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Gravitation is still taught largely in a way that suggests the existence of action-at-a-distance. A theory
without such shortcomings, gravitoelectromagnetism, was proposed by Heaviside in 1893, but it did
not become well-established because many effects it describes are very small and the later emergence
of general relativity seemed to make a theory of gravitoelectromagnetism superfluous. We argue
that gravitoelectromagnetism still retains relevance in the physics curriculum because it by no

means describes only tiny effects and does not demand the mathematical level of general relativity.
© 2022 Published under an exclusive license by American Association of Physics Teachers.
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I. INTRODUCTION

Anyone teaching gravity who does not wish to invoke
general relativity does so in essentially the way Newton for-
mulated it. Newtonian mechanics originated at a time when
there was no concept of physical fields and one had to be sat-
isfied with invoking action-at-a-distance. Similarly, Newton
did not say anything about energy for it did not yet exist as a
physical quantity, and even after it was introduced, it could
not be localized; that is, it was not possible to specify an
energy density and an energy current density until about the
end of the 19th century (Ref. 1, pp. 1180-1181). Even today,
the language of energy still retains the fingerprints of its
action-at-a-distance origins: If a body is lifted, we say that
the potential energy of the body increases, knowing full well
that this energy is not stored within the body.> We can cir-
cumvent action-at-a-distance by speaking of a “gravitational
field,” but this leaves unanswered questions as to its energy
content, mechanical stress, and how the energy flows within
the field. One does not typically discuss, for example, the
energy density of the field or what path the energy takes
from the field to a falling body.

The later development of the field concept by Faraday and
Maxwell in the theory of Electromagnetism (EM) could have
served as a model for a more modern theory of gravitation.
Such a theory, Gravitoelectromagnetism (GEM), was in fact
formulated by Heaviside and is structured in close analogy
to Maxwell’s theory.” GEM closes the gap between
Newtonian mechanics and general relativity. Like EM in
vacuum, GEM operates with two field strengths. One of
them is the gravitational field strength g, which is also called
the gravistatic field strength and whose source is the mass
density; this is analogous to the electric field strength E,
whose source is the electric charge density. The other is the
gravinetic field strength b, whose source is the mass current
density; this is analogous to the magnetic B-field, whose
source is the electric current density. We have adopted the
terms gravistatic and gravinetic from Krumm and Bedford.*

While it is common to introduce g when treating gravita-
tion, the gravinetic field strength b is not usually mentioned
because its effects are typically miniscule. As an example,
we consider the rotating Earth, which generates a b-field and
thus exerts a force on, say, an airplane. If we assume that an
aircraft of 400 tonnes (400000kg) is flying at 1000km/h
due east at the equator, this results in a “gravitational
Lorentz force” of about 1 uN; that is, the aircraft effectively

410 Am. J. Phys. 90 (6), June 2022 http://aapt.org/ajp

becomes about 0.1 mg lighter. This calculation is detailed in
Appendix A.

In our opinion, the smallness of GEM effects should not
be an argument against introducing students to b. The
action of the gravitational Lorentz force is an interesting
phenomenon and gives us a better understanding of gravita-
tion by revealing an analogy. A more important reason to
introduce b is that it is a factor in the energy current density
of the gravitational field, and here, its effect is not at all
tiny. The reason for this is that while b enters quadratically
into the forces (i.e., the momentum currents), it enters linearly
into the energy current. Thus, we believe that GEM still has
merit today and that it deserves a place in the pedagogical cur-
riculum. Several other authors have advocated this as well;
see, for example, Refs. 4 (p. 362), 5 (p. 889), and 6 (p. 422).

In Sec. II, we compare the equations of GEM with those
of EM, and in Sec. III, we explore some of the consequences
of these differences via examples, focusing on mechanical
stresses (momentum current density) and the energy density
and energy current density of the gravitational field. Section
IV offers a few concluding remarks.

It is important to point out that three years after the
appearance of general relativity, Thirring showed that a
gravitoelectromagnetic description of gravitational effects
emerges by linear approximation of Einstein’s equation and
for small velocities.” A comprehensive overview of the his-
torical development of this description can be found in Iorio
and Corda® (pp. 2-5) and is discussed in numerous publica-
tions.*!' While the Heaviside approach is a theory in flat
space and therefore cannot describe general relativistic
effects like gravitational waves or the Lense—Thirring effect,
the Thirring approximation constructs GEM fields in such a
way that such effects can be described locally. One recog-
nizes that these are two different theories by the fact that
according to Thirring’s theory, a factor of 4 occurs in the
“Lorentz force” equation, which also propagates into the
energy current density (Poynting vector). In contrast, this
factor does not exist in the Heaviside theory, which we
explore.

As this paper was being finalized for publication, we
became aware of another paper to be published in this jour-
nal which examines energy flows in gravitational fields from
a Newtonian perspective where fields respond instantly to
the motions of charges and masses, an approach that con-
trasts with our formulation.'* Curiously, both approaches are
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able to explain energy flows. We encourage readers to exam-
ine both papers for a full picture of this historically important
issue.

II. THE EQUATIONS

In this section, we compile the most important equations
of EM and GEM, beginning with the four Maxwell equations
and their GEM analogs. These are followed by expressions
for the energy density, the energy current density, the force
(momentum current), and the mechanical stress (momentum
current density). In the case of EM, the force is the Lorentz
force and the energy current density is the Poynting vector.

Maxwell’s equations (EM, GEM):

1
.E =— 1
v 80PQ7 ( )
V-B=0, 2)
OB
VXE=—-—— 3
X o (3
1 OE
V x B = wj — 4
X ,u()‘]Q + Cz 6I 9 ( )
1
v'g:_*pma 5
by
V-b=0, (6)
ob
\Y% =—— 7
xg=——>" (M)
.1 Og
VXb:*‘Mg,]m‘i’?'E- )
Energy densities (ED, GEM):
€0 2
pE 2 1) ( )
LS (10)
pE - 2'[10 )
)
- _ 11
PE 2 g, ( )
BRI (12)
PE = 24, .
Energy current densities (ED, GEM):
1
S=—E x B, (13)
Ho
1
S=——gxb. (14)
Hg
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Mechanical stresses in the direction of the field lines (ED,
GEM):
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Mechanical stresses perpendicular to the field lines (ED,
GEM):
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We have used the following abbreviations:
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We have written the mechanical stresses [Eqgs. (17)—(24)]
separately for a purely electric (or gravistatic) field and a
purely magnetic (or gravinetic) field in both the direction of
the field lines and transversely to them. These expressions
follow as special cases from the stress tensor given in
Appendix B.

Merely considering the signs of the various quantities
reveals some interesting qualitative differences between EM
and GEM. In Sec. III, we examine the consequences of the
opposite sign of the mechanical stresses and the energy den-
sity and then consider the energy current density distribution
in some examples.

III. CONSEQUENCES

A. Mechanical stress in the gravitational field:
Momentum current density

When treating gravitation we usually emphasize that an
essential difference between gravitation and electricity is
that while there are “two kinds” of electricity, there is only
one “kind” of mass, which we take as positive. Positive
masses attract each other while like electrical charges repel
each other. However, these categories of attraction and
repulsion imply action-at-a-distance physics, whereas we
want here to formulate the differences between gravitation
and electricity via the properties of fields.

Equations (17)—(24) indicate us that the signs of the stress
within gravistatic and gravinetic fields are opposite to those
of electromagnetic fields, a fact originally pointed out by
Heaviside.® In EM fields, there is tensile stress in the direc-
tion of the field lines and compressive stress orthogonal to
the field lines;'? in gravitational fields, there is compressive
stress in the direction of the field lines for both the g- and
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Fig. 1. (a) The electric field pulls outward on the sphere. (b) If the sphere is
compressed while the charge is held constant, new field is created. For this,
energy has to be supplied to the system.

b-fields and tensile stress transverse to them. Because
mechanical stresses are equivalent to momentum current
densities, we can say that for analogous arrangements of the
sources of the fields, the flow direction of momentum cur-
rents in GEM fields is opposite to that in corresponding EM
fields.'* With this in mind, we consider the distribution of
mechanical stress for a simple geometry, first in the electric
case and then in the gravitational one.

Our system is a hollow sphere bearing a uniformly distrib-
uted positive charge as sketched in Fig. 1(a). The interior of
the sphere is known to be free of field. If the sphere is made
of an elastic material, it will inflate when charged. The tradi-
tional action-at-a-distance description is that the charges on
the surface repel each other. A problem with such a descrip-
tion is that the straight lines connecting the “repulsing” parts
of the surface have to run through the field-free interior. A
physically better description would be as follows: “The field
is under tensile stress in the direction of the field lines. The
field lines end on the surface of the sphere and the tension is
passed on to the sphere, with the result that the electric field
pulls outward on the sphere.”

Now for the gravitational analog. Consider a thin spherical
shell of mass mg as sketched in Fig. 2(a). As in the electric
example, its interior is field-free. Since positive masses
attract each other, the shell would shrink, but it is prevented
from doing so because it is made of solid material. In terms
of fields, we should regard the gravitational field as pushing
on the shell from the outside.

Similar statements can be made for the b-field. Instead of
a hollow sphere, consider a hollow cylinder or a tube moving
longitudinally. The interior of the tube is field-free. Using
the “Lorentz force” equation, we can conclude that the dif-
ferent parts of the tube lying on one circumference “repel”

() ()
Fig. 2. (a) The gravistatic field pushes on the sphere. (b) If the sphere is

allowed to shrink with the mass kept constant, new field is created. For this,
energy has to be removed from the system.
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each other. In terms of fields, we can express this as follows:
The gravinetic field pulls on the tube. It follows that the field
is under tensile stress in the direction orthogonal to the field
lines. Just as in the electromagnetic analog, however, the
mechanical stresses in the b-field are smaller by a factor of
v2/c? than in the g-field, where v is the velocity associated
with the mass flow.

B. Energy density

It is easy to see that the energy density in the gravistatic
field is negative. Consider first the electromagnetic case, Fig.
I(a). If we imagine compressing the sphere while keeping
the charge constant [Fig. 1(b)], the field at some point out-
side the original sphere does not change. But as the sphere
shrinks, new field is created in space that was previously
field-free. We had to supply energy to create this additional
field, and this energy is stored in the newly generated field.
The energy density in the electric field is given by Eq. (9).

Now apply the same reasoning to the sphere of mass in
Fig. 2. As the sphere shrinks, there is again a region of space
which was field-free but is now occupied by a field.
However, we did not have to supply energy to shrink the
sphere; rather, we gained energy. If we stick to the idea that
we can always specify an energy density, we must conclude
that the field has a negative energy density, Eq. (11). These
considerations extend to the b-field, but again the values
involved are very small.

C. Energy current density

Whenever a body moves up or down in the gravitational
field of the Earth, it exchanges energy with the field so-
called potential energy. During such an exchange, an energy
current flows within the field, and this can be calculated with
Eq. (14). While b enters quadratically into the mechanical
stresses and thus into the forces, it appears to the first power
in the formulae for the energy current density, Eq. (14). As a
consequence, the b-field manifests itself much more clearly
in energy currents than in forces (momentum currents).

Figure 3 illustrates a simple example, which was proposed
by Krumm and Bedford.* A long rod of mass m is pulled
upwards, perpendicular to the Earth’s surface.

Energy is supplied, which enters the rod from above. The
energy flow (power) at the top of the rod is calculated
according to the following classical formula:

P=v-F. (25)

Here, v is the velocity of the rod and F is the gravitational
force whose magnitude is

F=mg. 26)

As the force within the rod decreases from top to bottom, the
energy flow also decreases. We ask for the decrease AP of the
energy flow in a small height interval Ah, see Fig. 3(a). AP is
that part of the energy flow which is transferred from the matter
of the rod to the gravitational field within this interval. We first
write the force as a function of the height /:

F =m(h)g = p,, Ahg, 27

where p,, is the mass density of the rod. Thus, the energy
flow through a sectional plane at the height /4 is
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Fig. 3. (a) A rod is pulled from the top. In the process, energy flows within
the rod from top to bottom. (b) This energy gradually leaves the rod
sideways.

P =vF =vp,, Ahg. (28)
Since the mass flow is
Ly =vp, A, (29)
the energy flow can be written as
P=1,gh (30)

We are interested in the decrease AP of the energy flow in
the height interval Ah:

AP = I, gAh. 31)

This energy flow exits the rod into the gravitational field.

We now ask what our GEM equations predict for this
energy flow. We calculate the energy flow AP’ in the gravi-
tational field exiting the rod through the cylindrical shell of
height Ah:

AP’ = 27rARS. (32)

To determine the energy current density S, we need the
gravistatic and the gravinetic field. The g-field of the rod is
so weak compared to that of the Earth that we need not con-
sider it. The b-field is easily obtained from Eq. (8). Its mag-
nitude is

Iﬂl
b(r) = p, o (33)

Since g and b are perpendicular to each other, we get the
magnitude of S from Eq. (14) as

S = gb . (34)
He
With Eq. (33), S becomes
L
S = % . (35)
Inserting S into Eq. (32), we get
AP =1, gAh, (36)

which agrees with Eq. (31).
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- energy flow
L b-field lines

L g-field lines

Fig. 4. In the left part of the rope, the energy flows within the rope upward,
in the right part downward. In the process, its current strength increases
upwards in the left part and decreases downwards in the right part. The cir-
cuit is closed by the gravitational field in which the energy flows from the
right to the left part of the rope.

Thus, Heaviside’s theory consistently describes our local
energy balance: The energy flowing away from the rod via
the field is equal to that flowing into the rod from above.

This result also shows that there cannot be a factor 4 in the
equation for the energy flow, as is the case in the Thirring-
type representations of GEM. Apparently, the Heaviside and
Thirring theories correspond to two different mappings of
EM onto gravitation.

Up to this point, we have calculated only the energy cur-
rent density near the surface of the rod. The question of the
total current density distribution is more difficult because it
has sinks in the field and the current density distribution
extends out into areas far from the rod. To circumvent this
problem, we consider a different example, that of a heavy
rope running over two pulleys. This is sketched in Figs. 4
and 5. The rope can equivalently be imagined as water
flowing in a pipe.

To determine the path of the energy within the gravita-
tional field, we need the g- and b-fields. We again neglect
the contribution due to the rope; the g-field is simply that of
the Earth. The b-field is an old acquaintance, having the
same form as that of two parallel wires carrying oppositely
directed currents; see Fig. 6. The vector multiplication g x b

movement

energy flow

Fig. 5. Energy flow corresponding to Fig. 4, schematically.
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Fig. 6. Horizontal section through the arrangement of Fig. 4. The g-field
lines point into the plane of the drawing. From the right to the left section of
the rope, the energy flows through the gravitational field.

is straightforward, and the streamlines of the energy flow are
orthogonal to the b-field lines. Energy transport is largely
localized to the vicinity of the two sections of the rope and is
a large effect, well known from daily life.

In setting up this arrangement, note that two conditions
have been met: (1) The energy flux distribution has no sour-
ces or sinks within the gravitational field, and (2) each
energy streamline runs in a plane, so the distribution can be
represented in a cross-sectional plane. Both conditions are
automatically satisfied for any closed mass flow such as an
arbitrarily-shaped water circuit or a rotating vertical wheel.

IV. CONCLUSION

In order to avoid action-at-a-distance without using gen-
eral relativity, one can describe classical gravity with fields.
To do so, it is necessary to introduce the gravinetic field b in
addition to the usual g-field. This results in a theory, gravi-
toelectromagnetism, which is analogous to Maxwell’s elec-
tromagnetic theory. A striking and consequential difference
between EM and GEM involves some reversed signs. The
energy densities of both the g- and b-fields are negative, and
the mechanical stresses in the GEM field are reversed with
respect to those in the EM field: Compression becomes ten-
sion and vice-versa. Using energy density and energy flux
density, the local energy balance for the gravitational field
can be formulated in the context of gravitoelectromagnetism.
In particular, the concept of potential energy can be replaced
with a modern concept of energy stored in fields.

APPENDIX A: GRAVITATIONAL LORENTZ FORCE
ON AN AIRPLANE

Electromagnetic forces are much stronger than gravita-
tional forces; for example, the electrical repulsion between
two protons is some 10 times stronger than their gravita-
tional attraction. Easily observable gravitational forces result
only for bodies with very large mass, such as the Earth. In
addition, gravinetic forces are typically smaller than gravi-
static forces by a factor vi-vofc?, where v, and v, are the
velocities of the interacting bodies.

To get an idea of the magnitude of gravinetic forces, con-
sider an airplane of 400 tonnes (400000kg) flying eastward
above the equator. The surface of the Earth is also moving in
the eastward direction. So we have what can be compared to
two electric currents flowing parallel to each other in the
same direction. The corresponding conductors or charge car-
riers are known to attract each other.
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To solve the plane problem, we would have to calculate
the gravinetic field of a rotating sphere but that is mathemati-
cally quite complicated. However, since we are only inter-
ested in the order of magnitude of the effect, we map this
problem onto the geometry of a charge moving parallel to
the axis of a current-carrying wire. We replace the rotating
Earth with a massive cylinder 1000 km in diameter moving
along its symmetry axis. To calculate the mass flow, we also
need the density of the cylinder, which we take to be p = 4
x 10°kg/m>. As the speed, we choose the speed of the sur-
face of the Earth, i.e., about 1700 km/h. The airplane flies at
speed 1000 km/h relative to the Earth, so as “seen from out-
side”, i.e., in an inertial frame in which the center of the Earth
is at rest, the velocity of the plane is 2700 km/h =750 m/s.
We assume a flight altitude of 10km.

We obtain a mass current /,, of the passing cylinder of
about 1.5 x 10" kg/s. Setting r=5.1 x 10’ m and p, = 4G/
¢* in Eq. (33) gives a b-field strength of ~4.3 x 107" s7 ",
With v =750 m/s, the magnitude of the corresponding force
from Eq. (16) is then F' = mvb ~1.3 X 10~° Newtons. The
direction of the force is away from the cylinder, effectively
lightening the plane by about 0.1 mg.

APPENDIX B: THE MAXWELL STRESS TENSOR
AND ITS GEM ANALOG

The expressions given in the text for the compressive and
tensile stresses in the electromagnetic field can be summa-
rized in a single tensor equation, the well-known Maxwell
stress tensor:

1 &0 12 1 2)
T,ZSOE,E—F—B,B— —E +—B (3, (Bl)
7 ] Lo J (2 2,[10 1

The analog gravitoelectromagnetic tensor is

1 € 1
Ty = —¢e8igj — —bibj+ | 28" +-—b* |5;.  (B2)
7 g J )ug J 2 2;ug 7

A comparison of Eqs. (B1) and (B2) shows that compres-
sive and tensile stresses are swapped. From Eq. (B2), one
can directly read our Egs. (19) and (20) as well as (23) and
(24) and, just as in the electromagnetic case, derive the
Lorentz force equation.
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