Formeln und Naturkonstanten

1. Allgemeines

Energieströme

 $P = v \cdot F$ Energiestromstärke bei mechanischem Energietransport (Translation) $P = \omega \cdot M$ Energiestromstärke bei mechanischem Energietransport (Rotation)

 $P = U \cdot I$ Energiestromstärke bei elektrischem Energietransport $P = T \cdot I_S$ Energiestromstärke bei thermischem Energietransport

Gespeicherte Energie

 $E = \frac{m}{2}v^2 = \frac{p^2}{2m}$ Energie eines bewegten Körpers (kinetische Energie)

 $E = \frac{J}{2}\omega^2 = \frac{L^2}{2J}$ Energie eines rotierenden Körpers

 $E = \frac{D}{2}s^2$ Energie einer gespannten Feder

 $E = m \cdot g \cdot h$ Im Gravitationsfeld gespeicherte Energie

 $E = \frac{C}{2}U^2 = \frac{Q^2}{2C}$ Energie im elektrischen Feld eines Kondensators

 $E = \frac{L}{2}I^2$ Energie im magnetischen Feld einer Spule

Energieverlust

 $P_{\text{V}} = T_{0} \cdot I_{S \text{ erzeugt}}$ Verlustenergiestrom

 $V = \frac{P_{V}}{P_{\text{binein}}}$ Energieverlust

Zusammenhang Stom - Menge

 $\frac{dp}{dt} = F$ Änderungsrate des Impulses gleich Impulsstromstärke

 $\frac{dL}{dt} = M$ Änderungsrate des Drehimpulses gleich Drehimpulsstromstärke

 $\frac{dQ}{dt} = I$ Änderungsrate der elektr. Ladung gleich elektr. Stromstärke

 $\frac{dS}{dt} = I_S + \Sigma_S$ Änderungsrate der Entropie gleich Entropiestromstärke plus Erzeugungsrate

2. Naturkonstanten

 $k = 9 \cdot 10^{16}$ J/kg Proportionalitätsfaktor zwischen Energie und Masse

 $G = 6,67 \cdot 10^{-11} \text{m}^3/(\text{kg} \cdot \text{s})$ Gravitationskonstante

R = 8,3144 Ct/mol Gaskonstante

 $\mu_0 = 1{,}257 \cdot 10^{-6} \, \frac{\text{Vs}}{\text{Am}}$ magnetische Feldkonstante

 $\varepsilon_0 = 8,854 \cdot 10^{-12} \ \frac{\text{As}}{\text{Vm}}$ elektrische Feldkonstante

 $m_{\rm el} = 9.11 \cdot 10^{-31} \text{ kg}$ Masse des Elektrons

 $e = 1,60 \cdot 10^{-19} \text{ C}$ Elementarladung $h = 6,6262 \cdot 10^{-34} \text{ Js}$ Planck-Konstante

Ruhenergien

Elektron 0,0819 pJ Proton 150,3277 pJ Neutron 150,5349 pJ

3. Mechanik

Kinematik

$v = \frac{ds}{dt}$	Zusammenhang zwischen Geschwindigkeit und Positionsänderung
$v = \frac{1}{dt}$	Zusanineniang zwischen Geschwindigkeit und Positionsanderdi

$$a = \frac{dv}{dt}$$
 Definition der Beschleunigung

$$\omega = \frac{d\alpha}{dt}$$
 Zusammenhang zwischen Winkelgeschwindigkeit und Winkeländerung

Mechanische Systeme

$$p = m \cdot v$$
 Zusammenhang zwischen Impuls und Geschwindigkeit

$$L = J \cdot \omega$$
 Zusammenhang zwischen Drehimpuls und Winkelgeschwindigkeit

$$J = m \cdot r^2$$
 Trägheitsmoment für einen Körper, der sich auf einer Kreisbahn mit Radius r bewegt

$$F = D \cdot s$$
 Hookesches Gesetz

$$\frac{dp}{dt} = m \frac{v^2}{r}$$
 Änderungsrate des Impulses bei Kreisbewegung

Mechanische Schwingungen

$$T = 2\pi \sqrt{\frac{m}{D}}$$
 Periodendauer des Federschwingers

$$T = 2\pi \sqrt{\frac{I}{a}}$$
 Periodendauer des Pendels

Das Gravitationsfeld

$$F = m \cdot g$$
 Zusammenhang zwischen Gravitationsfeldstärke und Impulsstrom

$$F = G \cdot \frac{m_{A} \cdot m_{B}}{r^{2}}$$
 Gravitationsgesetz

$$\Psi = g \cdot h$$
 Zusammenhang zwischen Gravitationspotenzial und Höhe (für homogenes Feld)

Relativistische Mechanik

$$v(p) = \frac{p}{\sqrt{m_0^2 + \left(\frac{p}{c}\right)^2}}$$
 Geschwindigkeit als Funktion des Impulses

$$E(p) = \sqrt{c^2 \cdot p^2 + E_0^2}$$
 Energie als Funktion des Impulses

$$\frac{\Delta f}{f} = \frac{\Delta \Psi}{I}$$
 Frequenzänderung im Gravitationsfeld

$$v = \frac{v' + v_0}{1 + \frac{v'v_0}{c^2}}$$
 Geschwindigkeit bei Bezugssystemwechsel

4. Elektrodynamik

$F = Q \cdot \left \vec{E} \right $	Impulsstrom in elektrisch geladenes Teilchen im elektrischen Feld
$F = Q_{m} \cdot \left \vec{H} \right $	Impulsstrom in einen Magnetpol in magnetischen Feld
$F = \mu_0 \cdot H \cdot v \cdot Q$	Impulsstrom in elektrisch geladenes Teilchen im magnetischen Feld
$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_{\rm A} \cdot Q_{\rm B}}{r^2}$	Coulombsches Gesetz
$\left \vec{E} \right = \frac{U}{d}$	Zusammenhang zwischen elektrischer Feldstärke und Potenzialdifferenz
$E = e \cdot U$	Energiezunahme eines Elektrons beim Durchlaufen einer Potenzialdifferenz
$H = I \cdot \frac{n}{\ell}$	Feldstärke des magnetischen Feldes in einer Spule
$H = \frac{I}{\ell}$	Feldstärke des Feldes eines elektrischen Leiters (ℓ = Kreisumfang)
$B = \mu_0(H + M)$ $\Phi = B \cdot A$	Zusammenhang zwischen magn. Flussdichte, Feldstärke und Magnetisierung Definition des magnetischen Flusses
$U = n \cdot \frac{d\Phi}{dt}$	Induktionsgesetz
$F = \sigma \cdot A$	Zusammenhang zwischen Impulsstromstärke und mechanischer Spannung
$\sigma_{\perp} = \frac{\mu_0}{2} \left \vec{H} \right ^2$	mechanische Spannung quer zu den magnetischen Feldlinien
$\sigma_{\parallel} = -\frac{\mu_0}{2} \left \vec{H} \right ^2$	mechanische Spannung parallel zu den magnetischen Feldlinien
$\sigma_{\perp} = rac{arepsilon_0}{2} \left ec{m{E}} ight ^2$	mechanische Spannung quer zu den elektrischen Feldlinien
$\sigma_{\parallel} = -rac{arepsilon_0}{2} \left ec{E} ight ^2$	mechanische Spannung parallel zu den elektrischen Feldlinien
$\rho_{E} = \frac{\varepsilon_{0}}{2} \left \vec{E} \right ^{2}$	Energiedichte im elektrischen Feld
$\rho_E = \frac{\mu_0}{2} \left \vec{H} \right ^2$	Energiedichte im magnetischen Feld
	Ohmsches Gesetz
$Q = C \cdot U$	Kondensator
$n \cdot \Phi = L \cdot I$	Spule
$C = \varepsilon_0 \frac{A}{d}$	zur Berechnung der Kapazität
$L = n^2 \mu_0 \frac{A}{\ell}$	zur Berechnung der Induktivität
$j = \frac{I}{A}$	Definition der elektrischen Stromdichte
$\vec{j} = \sigma \cdot \vec{E}$	Zusammenhang zwischen elektrischer Feldstärke und Stromdichte
$R = \frac{1}{\sigma} \cdot \frac{\ell}{A}$	zur Berechnung des Widerstandes (σ = elektrische Leitfähigkeit)
$T = 2\pi\sqrt{L \cdot C}$	Periodendauer eines elektrischen Schwingkreises

5. Thermodynamik

$$I_S = \sigma_S \frac{A}{d} \Delta T$$
 Wärmeleitung (σ_S = Entropieleitfähigkeit)
$$\Delta T = \alpha \frac{\Delta S}{n}$$
 Temperaturänderung bei Entropiezufuhr (α = Erwärmbarkeit)
$$p \cdot V = n \cdot R \cdot T$$
 Gasgleichung
$$\frac{T}{T_0} = \left(\frac{V_0}{V}\right)^{\beta}$$
 Temperaturänderung bei Volumenänderung für S = const
$$\frac{T}{T_0} = \left(\frac{p}{p_0}\right)^{\frac{\beta}{1+\beta}}$$
 Temperaturänderung bei Druckänderung für S = const

	β
Luft	0,4
Wasserdampf	0,3
CO ₂	0,29
Helium	0,63

Molvolumen eines Gases bei p = 1 bar und T = 298 K: $\frac{V}{n} = 25$ Liter/mol 1 bar = 100 000 Pa