the north and to the south, in other words, to areas that 
are cooler. Near the 30th parallel (north and south), it sinks again 
and flows back to the equator. This back-flow in the direction of the 
equator constitutes the trade winds. 

Now we want to look at thermal convection from another viewpoint. 
Air at a low elevation absorbs entropy and then rises. The tempera-
ture of the rising air decreases upwardly because its density de-
creases. It then gradually releases its entropy because it is at a 
higher temperature than its surroundings. It now emits its entropy at 
a lower temperature than the one at which it absorbed it. 
The same thing happens with the air as with the working fluid in a 
heat engine. Entropy is absorbed at a high temperature and re-
leased at a lower one. Every thermal convective flow can be consid-
ered a heat engine where no drive shaft is set in motion but air is 
moved.  
Finally, energy is often taken out of moving air by windmills, wind 
turbines, and sailboats. The energy of convective flow in a room 
could be used to turn a pin wheel.

Exercises

1. Liquids expand only  very slightly when entropy is added to them. 
However, this slight expansion is enough to set thermal convective 
flows in motion. Give an example. Where is entropy added to the liq-
uid, and where is it removed?
2. Why does the flame of a candle point upward from the wick and not 
downward?

Fig. 13.16
 How the trade winds are created

Fig. 13.14
Thermal convection in a heated 
room

Fig. 13.15
The Sun heats up the land mass 
greatly, but the ocean only a little. 
Convective currents are created.



14
Light



14.1 Transport of entropy through empty space
A hot object normally cools down all by itself. Its entropy flows into 
the surroundings: into the air and whatever it is standing upon. We 
now wish to prevent this cooling. One might think this is very easy. 
We only need to put the object into a vacuum, Fig. 14.1. Entropy 
cannot leak out through the air, because there is no air. We hang the 
object (we will call it G) from long thin threads leading only to a very 
slight heat leak.

We now observe something remarkable. First, the bell jar becomes 
noticeably warmer and second, object G cools down (which we can 
confirm if we take G out of the bell jar). In other words: The entropy 
has left the hot object although no heat conductor was available.  
Actually, the experiment could be done by placing G into empty 
outer space. It would cool down there too. 
The entropy is apparently able to move through empty space 
through some invisible connection or with an invisible carrier. It is 
easy to discover how this occurs and what the carrier is, if G is 
heated until it glows. When it glows, it emits something we all know, 
light. Light passes through empty space particularly easily. For ex-
ample, it travels the 150 million kilometers between the Sun and the 
Earth with almost no loss. The light from the object carries the en-
tropy. Therefore, the radiating object constantly emits entropy. 
However, our problem is not quite solved yet. Object G wasn’t glow-
ing. It wasn’t radiating any light. Or was it?
We must now learn a few things about light.

Fig. 14.1
Object G cools although it is in a 
vacuum. 



14.2 Types of light
We send a thin ray of sunlight (or the light of a strong light bulb or an 
arc lamp) through a glass prism; then we let it fall on a white screen 
behind the prism. What we see there is not a white spot, as might be 
expected, but a colorful stripe, a spectrum, Fig. 14.2. 

The light of the Sun and the light of the lamp are made up of various 
kinds of light. These various kinds of light create different color per-
ceptions in our eyes. When all types of light mix in our eyes, we see 
“white”. 
The prism diverts these different types of light more or less strongly 
thus splitting the light. Red light is the least diverted followed by or-
ange, yellow, green, and then blue. Violet light is the most strongly 
diverted. 
The light that we can make out with our eyes is only a very small 
portion of all the kinds of light that occur in nature and that people 
can create with technology. There are many other kinds of light than 
visible light. We just have no sensory organ to  detect them. All of 
these kinds of radiation, visible and invisible, are called “electro-
magnetic radiation”.
Even sunlight and lamplight contain invisible radiation. It is also di-
verted by the prism. It can be detected with special devices. One 
finds that there is “light” that is more strongly diverted than violet. 
This is called ultraviolet radiation. There is also “light” which is less 
diverted than red. It is called infrared radiation.
The temperature of a body determines what types of light it radiates 
and how much it radiates.
The hotter an object is (the higher its temperature) the more light it 
radiates. Only at a temperature of 0 K does it cease to radiate.
Moreover, the composition of the radiation shifts when the tempera-
ture of the radiating body is changed. The Sun’s surface has a tem-
perature of around 5800 K. The light it radiates is mostly visible light. 
The filament of a light bulb has a temperature of about 3000 K. The 
fraction of infrared light in its radiation is larger than the visible one. 
If a body has a temperature of 1100 K (about 800°C), it is red hot. 
Only red remains of visible light, most of the light is infrared. Below 
900 K (about 600°C), the object emits only infrared light.  

The higher the temperature of a body, the more electromag-
netic radiation it emits.
At the temperature found on the Sun’s surface (5800 K), most 
of the radiation is made up of visible light. The lower the tem-
perature of the radiating body, the lower the portion of visible 
light and the greater the fraction of infrared light. Below 900 K it 
emits only infrared light.

Fig. 14.2
White light is divided into its com-
ponents by means of a glass 
prism.



14.3 Transport of entropy and energy with light
We return again to our body G which is cooling in a vacuum. We 
have stated that G emits visible or invisible light that is able to trans-
verse the vacuum. The entropy emitted by G in cooling, must be car-
ried away with the light.   
We already know that entropy is an energy carrier. Whenever and 
wherever entropy flows, energy is also flowing. The cooling body 
emits entropy as well as energy with the light. 

One might draw a wrong conclusion from the observations we just 
made. If every body radiates entropy as long as its temperature is 
greater than 0 K, it should continuously cool down until reaching 0 K 
(if it is in a vacuum). This does not happen. In fact, just the opposite 
does. If the temperature of body G is brought to  a temperature less 
than the temperature of its surroundings and is then put into a vac-
uum (as in Fig. 14.1), it does not cool down but warms up. 
It heats up although it is emitting entropy. How can this be ex-
plained? We have forgotten to take something into account. It is not 
only our object that radiates, but so do the objects in the surround-
ings. G emits entropy along with the radiation but it also absorbs en-
tropy with the radiation emitted by the objects surrounding it. If G’s 
temperature is higher than that of its surroundings, it emits more en-
tropy into the surroundings than it receives, Fig. 14.3a. If its tem-
perature is lower than that of the objects nearby, it receives more 
entropy than it emits, Fig. 14.3b. In both cases, the final state is the 
same: The temperatures equalize, reaching thermal equilibrium.

Exercise

A body K is put between two parallel walls A and B. These walls have 
different temperatures TA and TB , see Fig. 14.4. TA is higher than TB.
a) What can be said about the temperature that K reaches? 
b) What can be said about the energy currents between the walls 
themselves and between the walls and K?

Light (visible and invisible) carries entropy and energy.

Even when transport of entropy occurs with electromagnetic 
radiation, the (net) entropy current flows from places of higher 
to  places of lower temperature.

Fig. 14.3
Even in a vacuum, the bodies ad-
just to thermal equilibrium.

Fig. 14.4
For the exercise



14.4 The temperature of light
The light emitted by a body has the same temperature as the body 
itself. This means that the light coming from the surface of the Sun 
has the same temperature as the surface of the Sun, about 6000 K. 
This statement appears implausible at first because if sunlight has 
this temperature, wouldn’t it immediately burn everything exposed to 
it? If it has this temperature, it should be measurable by putting a 
thermometer in the sunlight.  
In order to solve this problem, we must look more closely into how to 
use a thermometer correctly. The object or substance we wish to 
measure the temperature of must be put in contact with the ther-
mometer. If we put a thermometer in the solar radiation, the ther-
mometer is in contact with the sunlight. The sunlight “touches” the 
thermometer, but the thermometer is also touched by other things. 
First, there is the air. The air, as well, touches the thermometer. 
Whose temperature does the thermometer show? That of the air or 
that of the sunlight? The thermometer makes a compromise and 
shows a temperature that is neither that of the air nor that of the 
sunlight. 
One can try to  help the situation by putting the thermometer in a 
transparent vacuum container. The temperature it now shows is still 
far from the expected 6000 K. This is not surprising because we 
have forgotten something else. The thermometer again makes a 
compromise. The thermometer is in contact with not only the sun-
light, but also with the infrared radiation of the environment. This ra-
diation has the temperature of the surrounding area, about 300 K. 
While the Sun’s radiation falling upon the thermometer comes from 
only a narrow direction, the 300 K light comes from almost all direc-
tions, Fig. 14.5. It is normal that in this case as well, the measure-
ment greatly favors the ambient temperature. 

How then can we measure the temperature of sunlight? One must 
make sure that the sunlight falling upon the thermometer does not 
only come from one narrow direction, but from every direction. This 
can be achieved with the help of lenses or mirrors, Fig. 14.6. If the 
Sun can be seen in every direction from the thermometer, it will 
show the temperature of the Sun. Naturally, our standard thermome-
ters are useless for this.

You know that very high temperatures can be generated with a lens 
or so-called burning glass by concentrating sunlight onto a small 
spot, possibly on a piece of wood. The process can be described as 
follows: One attempts to expose all sides of the wood to the light so 
that the wood takes upon the temperature of the light. Actually, the 
light coming from a burning glass does not reach the wood from all 
sides. The wood reaches a very high temperature, but not anywhere 
near that of the light.

Fig. 14.5
The sunlight comes only from a 
narrow domain of directions. From 
all the other directions infrared 
light arrives.

Fig. 14.6
The parabolic reflector makes 
sure that sunlight of all directions 
falls on the thermometer.



14.5 Entropy and energy balances of the Earth
The Earth constantly receives entropy and energy with the light from 
the Sun.
The intensity of the energy current coming from the sun and falling 
upon one square meter of the Earth is an important number which is 
easy to remember. It is just about 1 kW. The solar constant is said to 
be 1 kW/m2. The 1 square meter surface being considered must be 
perpendicular to  the direction of the sunlight, Fig. 14.7. If this surface 
is at an angle, it will naturally receive less than 1 kW. This solar con-
stant value only holds for a cloudless sky.   

If the Earth did not emit any entropy or energy, it would continuously 
warm up, but it does not warm up. It is easy to see how the Earth 
keeps its temperature constant. The Earth’s temperature is not 0 K, 
so it emits infrared light that carries entropy and energy away with it.  
Sunlight reaches Earth from just one side, while the Earth itself radi-
ates in all directions, Fig. 14.8.

The Earth does not heat up or cool down so  the energy current flow-
ing out must be exactly as strong as the one flowing in:
Pout = Pin

It isn’t as simple with entropy, however. A lot of entropy is created on 
Earth. This means that the light radiating from the Earth must carry 
more entropy than the sunlight falling upon it does. The infrared light 
being radiated into outer space must carry away not only the entropy 
coming from the Sun but the entropy created on Earth as well. In 
this way the amount of entropy on Earth remains constant:  
IS out = IS in + IS produced

The energy and entropy balances of Earth are described by the 
same equations that were used for the balances of the rod in Fig. 
11.7 in section 11.3. 
The Earth can also be compared to  a heated house. The heater 
constantly delivers a certain energy current and a certain entropy 
current. The entire energy current flows out of the house again 
through leaks. Both the entropy created by the heater and the en-
tropy created in the house and in the walls flow out with the energy 
current. 
The fact that the entropy current flowing away from the Earth or 
house adjusts to  a value which is constant over time, means that we 
have a steady-state.

Solar constant:  1 kW/m2

Fig. 14.7
An energy current of 1 kW hits a 
one square meter surface per-
pendicular to the direction of the 
sunlight.

Fig. 14.8
The Earth gets sunlight from a 
very narrow domain of directions, 
and it radiates in all directions.



14.6 The greenhouse effect
As we know, the atmosphere allows visible light to pass through. (If 
this was not the case, it would be dark both night and day). Infrared 
radiation has a much harder time getting through the atmosphere. 
Carbon dioxide (present in small amounts) is at fault for this. Carbon 
dioxide, in chemical symbols CO2, is a kind of insulating material for 
infrared radiation. We will now investigate what would happen if the 
amount of CO2 in the atmosphere were to rise for some reason.
The sunlight coming in would be untouched by this. The Earth would 
be heated by the Sun as before. However, heat loss would be less-
ened because the radiation cannot flow out as well as before, and 
the temperature would increase. Higher temperatures mean more 
radiation. The radiation would gradually increase for as long as 
needed to reach the old value, i.e., until the energy currents flowing 
in and out are again the same. The new “steady-state” would differ 
from the old one (before the CO2 content was raised) in its tempera-
ture. The temperature would now be higher. 
The higher the CO2 content of the atmosphere, the higher the aver-
age temperature the Earth adjusts to.
To make this clear, we will once again compare the Earth to a 
heated house. If the insulation of the house is made better, but the 
house is heated like before, the house will reach a higher tempera-
ture. At this higher temperature, the energy current flowing out of the 
house through the heat leaks is exactly as strong as the energy cur-
rent emitted by the radiators. 
The CO2 content of the atmosphere is about 0.03% (0.03% of air 
molecules are CO2 molecules). Presently, the fraction of CO2 is in-
creasing greatly. This is a result of burning coal at power plants, 
from heating oil in central heating units of houses and from fuels 
(gasoline and diesel oil) for automobiles. Carbon dioxide is used up 
by plants. In the process they produce oxygen. This decomposition 
process by plants is currently decreasing because the tropical rain 
forests are being continually deforested. For these reasons, it can 
be expected that the Earth’s temperature will increase in the next 
decades. Even when this increase is only a few degrees, it can have 
devastating consequences. It could happen that parts of the polar 
ice caps melt resulting in a higher sea level. The ocean would then 
flood large areas of land.
When the atmosphere lets sunlight through unhindered, but does 
not let the infrared radiation from the Earth through, we have what is 
called the greenhouse effect. The same thing happens in green-
houses. In this case, though, glass plays the role of the atmosphere. 
Glass also allows visible light to pass through, but not infrared radia-
tion. It holds back the infrared radiation produced in the greenhouse, 
creating a higher temperature than the one it would have if the infra-
red radiation could pass through it.

Exercise

If the CO2 content of the Earth changes, the Earth adjusts to a new 
temperature. We had a very  similar situation in Chapter 4. The air re-
sistance of a body was changed. As a result, the velocity  of the body 
adjusted to a new velocity. What process was taking place? Compare 
both phenomena.
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