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Preface 

The presented book originated from a series of lectures presented during the 
1970 summer semester in Hamburg with the title "Trial of a New Concept of 
Thermodynamics". The impetus for this series was a talk, which I gave in 1967, in 
the context of a seminar about physical metallurgy at the Institute of Physical 
Chemistry. My task was to give a short, two-hour overview of thermodynamics 
and the thermal properties of substances. Because of the shortness of time it was 
not possible to do it in a traditional way, starting with temperature and heat, con-
tinuing with the main laws of thermodynamics, thermodynamic potentials, etc., 
and make it comprehensible for younger students on the one hand, and also inter-
esting enough for my colleagues in the Institute. As a way out, it was not far-
fetched to try as directly as possible to reach the most important core of thermo-
dynamic concepts, and grab the devil by its horns, starting with a wanted poster of 
entropy. Surprisingly, it was shown that it is possible to build the complete theory 
easily and logically, without recourse to the results of the conventional theory. The 
resonance of the talk with the audience encouraged me to complete my approach, 
removing unnecessary additives and improving the foundation, and developing a 
mathematical apparatus, which fits to the new requirements. This consideration 
formed the basis of the lecture series mentioned above. 

Here I want to thank Mr. F. Bruhn, M. Bühring, M. Deneke, J. Heesemann 
and W. Stränz who offered to rewrite my incomplete notes in a readable form. 
They have contributed to the quicker publication of the book; without their help I 
would barely have found the time for it. I must also not forget Mr. M. Melcher, 
who prepared many of the experiments in the lecture series, and my sister-in-law 
Mrs. Gd. Job, who with patience and accuracy did the typing. By Christmas 1970 
the first draft was completed, then after a thorough revision in 1971, the book was 
produced first as a lecture script by the chemistry student association in Hamburg. 
In order to facilitate the transition to conventional textbook form, the usual terms 
and mathematical procedures were added, along with additional sections, to pro-
duce the version presented here. 

 

Hamburg, May 1972 Georg Job 
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Preface to the English Edition 

An English version of the German edition was planned long before, but I 
never found the time to start with this work. It was my brother, Eduard Job, who 
got the whole work going. It was his idea, to make this approach accessible for a 
broader readership. A strong motive was the possibility to protect others from the 
numerous severe obstacles he had met during his studies of this subject in Ham-
burg and Chicago. 

I have to mention Harry Schmeichel (California), Timm Lankau (Taiwan), 
Hans Fuchs (Switzerland) and Joel Rosenberg (Massachusetts). They helped to 
translate, proofread, correct and modify the given text, in order to express the 
basic ideas in a better comprehensible form. Since the new approach requires a 
number of new technical terms for which no standard translation exists it was 
rather hard to do this work.  

Now the IUAPC Conference 2007 in Turin is a good reason for me to prepare 
at least a provisional version. I want to apologize for eventually incompleteness 
due to the short time for preparation. I am thankful for any suggestion for im-
provement. Criticism of the readers are quite welcome.°)  

 

Hamburg, July 2007 Georg Job 

 

 

 

 

°) Georg.Job@gmx.de 
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1. INTRODUCTION 

Thermodynamics is generally considered a difficult and abstract subject, par-
ticularly by beginners. Its development appears arbitrary and unrelated to such 
topics, as mechanics and electricity and its concepts are not easily clarified by 
making use of analogies to other areas of physics. If we attempt to apply intuition 
based on everyday experience, our understanding of thermodynamics becomes 
even more obscure. In thermodynamics, the variety of abstract concepts such as 
entropy, enthalpy, state function, cycles, free energy, reversibility, latent heat, etc. 
make it hard for the student to attain a comprehensive overview of the subject. 

For example, the concept of "heat" already shows a noticeable contradiction 
between theory and intuition. Whereas in everyday experience heat is considered 
to be something that may be produced in an oven, contained in a heated room and 
escapes along with air through an open window, in physics heat is not something 
that is produced in an oven, contained in a room or escapes through an open win-
dow. In theoretical physics heat refers strictly to the energy that is transferred to a 
body through random molecular motion or radiation rather than as something that 
is contained or created within matter. In physics, heat, similar to work, represents 
a form of energy that is transferred from one body to another and is not an inher-
ent property of a body.1 Expressed mathematically, the quantity of heat Q, just 
like work, is not a function of state and its differential dQ is therefore incomplete. 
This conflict between theory and intuition is particularly evident when even scien-
tifically educated people do not clearly understand the relationships. For example, 
many people insist that a body not only accepts heat but also possesses it. Such an 
opinion may be intuitively correct but is incorrect from a theoretical standpoint 
except under some very special conditions. 

We successfully deal with our environment using a concept of heat that dif-
fers from the one taught in physics. Even years of high school and university 
teaching have not changed this. Nevertheless, it was deemed worthwhile, even if 
only as an academic exercise, to try to construct a theory based on the intuitive 

                                                           
1 Even this description of heat is not uniform in different physics textbooks! 
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concepts of heat. This attempt turned out to be successful and the familiar theory 
of thermodynamics has been developed from a completely different starting point. 
The resulting educational framework is built on a new foundation, conceptually 
rearranged and stripped of all unnecessary mathematical terms. 

This new approach has the advantage of mathematical rigor, consistency of 
concepts and compatibility with intuitive understanding. On the other hand, devia-
tion from common ways of thinking developed over more than a century is a defi-
nite disadvantage. One can ameliorate resistance to this new interpretation of heat 
by avoiding the ambiguous word heat altogether. Although we cannot avoid its 
use in earlier chapters, later, for clarity, reference to the word heat is omitted de-
spite certain statements becoming less intuitive as a result. 
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2. PURE THERMODYNAMICS 

This chapter is addressed to thermodynamics in the narrow sense of heat phe-
nomena. It describes measuring methods of the amount of heat, the flow and gen-
eration of heat, energy turnover during heat transfer and clarifies basic concepts 
such as temperature, heat capacity and heat engines. Later chapters cover the laws 
describing the relationship between thermal and other physical phenomena such as 
thermal expansion, adiabatic cooling, heat of transition and thermoelectricity. 

2.1. Heat 

In physics, natural laws are usually presented as mathematical relationships 
between observed quantities defined by rules for their direct measurement or by an 
instruction for an indirect calculation from other measurable quantities. In order to 
make these definitions sensible, we first need a qualitative overview of the subject. 
Our objective is to choose a measurement process, which preserves those proper-
ties familiar to us through everyday experience or common use of language, as-
suming, of course, that nature allows us to do this successfully. 

2.1.1. The Intuitive Interpretation of Heat 

What are the everyday perceptions about heat? One can observe different con-
ceptual levels, which may be characterized roughly as follows: 

1st  Level:  Heat, like cold, is a property of a body. It can be caused by friction or 
fire. When the cause stops, the heated state gradually fades away. A hot body 
cools down slowly by itself whereas a cold body warms up slowly by itself. 

2nd Level:  Heat and cold exist in bodies in different amounts. The more heat con-
tained in a body, the warmer it appears. In order to heat a large body, more 
heat is required than for a small one. When a body cools down, heat is not de-
stroyed but flows into its surroundings. For example, by placing a hot pot in 
cold water, the surrounding water becomes warm. Heat and cold can be gener-
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ated, e.g., heat is produced by an electric hotplate and cold is produced by a re-
frigerator. 

3rd Level:  A body feels hot because it contains heat. Cold reflects an absence of 
heat. Rather than cold being produced in a refrigerator, heat is extracted and 
passed to the outside environment. The extracted heat is not destroyed but 
spreads throughout the room, just as ripples on a lake after a stone is thrown or 
as sound waves within a room. 

At Level 1 heat is only perceived as a kind of intensity, as hotness to be more 
precise. Level 2 introduces the concept of an amount of heat. On a first impres-
sion, both heat and cold can be produced but not destroyed. At Level 3 this view is 
simplified by treating cold as the absence of heat while preserving the remaining 
content of Level 2. 

Let us pursue these ideas further and consider the last and most advanced con-
ceptual level. In summary, heat exists in every body in a greater or lesser amount 
it can be transferred to or extracted from a body, but the total amount of heat can 
be increased but never decreased. In order to complete this picture, we shall inter-
pret the results of a few simple additional observations. 

a)  Heat production:  

Figure 2.1 shows examples of processes in which heat appears to be generated. 
From experience we know that heat is only produced by consumption of an 
equivalent, "consuming a certain amount of fuel (fire) , force (friction) , elec-
tricity (electric heating), etc.", as we used to say in everyday language. 

 

by friction by electric current

Fig.2.1: Heat production 
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b)  Heat distribution:  

The added heat distributes itself more or less uniformly throughout a 
homogeneous body (Fig. 2.2) such that the inner and outer parts of the body 
become equally warm. In contrast, an electrically charged conductor carries its 
charge only on its outer surface, the interior parts possessing no electric 
charge. 

hot

heat

uncharged

charge

warm

cold 

Fig. 2.2: Distribution of heat compared with that of electric charge 

c)  Heat transfer:  

Heat flows from a hot to a cold body until both become equally warm (Fig. 
2.3). Some substances conduct heat well (metals) and some poorly (foamed 
materials). Good conductors are used for heat transfer and poor ones for 
insulation. 

 
cold

warm

hot

warm

start

end

quick slow

metal plastic foam

Fig. 2.3: Heat transfer from hot to cold 

 



 2. Pure Thermodynamics 

 

6

d)  Weight of heat:  

As a hot body cools down, it does not become noticeably lighter (Fig 2.4). For 
that reason we consider heat to be weightless. We do not want to discuss the 
nature of heat; we only try to characterize it through its properties.  

 

Fig. 2.4: Equilibrium untouched by cooling (or heating) of a body 

e)  Expansion and heat exchange:  

The hotness of a rubber band depends on its extension. When it is extended the 
rubber band warms up, even though no additional heat is added, and heat flows 
out to the surroundings so that it cools down slowly (Fig 2.5). When the rubber 
band is released it becomes cooler, even though no additional heat is removed, 
and now heat slowly returns from the surroundings. The rubber band ends up 
no hotter or colder than its environment. 

 

warm

heat

heat
cold

     Fig. 2.5: Elongation of a rubber band 

  We find similar behavior when we compress or expand a gas. The hotness of a 
gas drops when the pressure is reduced and rises when the pressure is increased 
(Fig 2.6) . This can be seen when the gas is trapped in a cylinder, and moving a 
piston can easily change the pressure. When the cylinder is not "heat-tight", it 
means that heat can enter or leave the gas through the walls. Then just like in 
the rubber band experiment, the hotness of the gas will increase and decrease, 
but will end up no hotter or colder than its surroundings.  
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soaked

drained

gas cools down

gas heats up

Fig. 2.6: Gas in a cylinder Fig. 2.7: The sponge model 

Solid and liquid bodies behave in a similar manner to gases, but the observed 
effects are less pronounced. The analogy with a sponge (Fig. 2.7) demonstrates 
visually how to understand the "absorption" or "expulsion" of heat in the gas 
or any other body. We will examine this behavior more closely later. 

f)  Side effects of heat:  

 

heat

ice melts

pressure rises

length increases

bimetal twists

Fig. 2.8: Heat causes different side effects 
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The most important effect of supplying heat to a body is that it gets hotter. 
However, numerous other side effects may be observed (Fig 2.8). For example, 
a metal rod expands, a bimetallic strip bends, iron loses magnetism, the voltage 
of a battery changes, ice melts and water evaporates. Note that the melting ice 
and the boiling water do not become warmer but the amounts of liquid water 
and steam increase, respectively. In these transformations, the main effect of 
heat, an increase in hotness, does not occur. When heat is removed, the effects 
disappear: the metal rod contracts, the bimetallic strip straightens, iron be-
comes magnetic again, water freezes, etc. 

By now some readers will have noticed that what we call heat is fundamen-
tally different from the interpretation of heat in traditional thermodynamics, where 
the word "heat" denotes a specific form of energy. By contrast, our description of 
heat is analogous to that of electric charge, mass or volume. The term "thermal 
charge", for example, is meaningful in our context. In order to avoid confusion 
with traditional physics, we will denote the word "heat" and its combinations with 
an asterisk (*) when the new interpretation is used, and with a dot (•) when the 
traditional interpretation is used. 

2.1.2. Measure of Heat* 

So far we have considered the properties and effects of heat* in a purely 
qualitative manner. Based on these observations, in order to develop a theory 
which can be experimentally tested, we need to define a measure for the amount 
of heat* and of the magnitude of its effects, for example a measure of hotness. 
Before defining such measures, we make some preliminary considerations. 

The primary consequence of the assumed indestructibility of heat* is that a 
heat-producing process can never be rolled back like a film. Reversing the process 
would destroy the heat* produced which violates our indestructibility assumption. 
Thus, a reversible process in which all steps can be reversed does not produce 
heat*. In order to avoid an uncontrollable increase in heat*, we stipulate that a 
reversible process must be used for our measurement process. Although this 
makes the measurement more difficult, we have no alternative. 

Which processes are reversible? Those described in paragraphs a) through c) 
above are definitely not reversible. Nobody has yet observed a burning candle to 
restore itself to its original length by recapturing the heat and gases from its envi-
ronment. Nor does heat* naturally concentrate in one place or flow from a cold to 
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a warm body. In general, reversibility cannot be expected in a spontaneous process 
because it should then flow freely in either direction. 

By contrast, the processes described in paragraphs e) and f) above could be 
reversed under ideal conditions. For example, a well-insulated rubber band ex-
tended in a number of steps would warm up in a stepwise manner and then cool 
down to its original state when these steps are reversed. Even the exchange of 
heat* with its surroundings is exactly reversible in principle. If the tension is in-
creased so slowly that the rubber band does not become noticeably warmer than 
its environment, or become colder when the tension is lowered, then the tempera-
ture difference between the forward and reverse paths vanishes (Fig. 2.9). More-
over, other temperature-induced changes in length, volume, state of aggregation, 
etc. are in general also reversible. 

 
warm

cold

length

stretching

relaxing

quick
slow w

ai
tin

g

w
a i

tin
g

Fig. 2.9: Stretching and relaxing of a rubber band 

In order to quantify an amount of heat*, we can consider the following 
method as an example. When we add heat* to a one-meter rod — ignoring the 
details of this procedure at this time — the rod expands. When the length in-
creases to 1.001 m, we stop adding heat. We then repeat the procedure with a new 
rod of the same length. Subsequently, we use a third and fourth rod, etc. until all 
the heat* is stored. Instead of using a new rod each time, we could use the same 
rod again after cooling it down to a one-meter length. The assumption that it re-
quires the same amount of heat* each time is valid. Therefore, we only need to 
count the number of heated rods to obtain a measure of the total amount of heat* 
used. This procedure is analogous to measuring the amount of water in a container 
by emptying it with equal measuring cups (Fig. 2.10). 
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Fig. 2.10: Portioning of heat (left) like water (right) 

Another method is to melt ice cubes of equal size. The amount of heat* 
required to melt a precisely defined ice cube under controlled conditions could 
be used as a unit of heat*. We know from experience that it does not matter 
whether we use two separate or two adjacent ice cubes or even one large ice 
cube weighing as much as two smaller ones. This argument can be extended to 
n pieces of ice. Rather than count ice cubes, it is simpler to use the amount of 

 

h2

h1

heat*

Fig. 2.11: A simple type of an ice calorimeter 
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melted ice as measure of heat*. This allows us to construct a practical meas-
urement procedure. Liquid water requires less volume than solid ice. The 
change in volume reflects the heat input. For example, we can use an ice water 
bottle with a capillary tube (Bunsen ice calorimeter) where we can monitor the 
water level, i.e., the change in volume of the water (Fig 2.11). With input of 
heat* the water level drops and with loss of heat* (formation of ice) it rises. 
This corresponds to a procedure to measure volume whereby water is poured 
from a given container into a calibrated cylinder. 

2.1.3. Heat* Measurement Procedure 

We now have to consider how we can transfer heat* from an object to an 
ice water bottle or any other "calorimeter" (e.g., a set of equal one-meter 
rods). We know that a body expands with input of heat* and contracts with 
loss of heat*. Conversely, a compressed body gives off heat* while a relaxed 
body allows the heat* to return. This phenomenon can be utilized for heat* 
transfer. We can take the gas in a cylinder (Fig. 2.6) and make the cylinder 
walls "heat-tight". If one of the walls can be added and removed, we can think 
of this device as a "heat syringe", and the removable wall as a "heat valve". 
This device can transfer heat* just like a water syringe can transfer water (Fig. 
2.12). The heat syringe can be brought into contact with various objects under 
investigation. In principle, other objects can also be used e.g. the rubber band. 

 

heat valve water valve

heat-tight

water-tight

Fig. 2.12: A heat syringe works like a water syringe 
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To determine the amount of heat* required to expand a rod from 1 m to 
1.001 m, we could use the following procedure (Fig. 2.13): 

a)  A heat syringe in its initial state is brought into contact with our ice water 
bottle. The heat valve is opened, we extract some heat* and the water level in 
the capillary tube rises. 

b)  We remove the heat syringe from the bottle and bring it into contact with the 
rod. During the transport from bottle to rod we keep the heat valve closed to 
avoid heat* losses. 

c)  We force heat* into the rod until it expands to the desired length. 

d)  We deliver the remaining heat* to the ice water bottle. During the transport 
from rod to bottle the heat valve is again closed. 

e)  The surplus heat* is returned to the calorimeter. As a result, the water level in 
the capillary tube drops and the heat syringe returns to its initial position. 

 

a)

b)

d)
e)

c)

Fig. 2.13: Measuring the amount of heat* for extending a rod 

The difference in water levels in the capillary tube between the initial and fi-
nal stages should be proportional to the amount of heat* delivered to the rod. It is 
assumed that during this entire process heat* is neither lost nor gained nor pro-
duced internally. Unwanted transfer of heat* to or from the environment can be 
prevented through good insulation and internal heat* production can be avoided 
by strictly enforcing reversibility in each step. 
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How much success will we have in achieving the last condition in our proce-
dure? We have shown that steps a), c) and e) can be made reversible if they are 
performed slowly enough. In addition, all friction between the piston and cylinder 
has to be eliminated in order to avoid producing heat*. However, steps b) and d) 
pose some difficulties. If we bring the heat syringe into contact with a warmer 
body, the piston moves; if we hold the piston in a fixed position, the gas pressure 
in the cylinder rises. This occurs because heat* flows from the warm body to the 
colder heat syringe causing the gas to expand. As mentioned above, we cannot 
allow spontaneous changes to occur in the measurement procedure. Before we 
bring the heat syringe into contact with a body, the gas in the cylinder has to be 
compressed and therefore made warmer, so that the piston remains at rest during 
the brief contact. We can then extract heat* from the hot body. A corresponding 
procedure applies when the body is colder than the heat syringe. With these pre-
cautions, steps b) and d) become reversible.  

Thus we have determined a useful measurement procedure that follows logi-
cally from our previous assumptions. In summary, these are:  

a)  Every body contains a definite amount of heat* under specified conditions. 

b) Heat* can be produced but not destroyed. 

We are now in a position to examine these statements quantitatively. For as-
sumption a) to be valid, the amount of heat* in a body, measured by the above 
procedure (or a similar one) relative to a standard state, must always be the same, 
independently of whether we use a heat syringe or a rubber band for the transfer of 
heat, or whether we count pieces of ice or one-meter rods, as long as the calibra-
tion is correct. In order to test assumption b), we could extract heat* from a calo-
rimeter and deliver it to a thermally insulated test device. For example, we could 
transfer the heat* to the boiler of a steam engine, to an incandescent bulb or to a 
thermocouple and then "collect" this scattered heat* with a heat syringe and return 
it to the calorimeter. When all bodies return to their initial state, then we know 
from assumption a) that they contain no more heat* than they had initially. Any 
additional heat* created in the process must now be in the calorimeter and can be 
measured directly. Statement b) is false if in any test the calorimeter indicates less 
heat* at the end than was recorded initially. 

Experience shows us indirectly that our assumptions are valid. By the above 
measurement procedure, heat* is explained as a physical quantity. We will denote 
it by the symbol S. We used the word "indirectly" because later (section 2.5.1) it 
will transpire that heat* can be equated to entropy in traditional thermodynamics. 
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Thus the properties of heat* can be deduced by comparison with those of entropy. 
We can rely on experience without actually having performed the measurements 
because the results, which the tests would deliver, are easily predictable. 

2.2. Work and Temperature 

Work is required for or may be gained by transferring heat*, because pushing 
a piston or stretching a rubber band demands work, for example. In the following 
sections we shall consider the energy exchanges in such processes. 

2.2.1. Potential Energy and Energy Conservation 

When a mass of water dm is moved from one container (I) to another (II) 
where the second container is higher by ∆h than the first one, the work performed 
is given by 

dW = ∆h g dm, 
where g is the acceleration of free fall. The work performed in lifting the water is 
stored and is retrievable by reversing the process. We assume here that the process 
is carried out in a reversible manner. The stored work is called potential energy E. 
The mass of water dm in container II is said to have a potential energy greater by 
dW compared with container I: 

dEII – dEI = dW. 

Note that the mass of water dm in container I, compared with another container at 
a lower level, already possesses potential energy. The absolute value of energy 
cannot be determined but rather the difference compared with a conveniently 
chosen reference point. 

Let us now consider the corresponding heat* transfer process. For example, it 
takes work to "lift" the amount of heat* dS from a cold (I) to a hot (II) body by 
means of a heat syringe. If carefully done, the associated work dW is retrievable 
because the process is basically reversible. We can assign a potential energy dEII 
to the heat* dS in body II that is greater than the corresponding amount dEI in 
body I by  

dEII − dEI = dW. 
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Similarly, it takes work dW to move a small amount of electric charge dq 
from one body (I) to another (II) which is more highly charged. Again, dW is 
recoverable if the charge transfer is reversible. As in the previous cases, the differ-
ence of the potentially usable, stored work dE in body II relative to body I, is 
given by 

dEII − dEI = dW. 
Numerous other methods exist for storing work e.g. a compressed steel 

spring, a flying projectile, a rotating flywheel, a charged capacitor, a current-
carrying inductor, etc. They all represent stored work, or in other words, a form of 
energy (elastic, kinetic, electric, magnetic, etc.). In all observed natural processes, 
work is converted from one stored form into another form. For example, when a 
steel ball is dropped on to a rigid floor, the initial potential energy (stored work 
done in overcoming gravity) is converted to kinetic energy (stored work done by 
the force of gravity) and then upon impact to elastic energy (stored work done by 
elastic deformation). The upward motion repeats the process in reverse order. 

One of the most remarkable achievements in physics during the nineteenth 
century was the realization that work could be transformed from one stored form 
to another but the total amount remains constant. Work cannot be created nor 
destroyed. Consequently, if energy vanishes in one place, it has to reappear in 
another form elsewhere and vice versa. This realization is generally referred to as 
the law of conservation of energy.  

Applied to the case of heat* transfer, the law of conservation of energy im-
plies that the expended work dW is independent of the path and method used 
(heat syringe, rubber band, etc.) similar to the case of raising water (Fig. 2.14) 

 

dW

dW'

dW'dW

II II

I I

pump scoop

rubber 
 band

   heat
syringe

Fig. 2.14: Work for water (left side) and heat* transfer (right side) 
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or moving an electric charge. Otherwise, in contradiction to this law, it would be 
possible to create work from nothing or make it disappear by delivering heat* by 
one path and returning it via another. 

2.2.2. Heat* Potential 

When we refer to a "potential" ψ at a given location, we generally mean the 
potential energy dE of a small amount da (of substance, charge, mass, heat*, etc.) 
at this location, divided by this amount: 

d
d
E
a

ψ = . 

The change in potential ∆ψ between two locations is given by the quotient of 
the work dW — that is the work required to move da from one location to another 
— divided by da: 

d
d
W
a

∆ψ = . 

Although ∆ψ can be determined, ψ cannot. While for small da the potential en-
ergy is proportional to the amount da, the potential is only a function of its loca-
tion. Thus, the potential ψ can be interpreted as a "work level" associated with the 
amount of water, electricity, heat*, etc. Storage of work or potential energy is the 
product of the level and the quantity located there. In other words, it is the energy 
required to raise the quantity to that level. 

Examples: 

a)  Gravity:   dW = dm·g·∆h  work to raise the mass dm in a gravitational field 

d ( )W
d

g h∆= ⋅ , g·h  “gravitational” potential. 
m

b)  Static Electricity:   dW   work to move the charge dq in an electric field 

d
d
W
q

∆ϕ= ,  ϕ  electric potential.  

c)  Thermodynamics:   dW   work to transfer an amount of heat* dS  

d
d
W T
S

∆= ,  T  thermal potential.  
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The last equation defines a potential for heat* denoted by T. The value of this 
potential can only be determined in respect to a reference body (e.g., an ice water 
bottle). The potential energy dE of an amount of heat* dS in a body with heat* 
potential T is given by 

dE = T·dS. 
By partitioning a hot body into parts and then transferring a small amount of 

heat* from a reference body to one of these parts, the work required is the same as 
that needed for the composite body. The thermal potential T is unaffected by the 
partitioning. For comparison, this is not the case for the electric potential. Since 
electric charge is distributed on the surface of the conducting body (Fig. 2.2), 
partitioning an electrically charged body usually changes the distribution of the 
charge, and therefore the field strength. Since the potential of an electrically 
charged body is determined by measuring the work performed in bringing a test 
charge dq up to it from infinity (Fig. 2.15), partitioning usually affects the electric 
potential. 

 

Fig. 2.15:  Comparison of thermal and electric potential 

dS

T1 T2

dq

T T1 2 = φ φ1 2 > 

φ1 φ2

dS dq

2.2.3. Thermal Tension 

Let us consider a body that is heated successively by small portions of heat* 
dS, for instance, by means of a heat syringe (Fig. 2.16, left side). At each step the 
gas must be compressed more strongly, requiring more work to force the heat* 
into the body. It appears as if the heat* in the body is under pressure or tension 
which rises with the thermal level. Let us denote this "thermal tension" by t. This 
phenomenon is well understood for the transfer of water from one container at a 
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p0

d  = – dW t S0 0 d  =  dW t S1 + 1 

∆h

t1

t0

p1

d  = – dW p V0 0 d  =  dW p V1 + 1 

Fig. 2.16:  Comparison of thermal tension and hydraulic pressure 

hydrostatic pressure p0 to another with pressure p1, since the water level rises 
steadily (Fig. 2.16, right side). In transferring a volume dV of water in the first 
step, we apply work   dW0 = −p0·dV.  The sign is negative because work is gained 
and not expended. (The accepted sign convention is to treat an input to a system as 
positive and an output as negative.) In the second step the work   dW1 = +p1·dV  is 
performed. The total work is therefore given by 

dW = (p1 − p0) dV . 

Similarly, the work for the transfer of heat* (Fig. 2.16, left side) consists of the 
two parts   dW0 = −t0·dS  and   dW1 = +t1·dS  that overcome the supposed thermal 
tensions t0 and t1: 

dW = (t1 − t0) dS . 

If, on the other hand, the transfer work is calculated based on the heat* potential, 
we get: 

dW = (T1 − T0) dS . 

That means, that the heat* potential T indeed can be interpreted as a kind of ther-
mal tension t: 

T ≡ t. 
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2.2.4. Temperature 

We know from experience that the thermal tension parallels our perception of 
hot and cold, or in other words, our sensation of temperature. The hotter a body 
feels, the higher its thermal potential. The thermal potential of a body is a measure 
of temperature and can be used to define temperature as a physical quantity. The 
equilibration of temperature of bodies in thermal contact is analogous to the 
equilibration of pressure of connected vessels and of the electric potential of con-
ductors in contact. 

The change in potential between ice water and boiling water at a pressure 
1.013 bar (1 atmosphere) remains the same regardless of the size and shape of the 
container. By selecting a heat* unit that divides this change in potential into 100 
equal parts, we generate a temperature scale comparable to that currently accepted 
(Fig. 2.17). 

T T2 1 −  = 100 units

T1' T1'' 

T T2 2' '' = T2'   T2'' 

T T1 1' ''= 

 

Fig. 2.17: Defining a temperature scale 

2.2.5. Heat Engines 

Consider an experiment, which heats up a body through small increments. If 
we reverse this process, the required work has to be released. A heat* engine is 
based on this principle. It removes an amount of heat* S from a heat* reservoir at 

 



 2. Pure Thermodynamics 20

nearly constant temperature T1 and transfers it to another reservoir at a tempera-
ture T0. The amount of heat* S is transferred from a potential T1 to a lower one T0. 
For a machine working without loss, the following work is delivered (note nega-
tive sign for work delivered!): 

W = − (T1 − T0)·S. 

A water wheel and a turbine work in a similar fashion if placed between two 
water containers at different hydrostatic pressures. An electromotor represents an 
equivalent electric example for such a power machine (Fig. 2.18). 

 

dW =   q− ∆φ d

dW =  p V− ∆ d

dW =  T S− ∆ d T0 φ0

T1 

dV
p1   p0   

φ1

heat engine turbine electric motor

dqdS

Fig. 2.18: Heat* engine, water turbine, and electric motor 

2.2.6. Thermal Work 

When heat* is forced into a body, work must be performed to overcome the 
thermal tension T in a similar way to the charging of a body against its electric 
potential ϕ or the filling of a rubber balloon with water against its internal pres-
sure p. For the addition of heat* dS, charge dq and water volume dV, the re-
quired work is: 

dW = T·dS    thermal work,  
dW = ϕ·dq    electric work,  
dW = +p·dV    mechanical work (note the positive sign).  
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Thermal work should not be confused with the work required for "lifting" heat* 
(for example with a heat syringe to a higher level of temperature. When the body 
supplying the heat* is at the same temperature as that which receives it, the work 
required for "lifting" vanishes whereas the thermal work remains. 

2.2.7. Heat* Capacity 

In general, temperature T is not proportional to the heat* content S of a body 
(Fig. 2.19). The ice water bottle provides an extreme example: On heating, its 
temperature remains constant as long as ice is present. 

 

T

S

melting point

Fig. 2.19: Temperature T as a function of the heat* content S 

In order to describe the thermal behavior of a body, T is usually not discussed 
as a function of S. Instead, the heat* capacity Ç is considered, i.e., the amount of 
heat* required to raise the thermal tension by one unit: 

d
d

SÇ
T

= . 

The capacitance C of a conducting body is defined analogously as the amount of 
charge required to raise the electric potential by one unit: 

d
d

qC
ϕ

= . 

The heat* capacity Ç of a body depends not only on its state, meaning, for exam-
ple, upon its temperature and pressure, but also on the conditions under which the 
heat* is transferred. For example, for the same change in temperature, a body that 
is free to expand can receive more heat* than one that is constrained 
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2.3. Heat* Production 

This section deals with conditions under which heat* is produced, and the 
consequences of this production which were excluded previously as bothersome 
side effects. 

2.3.1. Absolute Temperature 

Let us compare two simple experiments. In order to avoid corrupting the re-
sults with an undesirable loss of heat to the surroundings, we must insulate the test 
body well or work sufficiently quickly. 

a)  If we stretch a rubber band: this requires work and T increases. If we then 
allow the rubber band to return to its original length slowly (it should not snap 
back!), the work is regained and T returns to its initial value (Fig. 2.20). This 
process is reversible. No heat* is produced because the rubber band remains as 
cold or warm at the end as it was at the beginning. 

+ W + W− W − W

te
m

p.

time

 

Fig. 2.20: Work for stretching of a rubber band 

b)  If we bend a malleable piece of flat iron: this requires work and T increases. If 
we then bend the iron back to its initial shape, this again takes work and T in-
creases further (Fig. 2.21). This process is not reversible. The iron has returned 
to its initial shape but it is now warmer. Only after we extract some heat* from 
it does it return to its original state, except for a negligible amount of embrit-
tlement. In this case, heat* is produced, and the expended work is used up.  

We now want to generalize these results and express them quantitatively. If a 
small amount of heat* is to be produced in a body, denoted by Sp, this can only 
happen by using up energy to overcome its thermal tension T. To justify this 
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Fig. 2.21: Work for bending a flat iron 

statement, we can argue that when we release the produced heat* and return the 
body to its initial state, the amount of thermal work released,   |W| = T·Sp,  must 
equal the work expended on heat production, Wp, in accordance with energy con-
servation: 

T·Sp = Wp . 

This equation leads to an important result: There must be an absolute zero 
point of the thermal potential, in contrast to that for electric potential. Further-
more, this temperature T must be positive. Since work must be expended to 
produce heat*,   Wp > 0,  and we know of no counterexamples where heat* is 
produced,   Sp > 0,  and work is gained,   Wp < 0,  it follows as a consequence 
that   T > 0. 

One additional observation is necessary: The heat* content S of a body can 
increase both by an amount imported from an external source, Se, and by an 
amount produced inside the body, Sp: 

∆S = Se + Sp. 

2.3.2. Prerequisites for Heat* Production 

We have seen that energy is required for heat* production and this seems to 
be the only prerequisite. Other bodies participate in and support this process but 
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remain unaffected. For example, work is expended on bending the iron strip while 
nothing else important changes. The same conclusion applies when heat* is pro-
duced in an electric resistor, by stirring a liquid or by friction in a bearing. Con-
versely, one can suspect that heat* is always produced when the required energy is 
available. The following examples provide some justification for this statement. 

a)  When a rolling vehicle slows down, its kinetic energy is released. This energy 
can be stored as potential energy if the vehicle rolls uphill. There is no, or 
more accurately, only little heat* produced. This possibility is eliminated 
when the vehicle rolls on level ground and all of the released energy is used 
for heat* production. 

b)  Part of the energy stored in a galvanic cell is transferred to the outside by 
electric current. If all of this energy is used to lift a weight by an electric mo-
tor, no heat* is produced (Fig. 2.22). If we replace the motor with a purely re-
sistive load in the circuit, the total electric work is used up for producing 
heat* and none is stored as potential energy in contrast to the first case. 

 

Wel  < 0 Wel  < 0Wmec > 0 Wth > 0

Fig. 2.22: Released energy used for lifting a weight or producing heat* 

c)  Work stored on compression of a gas is released when the gas is allowed to 
expand. From the earlier discussion, we expect that the gas will cool down 
when expanding (Fig. 2.6), but that is true only if no heat* is produced. If it is 
produced, it will more or less compensate the temperature drop and the gas 
will maintain its temperature. We can use a small motor for demonstration. If 
the work from an expanding gas is used to drive this motor and little heat* is 
produced, the gas, as expected, will cool down, but when the motor idles, the 
temperature of the vented air changes very little. 

 



2. Pure Thermodynamics 25

In summary we can state that heat* is produced in a process where excess en-
ergy is neither used for work nor stored. This applies in particular to processes 
involving friction. Work used to overcome friction or some other resistance cannot 
be stored or captured in such a way that it can be reused. 

2.3.3. Feasible and Unfeasible Processes 

The insights gained above allow us to determine, on the basis of energy bal-
ances, whether or not a process is feasible. A process whereby energy is released, 
i.e., where stored work is not fully converted from one form of storage into an-
other, can run by itself. A process, which requires extra energy, cannot run by 
itself. It is assumed in both cases that these processes do not violate any laws of 
nature. The work released in the first case can be consumed by heat* production 
and hence complies with energy conservation. In the second case, by contrast, the 
missing energy has to be supplied externally. 

Not every process that is capable of releasing energy will actually run its 
course. For example, a gaseous mixture of oxygen and hydrogen is stable at room 
temperature even though energy could be released in a chemical reaction. Simi-
larly, the Alps are preserved although work could be gained by leveling them. The 
above processes are possible but inhibited. These natural inhibitions are extremely 
important for the world, as we know it. Without them, mountains would disappear 
and the oxygen in the air would destroy all organic matter and, with it, all living 
beings. Since the process of oxidation is too slow under normal circumstances, life 
can survive on earth 

2.3.4. Lost Work 

If work Wp is used up in a heat-producing process, then it is not possible to 
regain the full amount. This occurs because heat* cannot be destroyed and those 
places and reservoirs where heat* can be stored are at a positive temperature. 
Therefore, at least the potential energy,   T·S  that exists at the coldest accessible 
place is lost. We describe Wp as "lost", "wasted" or "devalued" work because it 
can only be partially restored through cumbersome procedures. The rate at which 
work is lost is called loss power. 
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One of the most convenient ways to introduce heat* in a specified place is to 
utilize lost work. In order to heat up a room or a body, we produce heat* locally 
via a chemical reaction (fire, gas burner) or with an electric heater. In general, we 
do not transfer heat* from a reservoir or some distant source. After measuring the 
lost work and the temperature of the body that is being heated, we can easily cal-
culate the amount of heat* produced, provided an appropriate thermometer is 
available. 

One can use this simple method to calibrate a calorimeter or to determine 
heat* capacities. In the latter case, we can heat an insulated test body via an elec-
tric heater and monitor the rise in temperature (Fig. 2.23). The electric work ex-
pended, dWp, divided by the measured temperature T, yields the increase dS in the 
heat* content S. The ratio of dS to the observed temperature rise dT represents the 
heat* capacity Ç and we obtain S by integrating the heat* capacity. 
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d d

WSÇ
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2.3.5. Heat* Condu
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Fig. 2.23: Measuring heat* capacities
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through a conductive link (referred to as a "conduction path") 
rature T1 to another at T0, then potential energy  (T1 – T0)·S 
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is released (Fig. 2.24). Where does the energy go? Since it cannot be stored any-
where, it must be used for heat* production. This heat* Sp, produced in the con-
duction path, must flow in the direction of decreasing temperature and thus will 
end up in the colder body with thermal potential T0. Sp can be computed from the 
energy Wp released i.e., the work released by heat* S "falling" across the tempera-
ture drop: 

p
0 p

0
) ,                                       .

W
T S S

T
⋅ =p 1(W T= −  

 

S

T1

T0

Sp

Fig. 2.24: Heat* production during  heat* conduction 

Conduction across a temperature gradient increases the heat* flow. This is a sur-
prising but inevitable consequence of our considerations. For that reason we have 
to be careful when applying conduction during calorimetric measurements. Earlier 
we transferred heat using a heat syringe instead of by conduction (Fig. 2.13) be-
cause conduction is not reversible and we were not sure if heat* is produced or 
not. We have now shown that this exclusion was justified.  

The thermal work performed on the colder body, W0, is given by 

1 0
0 p 0 0 1

0

( )( ) .T T ST S S T S T T S
T
−⎡ ⎤+ = + ⋅ = ⋅⎢ ⎥⎣ ⎦

 

     W0      Sp       −W1 

This work is equivalent to the amount released by the warmer body,   −W1 = T1·S.  
While the amount of heat* increases by conduction, the energy current remains 
constant. This process is commonly described as energy transfer rather than as 
heat* transfer because it is simpler in this special case. 
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The energy Wp is the work wasted along the conduction path. If the conduc-
tion path would have been replaced by a heat* engine, then this amount of energy 
would be the gained useful work from the engine. Here this energy is not used but, 
as we said before, it is lost, wasted, or devalued. These words don't convey what 
causes the loss, so we might instead say that the energy is "burned up" to connect 
the idea of "waste" to the production of heat*. When energy is burned up, the 
amount of "thermal charge" is increased. 
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m

Sp
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Fig. 2.25: Other cases of potential drop and heat* production 

Heat* conduction can be compared either with electric conduction or — more 
intuitively — with a waterfall (Fig. 2.25) . The lost, or better, burned up work Wp 
is represented by the potential drop of each quantity (charge q, water mass m) 
through the "conduction path". The produced heat* is given by the ratio Wp/T0 
where T0 is the temperature of the "conduction path:" 
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In all these processes, two steps can be distinguished: 

potential drop  and  heat* production. 

In the ca e quantities 
which flo

 

se of heat* conduction this distinction is obscured because th
w and which are produced are of the same kind. 
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2.4. Heat* Content at the Absolute Zero of Temperature 

If we remove all heat* S from a substance, we expect its temperature T to 
drop to zero. Actually we can make the temperature T approach zero as closely as 
desired by continuously extracting heat*. Since T can be measured, it is easy to 
observe this behavior. Expressed mathematically, we have: 

T → 0   as   S → 0  (more precisely: T → 0   for S sufficiently small).  

It is more difficult to determine the amount of heat* remaining in a body. One 
could destroy the body chemically and thus release and measure the heat* which 
remains, since heat* cannot be destroyed. However, both the reactants and prod-
ucts of the chemical reaction contain some heat*. Therefore, this method can only 
determine the difference ∆S of the heat* released by the initial materials and ab-
sorbed by the final materials. Such investigations show that ∆S vanishes at very 
low temperatures (the procedures are described in chapter 4). This result and other 
empirical facts support the obvious assumption that bodies at zero absolute tem-
perature contain no heat*: 

S → 0   as   T → 0.  

These two relations formulated here have some peculiar exceptions. If a drop 
of water evaporates completely, then its heat* content goes to zero without a 
change in temperature. This is in violation of the first relation. If we allow a ther-
mally insulated gas to expand continuously, then its temperature drops and ap-
proaches zero although its heat* content remains constant. This is a violation of 
the second relation. We will apply the above relations to non-degenerate cases 
only, such that the volume of a body cannot vanish or become arbitrarily large. 
Furthermore, the amount of the substance used may approach zero — a vacuum is 
permissible in our considerations — but it may never approach infinity. The above 
discussion can be summarized as follows: 

T → 0   if and only if   S → 0   for finite systems.  

Some materials, such as liquid glass for example, are observed to give off less 
heat* if they are cooled down quickly, than they would if they were cooled down 
slowly, although the initial and final temperatures are equal in the two cases. It is 
as if heat* is trapped or frozen into the body if it is cooled too quickly. In the case 
of glass, it is the heat* required to melt it (the heat* of fusion) which is frozen in. 
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Melted glass crystallizes very slowly, and rapid cooling delays the process to the 
point that it stops and the heat* of fusion cannot be released. A further tempera-
ture drop would slow down the crystallization even more, so this method cannot 
be used to extract the frozen heat*. These amounts of heat* are literally trapped in, 
as in a thermos flask. Since they cannot be released, they do not influence a ther-
mometer and contribute nothing to the measured temperature of a body. 

Some materials trap heat* even in an absolutely cold environment. By exclud-
ing these exceptions, the above theorems remain valid for finite systems. Their 
consequences agree with our experience. 

2.5. Comparison with other Theories of Heat 

People familiar with other approaches to thermodynamics need to know how 
this new approach is related to traditional conceptual approaches. This knowledge 
is also necessary in order to use intelligently the tabulated data and knowledge 
available in the literature. Even for those not well versed in historical terminology, 
it should not be too difficult to understand the essential ideas. 

2.5.1. Comparison with Traditional Thermodynamics 

So far we have formulated several concepts to describe the observed thermal 
phenomena. The same processes can be described using the standard language of 
conventional thermodynamics. A comparison will yield the corresponding con-
cepts of each approach. In this section only we will mark all variables as they are 
used in the new approach with an asterisk (*) as we have been doing with heat*. 
Variables from traditional thermodynamics will not be marked. 

We mentioned earlier that heat* can be equated with entropy (see the end of 
section 2.1.3). Both quantities can be identified strictly from the following com-
parison. Our procedure for heat* transfer from one body to another is very similar 
to a reversible CARNOT process. Section 2.1.3 gives the example of expanding a 
rod from 1.000 to 1.0001 m with a heat* input via a heat syringe from an ice water 
bottle. During this process the entropy decrease −∆S1 of the first body (ice calo-
rimeter) equals the entropy increase ∆S2 of the second body (rod) because the 
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entropy of the total system (ice calorimeter and rod) remains constant due to re-
versibility: 

−∆S1 = ∆S2 . 

According to traditional theory, the mass m of freezing water in our heat* meas-
urement process is proportional to the entropy loss of the calorimeter, −∆S1 In 
addition, m is by our definition a measure of the increase in heat* of the body 
under investigation: 

∆S2* ~ m ~ −∆S1 = ∆S2 . 

If we set the proportionality constant between ∆S2* and ∆S2 to unity by an appro-
priate choice of units and select the zero of entropy properly, then the entropy S 
and the heat* content S* of a body are equal: 

S = S* . 

In traditional thermodynamics, "heat" is treated as a form of energy, repre-
sented by Q. Entropy, S, is introduced as the integral   ∫dQrev/T.  Those who are 
familiar with this abstract introduction might wish a more detailed justification of 
the last equation in order to see how it fits in with previous concepts. The follow-
ing comments might help: Entropy is a state function, which always increases for 
real processes in isolated systems. Since it is an extensive or substance-like quan-
tity, one can assign a density to it for every region of space. It follows that entropy 
can be viewed as an entity distributed in space that may be added to or extracted 
from a body, and whose total amount always increases. Since   dS = dQrev/T,  the 
qualitative effects of an entropy increase are the same as a heat• input, Q. You can 
think of each increase dS, for either reversible or irreversible processes, to be 
caused by a reversible heat• input, dQrev, even if it is actually caused by an irre-
versible process. Since we cannot tell whether the heat effects are due to entropy 
or the energy dQrev received by a body, we are free to interpret the quantity S as 
heat, rather than Q. 

Now let us consider the determination of the absolute thermal potential T* of 
a piece of matter by producing a small amount of heat* Sp* inside it as described 
in section 2.3.1. The energy Wp expended for this purpose is supplied to the piece 
and then completely emitted as thermal work, W*. Conservation of energy re-
quires that 

Wp = −W* = T*·Sp*. 
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Expressed in traditional terminology, the performed work Wp is expended in the 
first irreversible step and as a result, the entropy must increase by some — as yet 
undetermined — amount. In the subsequent reversible step, the heat• Q is released 
and simultaneously the entropy is decreased by   Q/T,  where T is the thermody-
namic temperature of the material. Since the body returns to its initial state at the 
end, the total change in energy and entropy are zero. Expressed mathematically, 
we have   Wp + Q = 0  and   Sp + Q/T = 0,  or 

Wp = −Q = T·Sp. 

Comparing both equations for Wp, we see that heat• in its traditional sense, Q, is 
equal to thermal work, W*, and since S = S*, the thermodynamic temperature, T, 
must be equal to heat* potential, T*: 

Q = W*, T = T*. 
As a result, our heat* capacity   Ç* = dS*/dT* = dS/dT = Ç.  Usually the 

quantity   Ç = dS/dT  is not used in traditional thermodynamics, but it could be 
called "entropy capacity". Our heat* capacity Ç* differs from the commonly used 
heat• capacity   C = dQ/dT  by the factor T, because   T·dS = dQ.  We can write  

C = T·Ç* = T (dS/dT). 
Therefore, in our terminology traditional heat• capacity C may be referred to as 
"thermal work capacity". Except for the sake of this comparison, there is no reason 
to introduce a quantity C in our new interpretation. Similarly, there is no need to 
introduce a quantity Ç in the traditional view. In all cases, we can state that 

  Ç = Ç*  C = C*. 

entropy capacity = heat* capacity         heat• capacity  = thermal work capacity 

Thus, the basic quantities and their derived variables are in one-to-one corre-
spondence without requiring conversion. That has some practical consequences. 
We can measure the heat* potential with a common mercury thermometer and we 
can read off the heat* content of many bodies in the "entropy" column of pub-
lished tables. If the quantities remain the same, what has really changed? 

Briefly stated: It has been shown that the central concepts of thermodynamics 
can be introduced in a simple and intuitive way, although under different names. 
The discrepancies between the energetic interpretation of heat and our common 
language have been largely eliminated. Entropy, for most people a hard-to-grasp 
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concept, has been given an adequate interpretation. Finally, we can make compari-
sons with other areas of physics that facilitate our understanding of the conceptual 
framework and remove the abstractness of thermodynamics. Those who are un-
comfortable that heat conduction is treated as a composite procedure (heat transfer 
from high to low temperature combined with heat production) may consider en-
ergy flow instead of entropy flow and, in this way, retain traditional formulae 
without returning to the traditional interpretation. 

In order to clarify these differences, let us contrast some analogous state-
ments, in traditional and new terminology.  

a)  Energy Law (First Law) : 

— Traditional: The internal energy of a system is a state function. Its change is 
due to the sum of all heat• and work inputs to the system received from its 
surroundings. The energy of an isolated system remains constant during all 
internal processes. 

— New: Work can be stored in various ways and can be regained. It cannot be 
created or destroyed.  

b)  Entropy Law (Second Law):  

— Traditional: The entropy of a system is a state function. Its change is due to 
the integral of all heat• inputs to the system received from its surroundings 
in a reversible way, dQrev, divided by the absolute temperature T at which 
the heat• is introduced. The entropy of an isolated system can increase but 
never decrease during all internal processes.  

— New: Heat* is contained in larger or smaller amounts in a body depending 
on its state. It can be produced but cannot be destroyed.  

c)  NERNST Heat Law (Third Law):  

— Traditional: The entropy of a system in equilibrium vanishes as its tempera-
ture approaches absolute zero.  

— New: Absolutely cold bodies contain no heat* unless some of it is trapped in.  

d)  Heat Engines: 

— Traditional: The efficiency of an ideal heat engine, defined as the useful 
work divided by the expended heat•, Qin, is given by the temperature differ-
ence between heat• input and output,   ∆T = Tin − Tout,  divided by the abso-
lute temperature of the heat• input:   W/Qin = ∆T/Tin. 
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— New: The useful work of a lossless heat* engine is the product of the 
thermal potential drop, ∆T, and the amount S of the transferred heat*:   
W = ∆T·S.  

The new interpretation treats work — or rather work storage — as synony-
mous with energy, since there is no compelling reason to differentiate between 
stationary and moving forms of energy or work. On the contrary, one can avoid 
unnecessary explanations by not making this distinction. A good example is the 
treatment of electric charge. Certain important statements become almost self-
explanatory with the new interpretation. For example, the statement that it is im-
possible to build a perpetually running heat engine driven by a constant tempera-
ture heat reservoir (W. THOMSON's version of the Second Law)  is analogous to: 
"It is impossible to operate a water mill without a drop in elevation". Similarly, the 
statement that it is impossible to reach the absolute zero of temperature (the fre-
quently used form of the Third Law), in other words to remove all the heat* con-
tained in a body, is analogous to saying: "It is impossible to reach the absolute 
zero of pressure by removing all the gas from a tank". 

We are faced with the curious fact that the choice of a single concept — 
namely, the "heat" concept — has decisively influenced the structure of an entire 
theoretical framework. This choice affects not only the immediacy of its state-
ments, but also the conciseness of its computational methods, as we will see later. 
How is this possible? 

In contrast to scientific description, common language is relatively imprecise. 
A single word can denote different concepts. For example, to an unbiased layman 
the word "force" conveys ideas and characteristics that correspond to physical 
quantities like pressure, force, energy, momentum or potential. There exists con-
siderable leeway in establishing a correspondence between scientific and com-
monly used concepts. 

In traditional thermodynamics there are three quantities — temperature T, en-
tropy S and the energetic (work-like) quantity Q — that could be described by the 
word "heat": 

heat (hotness) heat (amount) heat (energy) 
 
 T S Q

 

After the name "amount of heat" was assigned to the energetic variable Q, and 
with it all connotations connected with this name, it became difficult to explain the 
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quantity S. This variable was introduced only formally and remained abstract. This 
can be compared to the crippling effect of the insertion of both feet into a single 
trouser leg (Fig. 2.26). If you want to take even a few steps you need crutches. 
Thermodynamics has become fixed in a similarly awkward situation by declaring, 
as the First Law of the whole theory, the equality of heat and work. There is no 
longer a variable for describing the heat contained in a body, so crutches like "en-
thalpy" and "free energy" must be used to overcome this disability. They would 
otherwise not be necessary. 

enthalpy

entropy

free energy

 

Fig. 2.26: The misfortune of thermodynamics 

It is compelling to find the reasons for this misfortune of thermodynamics that 
led to a contradiction between theory and intuition, and the numerous abstract 
concepts that make it difficult to understand. In order to uncover these reasons, we 
have to take a look back to the nineteenth century. 

2.5.2. Historical Background 2 

Since long ago, two theories have been known to describe the concept of heat. 
Heat was first explained in terms of waves or motion, prompted by the observation 
of phenomena such as heat radiation and heat production through friction. Here 
heat can be created and can disappear. No distinction was made between intensity 
                                                           
2 Detailed discussion in G. Job, Sudhoffs Archiv 53 (1970) 378 
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(temperature) and quantity (amount of heat), as you find in common language 
even today.  

Later, during the 18th century, under the influence of the evolution of chemis-
try, scholars tended to interpret heat as a kind of substance called caloric, which 
could neither be produced nor annihilated like a chemical element. As a result, the 
first quantitative statements could be made about heat. Transports of heat, as well 
as the changes of temperature when hot and cold bodies are in contact, were easily 
explained by making the temperature proportional to the concentration of heat. 
The processes of fusion and evaporation were viewed as a reaction of this "heat 
substance" with the heated body. Heat was not produced by friction; the substance 
was released by the worn down material like oil from pressed seeds. According to 
this substance theory, heat could not be produced, nor could it be destroyed. In 
order to explain the temperature balance achieved by bodies with different initial 
temperatures, J. H. LAMBERT (1779), M. A. PICTET (before 1800) and other con-
temporaries assumed that heat was subjected to a kind of tension that increases 
more and more when a body becomes hot. This was assumed to be the cause of 
the tendency of heat to disperse. 

In 1824, S. CARNOT, whose considerations laid the foundation for thermody-
namics, compared a heat engine driven by cold and hot heat reservoirs with a 
water mill. He drew analogies between the temperature difference and the drop in 
elevation of the water, and between the heat transferred and the water flowing 
down, and then computed the work gained from such an engine. He did not obtain 
his results from the analogy but derived them from the well-known impossibility 
of a perpetual motion machine (perpetuum mobile) on the basis of the substance 
theory of heat. In essence, he used two assumptions: 

a)  Work cannot be created. 

b)  Heat is not producible and not destructible. 

Building on CARNOT's ideas, E. CLAPEYRON (1834) introduced the relationship 
between steam pressure and heat of evaporation that became known as the 
CLAUSIUS-CLAPEYRON Equation because R. CLAUSIUS (1864) expressed it in its 
final form. In 1848 W. THOMSON suggested a definition of temperature that corre-
sponds to the introduction of T as the potential of the heat substance. 

This generally successful interpretation of heat was contradicted by results of 
different experiments that showed that heat seems to be produced, related to the 
amount of work expended. This indicated a connection between these two quanti-
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ties. B. THOMPSON, H. DAVY (about 1800) and especially J. P. JOULE, by his care-
ful experiments after 1840, further refined the idea. JOULE measured the same 
heating effect when he expended a definite amount of work, regardless of the 
method he used. R. MAYER, J. P. JOULE and H. v. HELMHOLTZ then assumed that 
heat and work are interconvertible. Confusion spread when they tried to apply the 
principle of conservation of energy to all of physics, since formerly it was proven 
only for mechanical processes. Did heat in a steam engine behave like water in a 
mill according to CARNOT's explanation, or was it used up as MAYER and JOULE 
claimed? 

In 1850, R. CLAUSIUS suggested a compromise between the conflicting inter-
pretations. Heat was neither arbitrarily convertible into work, nor was its amount 
conserved in a steam engine during the transition from higher to lower tempera-
ture. Both processes had to be considered as interconnected in a determined man-
ner. He showed that one could arrive at the corresponding statements made by 
CARNOT and CLAPEYRON by changing the assumptions of the substance theory of 
heat as follows: 

a) Work cannot be created nor destroyed without using up or creating an 
equivalent amount of heat. 

b) Heat is not producible and not destructible cannot flow from a lower to a 
higher temperature by itself. 

Although this theory was further developed by THOMSON in parallel with 
CLAUSIUS, it was not accepted initially because it lacked the simplicity and ele-
gance of the old interpretation. Later, however, it replaced all other competing 
theories. It was helped by the fact that the discovery of the energy principle made 
an overwhelming impression on scientists of that time. They had exaggerated 
expectations from this law of nature. In some places it was considered as the "only 
formula required for the true knowledge of nature" (G. HELM, 1898). According to 
H. HERTZ, many of his contemporaries considered the reduction of all natural 
phenomena to the laws of energy conversion as the ultimate goal of physical re-
search. It is understandable that in such an environment the CLAUSIUS-THOMSON 
theory of thermodynamics was treated as a kind of archetype theory because its 
heat quantity was not a quantity on its own, unlike electric charge, but was simply 
interpreted as a form of energy. Efforts were made to develop other disciplines 
according to this ideal, rather than making the framework of thermodynamics 
similar to that of its related areas. The hope of the "energetic advocates" was not 
realized, but they

 

 left us their version of thermodynamics. 
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What was overlooked is that a minimal change of CARNOT's basic assump-
tions is sufficient to eliminate the contradictions between the old theory and ex-
perience. In this way the switch to the energy interpretation, which has cost so 
much effort and controversy, could have been avoided: 

a) Work cannot be created nor destroyed. 

b) Heat is not producible and not destructible. 

By striking out the one word "not" in the last sentence, we reject the substance 
theory just as CLAUSIUS did. 
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3. GENERAL THERMODYNAMICS 

On heating a body one can observe a temperature rise – the primary effect – 
as well as various secondary effects such as expansion, pressure increase, bending, 
charge increase (pyroelectric effect), chemical changes, etc. Conversely, mechani-
cal, electrical and magnetic effects can cause thermal side effects like a tempera-
ture change or a heat transfer to or from the environment. This chapter deals with 
the interactions and relationships between thermal and other physical quantities. 
However, chemical transformations are left until chapter 4. 

3.1. Elastic Coupling 

This term refers to a conceptual model that applies to many physical proc-
esses. It is particularly suitable for describing conditions of thermodynamic equi-
librium. First we shall clarify the conceptual and mathematical framework of this 
model with mechanical examples before applying it to thermal phenomena. 

3.1.1. Elastic Behavior 

If we stretch a rubber band (at constant temperature) from a length l0 to a 
length l, we observe an opposing force F which is uniquely determined by this 
extension, and which increases with length l: 

F = F(l). 

We refer to this behavior as elastic. We observe a steep increase in force at small 
extension, a somewhat reduced value on further extension and finally another 
increase at even larger extension. Figure 3.1 depicts the function   F = F(l)  graphi-
cally in exaggerated form. 

Let us define the "stiffness" of the rubber band at length l1 by   dF/dl,  which 
represents the slope of the curve at point P. The term "spring constant", commonly 
used for a linear relationship between F and l, namely   F = a·(l − l0),  is  
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Fig: 3.1 Force as a function of length 

 

inappropriate here. A change of ∆l in l causes a change in F of ∆F. For small 
changes, we have   ∆F =  (dF/dl)·∆l,  or in differential form, 

dd d .
d
FF l
l

=  

It takes a force F to stretch the rubber band by ∆l. The product of force times 
the increase in length yields the work   W = F·∆l,  or in differential form, 

dW = F·d l. 

This work is stored by the rubber band such that the energy increase is given by  

dE = F·dl. 

If we allow the rubber band to return to its original length, all the energy stored in 
its extended state is released. 

If we now replace the rubber band by a strip of plastic material (like chewing 
gum), we also observe an opposing force when stretching the material. However, 
this force F is not uniquely determined by the length l of the strip. When the 
stretching ceases, the force disappears and the strip remains extended. The work 
performed in stretching the strip by dl against the opposing force F is   dW = F·dl.  
Similarly, the energy content of the system is given by 

dE = F·dl. 
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In contrast to the example of the rubber band, this energy is not retrievable since 
the process is irreversible. Systems of this type are less easily described than those 
exhibiting reversible behavior. 

3.1.2. Main Quantities  

We shall denote those quantities on the right hand side of the energy equation 
preceded by the differential symbol d as "work coordinates" (for example, l). 
PLANCK called these variables "work coordinates". We will call changes in these 
variables "displacements" (for example, dl), and the corresponding factor multi-
plying the variable as a "force". An external force is considered positive when it 
tends to increase the work coordinate. The product of the displacement and the 
corresponding force is the "work" performed on a system, which describes an 
increase in energy. 

– Examples of “positions” or “work coordinates":  
 length, volume, area, amount of  “something” (charge, substance …), etc. 

– Examples of "forces": 
 force, pressure, voltage, potential, etc. 

– Examples of "work": 
 mechanical, magnetic, electric, thermal, chemical, etc. 

In the following sections we shall only consider lossless systems, i.e., those 
capable of releasing all the expended work when the process is reversed. Such 
systems cannot create entropy internally, dSp = 0, and the entropy content can only 
be changed through an external input,   dS = dSe.  The selected work coordinates 
uniquely determine the state of the system, particularly the applicable forces. In 
this case we refer to the differential equation describing the change in energy of 
the system as the "main equation", and we call the system "elastic". Expressed 
mathematically, dE is a total or complete differential. We will call forces and 
work coordinates "main quantities". Since we are only interested in the interde-
pendence of forces and positions, we shall choose or define the concepts we need 
(like stiffness) so as to make them independent of all other details of the selected 
process, and not use any names that refer to the specific system under considera-
tion, at least in this section. 

The energy as a function of the work coordinate, i.e.,   E(l)  in the case of the 
rubber band, represents the "characteristic function" of an elastic system. Once 
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this function has been determined, all properties of the system described by the 
main quantities can be determined. Missing forces can be derived from E by tak-
ing the derivative. For our rubber band with   dE = F·dl,  this yields: 

d ( )( )
d
E lF l

l
= . 

Our description of an elastic system is quite general. It applies to the charging of a 
capacitor, input of heat to a body or a weight being lifted via a pulley (Fig 3.2). 
Even a moving body, belongs to this group although this example will not be used 
later. If we choose the momentum   m·v  as the work coordinate, then the velocity 
v becomes the corresponding "force". Since the kinetic energy of a body with 
constant mass m is   E = ½ m·v2,  we have: 

dE = v·d(m·v). 

 

T

F

v

U

charge

momentum

heat
height

Fig. 3.2: Examples of  “elastic” systems 

3.1.3. Co- and Counter-Coupling 

Consider the following mechanical system: An elastic body of arbitrary 
shape where two rods are pressing it against a rigid wall with forces F and F' 
(left side of Figure 3.3). Both rods are free to move and their positions are speci-
fied by the coordinates l and l'. However, the two rods are neither totally inde-
pendent, nor rigidly connected in such a way that the position of one completely 
determines the position of the other. The connection is "elastic": When one rod 
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is pushed in, the other is pushed out. By holding one rod fixed its motion ceases, 
but the force, which pushes the rod out increases. We will refer to this kind of 
interdependence of two processes as counter-coupling, which describes the case 
where one process hinders the other. We call the opposite behavior, where one 
process reinforces the other, co-coupling. The right hand side of Figure 3.3 
gives an example of the latter. 

 F

F

F'

F'
l

l

l' 

l' 

.

Fig. 3.3: Counter- and Co-coupling of two rods 

Instead of focusing on the rods, it is generally more convenient to monitor 
their work coordinates. Therefore we will introduce the following way of talking: 
We say that l and l' are elastically coupled, even though they are only mathemati-
cal variables. This is either co- or counter-coupling, depending on whether an 
increase in l results in an increase or decrease in l'. 

3.1.4. Energy and Forces 

The systems, illustrated in Figure 3.3, have two possibilities for performing 
and storing work, that is by moving either one rod or the other:  

dW = F·dl   and dW' = F'·dl'. 
The energy differential — the increase in the work stored — depends on two pos-
sible processes: 

dE = F·dl + F'·dl'.  
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This is the main equation for our "two-actuator" elastic system (i.e., a system 
having two independent variables). The variables l and l' are the positions or work 
coordinates and the factors F and F' represent the corresponding forces. By taking 
the differential of the characteristic function   E(l, l' ),  we obtain: 

( ) ( )d dd d d
d dl' l

E EE l l'
l l'

= ⋅ + ⋅ . 

Comparison of the last two equations yields: 

( )d
d l'

EF
l

= ( )d
d l

EF'
l'

=, . 

This notation for derivatives, commonly used in thermodynamics, indicates 
the variable held constant during the differentiation by an index outside the 
brackets. This cumbersome notation shows all the independent variables, here l 
and l'. The reason why this notation is necessary is that the energy could also be 
treated as a function of   (l, F')  or   (F, F'),  instead of   (l, l').  Just writing the 
derivative as   dE/dl,  without mentioning the second variable, would be am-
biguous since it could also represent the derivative with respect to l of   E (l, l'),   
E (l, F'),   E(l, F),  etc. 

The force F depends not only on l, as in the case of the rubber band, but also 
on the position of the second rod. A similar statement holds for F'. Expressed 
mathematically: 

F = F(l, l' ),     F' = F' (l, l' ). 

Such functions cannot be represented graphically by a single curve; a two-
dimensional surface (Fig. 3.4, left side) is now required. 

If l increases by d l while l' is held constant, then F increases by   dF = 
(dF/d l)l' · d l.  The notation   (dF/d l)l'  just describes this relationship: an increase 
in F (numerator) due to an increase in l (denominator) while l' is held constant 
(index). More intuitively, this coefficient   (dF/d l)l'  represents the "stiffness" of 
the elastic body in the direction of l: the higher the stiffness, the greater the force 
needed for a change in the position of the piston while the other piston is fixed. An 
additional increase in l' by d l' produces a change of   (dF/d l' )l·d l',  and is positive 
for counter-coupling and negative for co-coupling (Note the sign!). The total 
change in dF is now given by: 
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Fig. 3.4:  F(l, l' )-surface (left-hand) and a small section out of it (right-hand) 

d dd d d
d dl' l

F FF l l'
l l'

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,  

 stiffness     coupling coeff. 

The corresponding equation for F' is: 

d dd d d
d dl' l

F' F'F' l l'
l l'

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

     coupling coeff.'     stiffness'  

The right side of Figure 3.4 illustrates these relationships by showing a small, 
almost flat, section of the   F(l, l' )-surface. Since these forces are obtained from 
the energy derivatives, we can show that the two coefficients resulting from cou-
pling are related by: 

2 2d d d d=
d d d d d dl l'

F E E F'
l' l l' l' l l

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠
. 

Note that the order of differentiation is interchangeable (SCHWARZ theorem). For 
simplicity, the brackets and indices for the two middle terms have been omitted. 
We will return to this equation later. 
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3.1.5. Primary and Coupling Effects 

During the motion of the rods or, more generally, during a change in work 
coordinates, we observe various effects. 

a) Primary effects and their coefficients:  

The farther a rod is pushed in, or the larger l or l' becomes, the greater the cor-
responding force F or F', respectively. This observation is also valid when no 
coupling occurs. Such an effect, one that exhibits the interdependence of cor-
responding quantities, is called a primary effect. In our example it is ex-
pressed quantitatively by the positive coefficients 

d d d d, , , …
d d d dF'l' l F

F l F' l'
l F l' F'

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  

These consist of derivatives of the corresponding main quantities such as   
(F, l)  or   (F', l' ),   and not   (F', l)  or   (F, l' )  ; the index is unimportant here. 
We call these coefficients primary measures. In order to understand the sig-
nificance of terms such as   (d l/dF)F',  one could investigate the functions   
l(F, F' )  and   l ' (F, F' ),  instead of considering the dependence of F and F' on 
the positions of the rods. For instance, the term   (d l/dF)F'  indicates the "soft-
ness" of the elastic body in the direction l with F' held fixed. 

b) Coupling effects and their coefficients:  

The influence exerted by a change in position on the other positions and 
forces is called a coupling effect. The sign of a coupling effect depends on the 
type of coupling. In the absence of coupling this effect disappears, while the 
primary effects remain. Consider a system with counter-coupling, such as that 
illustrated by the left hand side of Figure 3.3. When one rod is pushed in, the 
other is pushed out, and vice versa. These coupling effects express themselves 
in two possible ways. If the right rod is held fixed (l' = const.) while the left 
rod is pushed in, then the force F' increases. If this rod is free to move (F' = 
const.), then its position l' decreases. This behavior may be described quanti-
tatively by coefficients like 

d d, , …
d dl' F'

F' l'
l l

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    , 
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where here the first term is positive and the second negative. In each case the 
quantity in the numerator and denominator are not corresponding main quan-
tities, as seen here in   (F', l) and   (l', l).  We call these kinds of derivatives 
coupling coefficients. The signs are reversed for co-coupling (right hand side 
of Figure 3.3). If one rod in that system is pushed in, the other tries to move in 
the same direction. If we push the rod on the left in and allow the rod on the 
right to move   (F' = const.),  its position l' increases. By holding this rod 
fixed  (l' = const.),  the force F' decreases. Note that the signs are reversed 
from those in our previous example. 

c) Indirect effects:   

It is clear that one rod is affected by the motion of the other rod in our two ex-
amples. In both cases, it is harder to push in the left rod if the other rod is held 
fixed (l' = const.). Conversely, it becomes easier if the other is free to move 
(F' = const.). This result is independent of the type of coupling (co or 
counter). Mathematically, this condition is expressed as follows: 

( ) ( ) ( ) ( )d d d d> ,        < .
d d d dl' F' l' F'

F F l l
l l F F

  

In the first case the body appears less elastic, or stiffer, than in the second 
case. Although the second rod is not directly involved in the primary effect 
we are looking at, it still affects the motion of the first rod. We will call ef-
fects of these kind indirect effects. The coefficients differ, physically, because 
of the change of the constraints, formally, by the change of the index in the 
corresponding partial derivative.  
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One further comment about the equation from the end of the last sectio
F/d l' )l = (dF'/d l)l'.  The coupling effect described by the first term is nume
lly equal to that of the second term. This means that the first rod is coupled

e second as strongly as the second is coupled to the first. Stated concisely, the 
utual coupling is equally strong, or in other words it is symmetric! This symme-
y will be used when we apply the flip rule, or the SCHWARZ theorem, or the 
AXWELL equations in traditional thermodynamics derivations (see sections 3.2.2 
d 3.7.1). 

In conclusion, when we know that the symmetry condition   (dF/d l' )l = 
F'/dl)l'  is satisfied, then for an arbitrary system with two coordinates l, l', and 
o forces   F(l, l' ),   F' (l, l' ),  the differential   dE = F·d l + F'·d l'  is complete, i.e., 

e can say that the energy is a function of the coordinates   E = E(l, l' ).  Physi-
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cally, this means that we are dealing with an elastic system, as assumed earlier. 
Symmetric coupling is therefore a distinguishing feature of an elastic system.  

3.1.6. Unstable Behavior 

We have found that the coefficients for primary effects are positive for the 
elastic bodies in Figure 3.3. In general, it can be demonstrated that these coeffi-
cients should always be positive to avoid unstable behavior. An elastic system 
under the influence of constant, or zero external forces is referred to as unstable if 
a small perturbation can disturb its initial state of equilibrium. (See the examples 
shown in Figure 3.5; the weight on the left hand side does not form part of the 
system but only depicts graphically the constant external force.) Equilibrium can 
be achieved through a proper selection of the external force for any value of the 
position or work coordinate. 

 

F = const

F = 0

l

l

Fig. 3.5: Examples of unstable equilibrium 

For clarification, let us consider a rubber band as in Figure 3.1, now with a 
body with weight G hanging from it. We now assume that, unlike in normal rub-
ber bands,   dF/d l < 0.  In the initial state the opposing force F balances the 
weight:   F = G. A  small downward disturbance (increase in l) leads to a reduc-
tion in F such that   G > F.  The resulting force does not drive the weight up to its 
equilibrium position but farther away, aggravating the imbalance between F and G 
and accelerating the downward motion. An upward perturbation of the initial state 
will drive the weight up. 
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The reason for such unstable behavior is the assumption that   dF/d l < 0.  
Clearly, we can expect unstable behavior in all cases where the force decreases 
with increasing work coordinate, or in other words, where the coefficient of the 
primary effect is negative. 

So far statements regarding the sign and magnitude of the coefficients have 
been developed heuristically. These can be derived formally for a system, which is 
stable (which is almost always the case), and where the type of coupling between 
work coordinates is known. This means that the essential structure of a stable, 
elastic system is determined by the statements about coupling, independent of its 
mechanical, thermal, electrical or other properties. Structural conclusions can thus 
be extended from a familiar to a less familiar system with the same kind of cou-
pling and stability. Therein lies the value of the current consideration.  

3.2. Mathematical Rules for Derivatives 

In this section we shall present some mathematical rules for expressing a 
derivative in terms of others, for example by derivatives that can be measured 
more conveniently. With an abundance of possible coefficients, any means of 
saving time is very useful. Although we are dealing with purely mathematical 
relationships here, we will highlight their physical significance. In the follow-
ing, the variables u, v, w … describe the properties of the system, and the mutu-
ally independent parameters z1, z2, … zn characterize the state of the system. 
Thus the quantities u, v, w … that can depend on each other in various ways are 
functions of zi. 

3.2.1. Change of Variable 

In thermodynamics, where many equations are conveniently expressed in 
differential form, a change of variables is sometimes required for the deriva-
tives. To make such a change to a derivative   (du/dv)v' v''…   of a function   u(v, 
v', v'' …),  it is useful to apply the fact that a derivative can be written as a ratio 
of two differentials: 

( ) ( )
( )
dd ,

d d
a

a a

uu
v v

=  
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provided that the denominator does not vanish. The index a indicates, here and 
subsequently, an abbreviation for the quantities that are unimportant for the 
current development. In this example, a stands for the unimportant quantities v', 
v''…  The symbols   (du)a  and   (dv)a  denote differentials of u and v which can 
be functions of other variables — for instance, v, v', v'' … or the parameters z1, 
z2, … zn — while a is held constant. A typical procedure involves the following: 
the two differentials are separately computed, based on mathematical or thermo-
dynamic relations, and divided by each other. The resulting ratio of differentials 
is again represented by the usual derivative notation (see section 3.7.3). As a 
simple example, if we choose v, v', v'' … as independent variables, then the total 
differential is given by 

( ) ( ) ( )d d dd d d d
d d dv' v'' vv'' vv'

u u uu v v' v''
v v' v''

= + + + …
… … …

( )

 

The requirement that a remains constant means that   (dv)a = dv,  (dv' )a = 0,  
(dv'' )a = 0, … ,  so that only the first term of the equation remains 

( ) ( )dd d
da a

a

uu v
v

= . 

By dividing by   (dv)a,  we regain the original expression. 

In order to shorten the procedure further, it is useful to become familiar with 
some additional rules. Five simple operations will allow us to accomplish the task 
of changing derivatives to new variables. Section 3.2.2 discusses the fifth opera-
tion, and section 3.2.3 discusses the detailed applications. For ease of reference we 
shall give names to these operations. 

a) Inversion:  

( ) ( )d d1
dd aa

u v
uv

=    

( ) ( ) ( )d d d
d d da a a

u u w
v w v

=

b) Expansion:  

 

  Note that the same index is used in each term! 
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c) Inserting an index:  

( ) ( ) ( )d d d
d d dwa va ua

u u w
v w v

= −  

Note the minus sign, and that each term contains the complete set of variables 
u, v, w, a! 

d) Replacing an index 

( ) ( ) ( ) ( )d d d d
d d d dza wa va za

u u u w
v v w v

= +

If we wish to
we write dow
add the expan
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 replace the index z with w in the original derivative   (du/dv)za,  
n the derivative with the new variable w in the index, and then 
sion of the original derivative with respect to the new variable w 
on term". The first factor in the "correction term" contains the 
ent variables w, v, a, while the second factor contains the origi-
 

 be valid, we require that the derivatives on both sides of the 
., the quantities in the numerator must be differentiable functions 
presented by the denominator and index. 

wing derivations, we use the property that a derivative can be 
atio of differentials. 

( )
( )

( )
( ) ( )d d d1 1
d dd

a a
aaa

u v v
u uv

= = . 

( )
( )

( )
( )

( )
( ) ( ) ( )d d d d d

d d d d d
a a a

a aa a a

u u w u w
v w v w v

= = . 

ting u, v, a as independent variables, the differentials du, dv, da 
f the quantities contained in the original expression are 

( ) ( ) ( )d d d    d ,    d d d d
d d dva ua uv

w w wa w u v a
u v a

= + + .    
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For constant w and a,   dw = 0  and   da = 0,  which leads to the relation-
ship between du and dv 

( ) ( ) ( ) ( )d dd d
ddwa wa vaua

w wu v
uv

= − . 

This results in the desired equation after dividing by  (dv)wa and inverting 
the denominator. 

For d) With v, w, a as independent variables, we get 

( ) ( ) ( )d d dd d d d
d d dwa va vw

u u uu v w a
v w a

= + +

( ) ( )

. 

The differentials dv, dw, da are developed similarly by treating v, z, a as 
independent variables. For constant z and a, we obtain 

( ) ( )dd d ,  d d ,  d 0
dza za za

za

wv v w v a
v

= = =

3 3d d d dn nE y x y y x y x= + + + +…

. 

 By substituting into the differential equation for du, which yields   
(du)za,  and dividing by dv or   (dv)za,  we get the desired equation.  

3.2.2. Flip Rule 

 Next we discuss a rule that is associated with the coupling phenomena in a 
special way. Let us start with a differential of n terms. We can consider this the 
main equation of an elastic system with n independent variables (n-actuator 
system): 

1 1 2 2dx . 

The x variables represent the position or work coordinates and the y variables, 
each of which can depend on all x variables due to coupling, represent the corre-
sponding forces. All x variables are "of same type", just like the y variables. An x 
and y variable with the same subscript belong together as a pair, and we will refer 
to them as "paired". 

There are a total of n2 possible derivatives of y with respect to x 

ˆ

d
d

j

i

j x

y
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

ĵ  (i, j = 1, 2, 3 … n,   x  stands for all x without xj) 
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but they are not all different. Recall that the yi variables can be expressed as de-
rivatives of E with respect to xi: 

ˆ

d
d

i

i
i x

Ey
x

⎛ ⎞= ⎜ ⎟
⎝ ⎠

         (i = 1, 2, 3 … n,     stands for all x without xi) îx

Since the order of differentiation is interchangeable, we get: 

ˆ

2 2 dd d
d d d d

i

j

j j i iˆ

d
d d

j

i

j i xx

y
x x

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

yE E
x x x x

⎞ ⎛ ⎞ ⎛ ⎞
= = =⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎠ ⎝ ⎠
. 

Physically, this mathematical relationship may be interpreted as symmetry of 
coupling of the work coordinates, denoted here by xi and xj. We had done this 
previously. We can now formally describe the transition from the first to the last 
term. The procedure may seem a bit complicated, but we will see later that it is 
necessary for the multiple applications where we will employ it: 

a) Exchange the variables in the numerator and denominator, and substitute 
these variables with their paired counterparts. 

b) Reverse the sign in the case where the numerator and denominator contain 
variables of the same type. 

c) The index consists of all unpaired variables in the original expression, and 
additionally of those paired variables that are absent. 

The word "unpaired" means that one member of the pair is missing. We can clar-
ify these rules with a concrete example (n = 4): 

 

1 2 43 , ,

1d
d x x x

       3

1d
dy

x
⎛
⎜             ⎞

⎟
⎝ ⎠

3

1

d
d
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x

⎛
⎜ ⎟       ⎞
⎝ ⎠ 2 3 4

3

1 , ,

d
d x x x

y
x⎝ ⎠

a) b) c) ⎛ ⎞
⎜ ⎟  y

x
⎛ ⎞
⎜ ⎟
⎝ ⎠

For a) The counterpart of y1 is x1 and that of x3 is y3. Consequently, x1 goes into  
the denominator and y3 into the numerator. 

For b) The sign remains positive since y3 represents a force and x1 a work coor-
dinate. They are not of the same type. 

For c) Only x2, x3, x4 are unpaired in the original expression, and therefore 
make up the new index. Additional pairs are not introduced because 
each of the four pairs xi, yi are represented by at least one member in 
the original expression. 
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We obtain the same result with the second derivatives of the energy function   
E(x1, x2, … , xn). 

Steps a) through c) comprise a mathematical operation that we will call "flip-
ping." This procedure allows us to go directly to the final expression without mak-
ing a detour via energy derivatives. We say that a derivative can be "flipped" if the 
resultant derivative, as illustrated above, leads to the same numerical value. Before 
we focus on the properties of these operations, let us make an aside: 

Instead of choosing the x variables as independent variables, one can, as a 
general rule, pick n quantities that depend on the n remaining variables. For ex-
ample, for the elastic body with  n = 2, where the energy differential is given by   
dE = F·dl + F'·dl':   

l = l(F, F' ) F = F(l, F' ) l' = l' (F, l) 
 or or etc. 
l' = l' (F, F' ) l' = l' (l, F' ) F' = F' (F, l) 

Every differential quotient composed of  n + 1  arbitrarily selected main quanti-
ties may be a derivative of such a function. Two of the quantities appear in the 
quotient itself, and the remaining   n − 1  are indices. We can ignore degenerate 
cases, such as a system without coupling, where this statement is false. Applied 
to our example, this means that all differential quotients formally composed of  
n + 1 = 3  arbitrary chosen quantities from the whole set  F, F', l, l'  represent 
meaningful coefficients: 

d d d, , , etc.
d d dF' F' l

l l' F'
F l F

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

The "flip rule" states that each such derivative can be flipped. Thus, we im-
mediately obtain via this rule a large number of important relationships that, as 
we will show later, may be considered all as results of an equally strong, sym-
metric coupling. 

A prerequisite for applying the "flip rule" is that, for a system with 2n arbi-
trary variables   x1, x2 … xn, y1, y2 … yn,  where all yk are functions of all xk, the 
following relationship holds for all i and j 

ˆˆ

d
d d

ij

ji

j i

d

xx

y
x x

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

y  (i, j = 1, 2, 3 … n). (*) 
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If this equation is valid, we can use the "flip" operation on any meaningful, but 
otherwise arbitrary derivative composed using xk and yk, without changing its 
value. We have seen previously that the main quantities of an elastic system sat-
isfy this requirement. In other words, the two work coordinates xi and xj are sym-
metrically coupled. We will discuss the proof of the "flip rule" soon. 

In order to practice using the flip rule, let us consider another example in 
detail (n = 4): 

 

For a) y2 and y1 are exchanged and simultaneously replaced by their counter-
parts, x2 for y2 and x1 for y1. 

For b) The sign becomes negative since x1 and x2 are both work coordinates, 
and therefore are of the same type. 

For c) Only y1 is unpaired amongst the five variables in the original expres-
sion. It goes into the index along with the pair x4, y4 missing in the 
original term. 

According to the flip rule, the left-hand and right-hand expressions are equal. 

Let us now consider the still easy but particularly important case of  n = 2  in 
order to demonstrate how the flip rule may be proofed∗. We will do this simply by 
examining each of the 24 possible differential quotients. As starting point, we use, 
the condition that the four quantities x1, x2, y1, y2 are related by  

 
1 2

1 2

2 1

d d
d dx x

y y
x x

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                          

. 

This equation is obtained from the general case (*) with  n = 2,  i = 1 and   j = 2.  
The cases  i = 1,  j = 1  and  i = 2,  j = 2  as well as  i = 2,  j = 1  do not generate 
new relations and can therefore be left out. 

 
∗ Complete proof: G. Job, Z. Naturforsch. 25a (1970) 1502 
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If we "expand" the derivative on the left-hand side by y2 and "insert" the index x2 
into the derivative on the right-hand side, we get 

1 1 21

1 2 2 2

2 2 2 1

d d d d
d d d dx x yx

y y y x
y x x x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅ = − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ 21

1 2

2 1

d d
d d yx

y x
y x

⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞  or      . 

Continuing the transformation by inserting the index x1 into the derivative on 
the left-hand side, and expanding the derivative on the right-hand side by y1, we 
obtain 

    
2 21 21 2 1 1d d d dy yy yx y y x

− ⋅ = − ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

1 11 2d dd dy yx x⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

1 2

1 2

2 1

d d
d dy y

x x
y y

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 or , 

and from a similar computation with x2, y2 

1 1 1 2

21 2 2

2 2 2 1

dd d d
d d d dy y y x

yx x x
x y y y

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⋅ = − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 1 2

21

2 1

dd
d dy x

yx
x y

⎛ ⎞⎛ ⎞ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 or        . 

By taking the inverse of all differential quotients in the last four equations on the 
right, we get four additional relations 

21 2 1

22 1 1

1 2 1 2

dd d d,           
d d d d yx x x

yx x x
y y y x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 

1 2 1 2

2 1 12

1 2 1 2

d d dd,           
d d d dy y y x

y y yx
x x x y

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

Finally, let us list all expressions containing the pairs  x1, y1 or x2, y2  in the quo-
tients itself: 

2 2 2 21 1 1 1d d d dx y

1 1 1 1d d d d, ,        , ,
x yx x y y⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

y y x x⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞  

1 1 1 12 2 2 2

d d, , .
d d d dx y

2 2 2 2d d,        
x y

y y x x
x x y y

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎞
⎟  

This list and the above eight equations comprise the total number of meaning-
ful differential quotients that can be formed from the quantities  x1, x2, y1, y2.  
Each derivative symbol involves three of the four variables. By applying the flip-
ping operation, the expression either remain unchanged — as is the case for the 
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last eight derivatives — or they change into the expression given on the other side 
of the equation. In all cases, the value of the derivative is unchanged. Thus, we 
have proved the validity of the flip rule for the two-dimensional case (n = 2).  

3.2.3. Application Guidelines 

Even the best tools are useless if one does not know how to work with them. 
Therefore, user instructions are just as important as the tools themselves. A fre-
quently occurring task in thermodynamics is to express given coefficients in a 
known or more easily measurable form. For a systematic approach it makes sense 
to organize the used variables on the basis of accessibility. We will start with the 
main equation and establish a preferred sequence for its parameters. The most 
conveniently measured variable pair is listed first with "lowest rank" and the fol-
lowing ones possess increasing degrees of difficulty. Within each pair we will 
underline the one, which is more easily accessible. In this way the main quantities 
are split into two groups of equal size, "accessible" and "inaccessible" variables, 
and ranked on the basis of measurability (in addition to dividing them into forces 
and positions).  

In our previous mechanical example (Figure 3.3) the differences are not very 
pronounced and the ranking of the variables becomes somewhat arbitrary. Let us 
assume that the positions of the rods are more easily determined than forces and 
the quantities referring to the rod on the left (without a prime) are simpler than 
those of the other rod (with a prime), then the main equation becomes: 

dE = F·dl + F'·dl' . 
Under normal circumstances the familiar derivatives contain only easily 

measurable quantities as independent variables since these parameters can be more 
readily adjusted in an experiment. This gives the first rule for a systematic trans-
formation procedure 

a) The given derivative is transformed into expressions, which contain only 
derivatives, where only accessible variables appear in the denominator and 
the indices. 

There are some simple but adequate aids available for performing this task. The 
first step depends on the type of the quotient:  

( ) ( ) ( ) ( )d d d d,  ,  ,   
d d d da a a a

u z z u
z u z' u'

, 
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(z, z', …  "accessible", u, u', … "inaccessible" main quantities as well as other 
variables, a, a', …  serve as abbreviation for one or more quantities in the index, 
which are without interest at the moment). The first quotient is already in the cor-
rect form. We get the desired shape for the second quotient by inverting it. The 
desired result for the third quotient can be obtained by inserting a variable from 
the index and for the forth quotient by expanding it with an additional variable, 
and then – in both cases –  inverting one of the new derivatives. At the same time, 
this procedure can be used to eliminate an unwanted variable u from the index  a = 
(u, a' )  of the third derivative  (dz/dz' )a,  and to introduce one missing desirable 
variable z in the forth derivative  (du/du' )a: 

( )d
d a

u
z

 

(Expression remains unchanged.), 

( ) ( )d d1z u=  
dd aa zu

(Quotient is inverted.), 

( ) ( ) ( ) ( ) ( )d d d d d
d dd d d za' z'a'ua' z'a' za'

z z u u u
z' zz' u z'

= − ⋅ = −  

(Index u is inserted, then the first factor in the intermediate result is inverted.), 

( ) ( ) ( ) ( ) ( )d d d d d
d dd d d a aa a a

u u z u u'
z zu' z u'

= ⋅ =  

(The given quotient is expanded by the variable z, then the second factor in 
the intermediate result is inverted.). 

If these "cleaned-up" expressions still have unwanted quantities such as u' in the 
index   a = (u', a' ),  then these can be eliminated by using the rule for replacing an 
index combined with the other operations discussed above: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
d
dd d d d d d= = … = 
dd d d d d d
d

z'a'

u'a' z'a' za' u'a' z'a' za'
za'

u'
zu u u z' u u
u'z z z' z z z'
z'

+ ⋅ − ⋅  

With practice, the intermediate steps may be skipped and we can go directly to the 
final result. But at the first stage of learning it may be better to proceed slowly 
step by step.  
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A derivative obtained by applying the flip rule is generally measurable if the 
variable in the numerator belongs to a higher-ranking pair than that in the denomi-
nator. This leads immediately to a second rule for the desired transformation: 

b) All generated quotients that contain a numerator with higher rank than the 
denominator (“top-heavy” quotients) are flipped. 

Let us consider briefly whether this step is consistent with our efforts to make all 
independent variables accessible. A quotient, prior to being flipped, must have the 
form   (du/dz' )a  where   a = (z, a' )  contains the force or work coordinate z associ-
ated with u, and a' consists of all unpaired main quantities. After flipping, we get 

( ) ( )d d
d dza' z'a'

u u'
z' z

= , 

where u' relates to z'. Thus, the flipped expression has the desired form. 

By transforming all derivatives according to these rules, we will eventually 
reach a point where all derivatives contain desirable variables in their denomina-
tors and indices, and the quantities in the numerator are of lower rank than those in 
the denominator. In general, we have reached our goal of turning an unfamiliar 
expression into a known one. If this is not the case and there are other, more easily 
measurable coefficients in the system, we can subject these new coefficients to the 
above procedure and hence obtain additional equations between the various terms. 
By means of these new equations we can replace any undesired coefficients with 
the more favorable ones. This procedure corresponds to the elimination of a vari-
able from a system of equations with several unknowns. 

To ease quotation, the frequently used procedure described by steps a) and b) 
is given a name. A derivative changed by this procedure is said to be "cut back" to 
the variables   v1, v2, v3 …   (like cutting back a tree, shrub or hedge to a desired 
shape), where   v1, v2, v3 …   denotes the selected accessible main quantities ar-
ranged according to increasing rank.  

3.2.4. Applications 

Let us return to the elastic body. We assume that the "stiffness" of this body 
in each direction,   s = (dF/dl)l'  and   s' = (dF'/dl' )l,  as well as the coupling coef-
ficient   f = (dF/dl' )l  are known. f is a measure for the strength of coupling. By 
definition, f is positive when the two rods oppose each other. All other coefficients 
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can be related to these three coefficients, as can be shown by "cutting back": to the 
variables l and l'. Here are a few examples where the comments in parentheses 
clarify each computational step. 

a) "Softness" while holding the second rod fixed:  

( ) ( ) 2d 1 4d1
dd 2l'l'

l b b acF
lF s a

− ± −= =  

(This is of type   (dz/du)a,  which has to be inverted). This coefficient simply 
equals the inverse of the "stiffness" s. 

b) Displacement of the second rod caused by the first: 

( ) ( ) ( ) ( ) ( )d d d d d
d dd d d lF' l l' l

fl' l' F' F F'
l' l'l F' l s'

= − ⋅ = − = −  

(This is of type   (dz/dz')a , where we insert a variable from the index, here F', 
invert the first factor of type   (dz/du)a ,  and flip the second factor since F' has 
higher rank than l). The coefficient is negative, as expected for opposing in-
teractions. 

c) "Stiffness" with a constant force on the second rod:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

´
2

d d d d ´ d d
d d d d d d

d d           
d d

F' l' l F l l'

l l

F F F l l' F's f
l l l' l F' l

fF F's f s
l' l' s'

= + ⋅ = − ⋅

= − ⋅ = −
  

(This is of type   (du/dz)a,  where we replace the inaccessible F' by l' and 
process the second factor as in b) above). The term   −f 2/s',  which measures 
the magnitude of the force on the second rod due to the motion of the first 
rod, is negative for both co-coupling  (f < 0)  and counter-coupling  (f > 0).  
This result shows formally what we concluded intuitively earlier, i.e., the 
body appears more elastic when the second rod is allowed to move (F' is con-
stant) than when it is held fixed (l' is constant): 

( ) ( )d d
d dF' l'

F F
l l

<  

d) Now assume that we know s, s' and the coefficient from c) denoted by s* 
instead of s, s' and f. As before, let us compute the coefficients in a) and b). In 
the case of a) nothing changes because by "cutting back" to l, l' (see above), 
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the final expression contains the familiar s. In the case of b) we have to cut 
back to s* and l, l' in order to eliminate the undesirable quantity f via a new 
equation: 

( ) 2

´

d ,    *
d F

f fl' s s
l s' s'

= − = −

( )

 

(Calculation as in b) and c)). We can eliminate the unknown f since   f = 
*s s s'−   from the second equation, and substitution of this expression 

into the first gives the final result: 

( )
´

d *
d F

l' s s
l s'

−= −  

3.2.5. Necessary Number of Known Coefficients 

During the computation of the different coefficients for the elastic body we 
assumed that three of these coefficients were known. How many derivatives have 
to be known in order to express the remaining derivatives of first order composed 
of main quantities? The answer is  

( 1)
2

n n⋅ +  

for an n-actuator system. For  n = 2, we get the value 3 used earlier. Now let us 
substantiate this claim: 

By "cutting back" any derivative of that form constructed from main quanti-
ties, we end up with an expression consisting of derivatives with n accessible 
independent variables listed in order of increasing rank  z1, z2 … zn. Since the 
remaining n main quantities  u1, u2 … un can be differentiated with respect to each 
variable z, we obtain a total of   n2  derivatives:  

ˆ ˆ ˆ1 2

ˆ ˆ ˆ1 21 2d d d

... ... ... ...
nnz z zz z z⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

ˆ ˆ ˆ1 2

1 1 1

1 2

2 2 2

1 2

d d d...
d d d

d d d...

d d d... .
d d d

n

n

n

n n n

n

z z z

z z z

u u u
z z z

u u u

u u u
z z z

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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On the basis of the flip rule all derivatives that are symmetrically located relative 
to the diagonal have the same value. Thus, we can ignore all terms below the di-
agonal since, for each of these terms, the numerator has a higher rank than the 
denominator. By counting the remaining terms, we get 

( )1
1 2 3…

2
n n

n
+

+ + + = . 

This number does not change even if one or more derivatives are replaced by more 
easily measurable ones or for any preferred ones, as illustrated in the previous 
section. However, when square roots are involved, this procedure introduces some 
uncertainty as to the sign.  

3.3 Simple Examples of Mechanical-Thermal Coupling  

After this thorough preparation, we now return to thermodynamics. Initially 
we shall examine the interrelationships between thermal and mechanical changes 
to a body. As a guide, we shall use the example of elastic coupling. 

3.3.1. Deformation of a Body 

Consider a system that is closely related to our mechanical ideal, the elastic 
body. As illustrated by Figure 3.6, one of the rods is replaced by an "entropy sy-
ringe" that allows us to overcome thermal tension and add entropy to the elastic 
body. The elastic body can be considered as an inflated, thermally insulated rubber 
ball. (Note: the rod and syringe in Figure 3.6 do not form part of the system). 

S

F

T

l

entropy-tight

 

Fig. 3.6: Coupling of a mechanical coordinate l with a thermal S 
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The processes of "pushing in a rod" and "adding entropy" are not independent but 
are mutually coupled. Qualitatively they bear the same relationship as counter-
coupling in our mechanical example. This follows readily from our earlier discus-
sions of entropy, or heat*. The observed effects can be classified the same way as 
in the case of the elastic mechanical body (here, we will not consider the coeffi-
cients that describe quantitatively the individual effects). 

a) Primary effects: 

 – The further the rod is pushed in, the greater the resistive force F becomes. 

  ( ) ,  d 0
d S

F
l

> ( )d 0 …
d T

F
l

>  

 – The more entropy is added, the higher the thermal tension rises inside the 
rubber ball. 

( )d 0
d l

T
S

> ( )d 0 …
d F

T
S

>,  

b) Coupling effects:  

– If we push in the rod, then entropy is forced out. If the entropy is sealed in, 
the temperature rises. 

  ( )d 0
d T

S
l

< ( )d 0 …
d S

T
l

>,  

 – If we add entropy, the rod is pushed out. If we hold the rod fixed, the force 
acting on it increases. 

  ( )d 0
d F

l
S

< ( )d 0 …
d l

F
S

>,  

c) Indirect effects: 

 – It is easier to push in the rod if we allow entropy to escape; harder if en-
tropy is sealed in. 

( ) ( )d d
d dS T

F F
l l

>   . 
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– It is easier to add entropy if we allow the rod to move, harder if the rod is 
held fixed. 

  ( ) ( )d d
d dl F

T T
S S

> . 

For  a), b) and c) we first listed the observed mechanical effects and then the non-
mechanical ones. 

The formal description of the rubber ball and the elastic body are identical. 
Work is performed and stored in two ways: 

–  mechanical work to overcome the "tension" F when the rod is pushed in (l 
extent of depression): 

dW = F·dl . 

–  thermal work to overcome the thermal tension T when entropy is added (S 
entropy content of the ball):  

dW' =  T·dS .  

Therefore, the total energy increase is  

     dE = F·dl + T·dS , 

where l and S denote work coordinates and F and T the corresponding forces. 
Since the condition of the ball, particularly the magnitude of the forces, is 
uniquely determined by the work coordinates, the system is elastic in the sense 
explained previously. The above energy differential represents the main equation. 

The coefficients relating to the various effects now become meaningful. With 
the aid of our rules, we can determine signs in those cases where it is not apparent 
from our intuition, and derive relationships between the individual coefficients. 
From the flip rule, for example, we find that the two coupling coefficients   
(dF/dS )l  and   (dT/dl)S  are equal. In other words, the change in rod position ∆l 
and the exchange of entropy ∆S are symmetrically coupled. 

The term   (dS/dT)x = Çx  represents the entropy capacity of the elastic body 
as explained earlier. We have already seen (section 2.2.7) that this quantity can 
assume different meanings depending on the conditions specified by the subscript 
x. The letter x can denote l or F, for example. It is harder to add entropy to the ball 
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when l is held fixed than when the force F is held constant, as expressed by the 
inequality: 

( ) ( )d d
d dl F

S S
T T

< l FÇ or      Ç < . 

The entropy capacity of the system with a fixed rod is smaller than that with a 
constant force on the rod. A similar result applies to the heat● capacity C (which is 
the entropy capacity Ç multiplied by the factor T ): 

l FC C< . 

This result may be obtained formally by manipulating ÇF in the following way: 

( ) ( ) ( ) ( ) ( ) ( ) ( )d d d d d d d
d d d d d d dF l

F l T F l T l

S S S l F l FÇ Ç
T T l T T F T

= = + ⋅ = + ⋅ ⋅

(Computational steps: Definition of ÇF, change of index from F to l, flipping 
of first factor of additional term and insertion of index F into the second factor). 
Since the final three-factor term is definitely positive — of the three factors,   
(dl/dF)T  is a primary measure and therefore positive and   (dF/dT)l  appears 
squared — we conclude that   ÇF > Çl.  

The above transformations basically involve cutting ÇF back to l and T. Only 
the term   (dl/dF )T  still needs to be flipped. In this example, a ranking for acces-
sibility is easily established. While it is clear that the mechanical quantities l, F are 
more readily measurable than the thermal parameters S, T, and T is more accessi-
ble than S, one can argue about the ranking order of l and F. Above we decided to 
prefer l: 

d  = ·d  + ·d  E F l T S . 

3.3.2. Rubber Band 

Let us now examine the relationship between mechanical and thermal quanti-
ties in our first example, a rubber band, where we can readily test the various 
effects. As in the case of the rubber ball, we can perform mechanical work on the 
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rubber band, namely, by extension dl against the force F, and thermal work by 
adding entropy while overcoming the tension T: 

d  = ·d  + ·d  E F l T S . 

The system is elastic and F, l, T and S are its main quantities. We found earlier 
that stretching the rubber band causes a temperature increase. It follows that the 
coupling between S and l is opposing, or counter-coupled. 

On the basis of this characteristic we can predict several observable and veri-
fiable effects: 

a) If we heat the rubber band, or, in other words, if we add entropy, it should
decrease in length (this represents a coupling effect of an entropy input on
mechanical quantities):

( )d 0l < . 
d FS

b) It should be easier to stretch the rubber band if we allow entropy to escape
and harder if we do not (indirect effect of thermal quantities on mechanical
ones):

( ) ( )
S T

d d
d d

l l
F F

< . 

T

S

F

l

hair
dryer

Fig. 3.7: Measuring heat effects in a rubber band 



3. General Thermodynamics 67

In order to prove these statements we will use the setup pictured in Figure 3.7. 
First we stretch a strong rubber band with a heavy weight suspended from a pul-
ley. A gauge attached to the pulley indicates the extension of the rubber band. 
When we suspend the weight, we note a significant increase in length and a sud-
den rise in temperature by several degrees. Then l increases more slowly as the 
temperature returns to its initial value. It is easy to interpret this result. The first 
step happens so quickly that entropy does not have time to escape. Subsequently, 
it slowly escapes to its surroundings as indicated by the temperature drop. When T 
reaches its initial value (T = const.), the stretching of the rubber band is noticeably 
longer than during the first step (S = const.). Thus, the inequality predicted by b) is 
indeed true. If our thought process is correct, then adding entropy with a blow 
drier, for example, should shorten the rubber band as in a). This result may also be 
verified in an experiment.  

3.3.3. Steel Wire 

If we replace the rubber band with a metal wire (Figure 3.8), the main equa-
tion remains unchanged: 

d  = ·d  + ·d  E F l T S . 
While the rubber ball and rubber band have no practical applications and there is 
no data on the associated coefficients, this is not the case for the steel wire. The  

F

l

S T, 

Fig. 3.8: Thermal effects in a steel wire 
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derivatives   (dl/dF )T,   (dl/dT )F and   (dS/dT ) F   are associated with the elasticity 
of the wire or more specifically, the coefficient of elasticity ε, the coefficient of 
linear expansion α and the specific heat• capacity cF. (The coefficient ε is the 
inverse of the elasticity modulus that is a measure of the "stiffness" of the material 
rather than the elasticity. The coefficient cF for  F = 0  is equal to the "usual" spe-
cific heat• c in the absence of tension and is not much different from it otherwise). 
If we denote the length of the wire by l, the cross sectional area by A and the den-
sity by ρ, then ρ·l·A is the mass and we have: 

( ) ( ) ( )d 1 d d,    = ,    
d d dF

T F F

A l l T Sε c
l F l T lA T

α
ρ

= ⋅ ⋅ = ⋅

  curve for a steel 

 . 

The factors, which multiply the derivatives are included so as to make these 
coefficients descriptive of material properties but independent of the size and 
shape of the body. For example, the derivative   (dl/dT)F  is proportional to the 
initial length of the wire l0. Similarly, cF, the heat● capacity   T (dS/dT)F  divided 
by mass, is independent of the mass. 

It is known that a wire expands on heating. Therefore, unlike the case of the 
rubber band, the quantities S and l are co-coupled such that they reinforce each 
other. It follows that a wire absorbs entropy from its surroundings during an ex-
tension. If we stretch it quickly, not allowing enough time for entropy to flow in, it 
should cool down. 

Let us estimate the magnitude of this effect for a steel wire. For a temperature 
change at constant S, we can express this change by   dT = (dT/dF)S · dF.  If we 
start without tension (F = 0) and remain within the linear regime (Figure 3.9), we  

Fig. 3.9: Tensile stress-strain

  wire 

F
A0

1

10−4 10−3 10−1
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gradient
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can write F instead of dF or ∆F. After "cutting back" the derivative to F, T, and 
substituting for α and cF, we obtain: 

( ) ( ) ( ) ( ) ( )d d d d d
d dd d d F FTS F F

T T S F Tl ST F F
T TF S F A c

α
ρ

∆ = ⋅ = − ⋅ = − = − ⋅

Even for a maximum load up to the limit of linearity, i.e., up to half of the tensile 
strength   F/A = 0.5 · 109 N/m2,  we compute a small temperature change of  −0.4 
K using   α = 10 · 10−6 K−1,   T = 300 K, ρ = 8000 kg/m3,   cF = 500 J K−1 kg−1.  
With the aid of the setup illustrated by Figure 3.10, we can convince ourselves that 
this estimate is right. 

1 : 10

1 mm2

thermocouple

Fig. 3.10: Measuring heat effects in a steel wire 

The wire is harder to stretch under adiabatic conditions (S = const.) than un-
der isothermal conditions (T = const.): 

( ) ( )d d
d dS T

l l
F F

< . 

In order to compute the relative difference with respect to   (dl/dF )T, we cut back 
to F, T, and insert ε, α and cF : 
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( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

( )
( ) ( )

2

2

d d d d d d d
d d d d d d d

d d d
d d d

d
d

.
d d
d d

F

T S F S F F T

T T T

F
T F

l l l T l T S
F F T F T S F

l l l
F F F

l
T T

l S c
F T

α
ρε

− − ⋅ ⋅ ⋅
= = =

= =
⋅

Using the modulus of elasticity   ε −1 = 0.2 ·1012 N/m2  for steel and the above 
values of coefficients, the relative difference is 0.0015. Since the difference 
caused by thermally indirect effects is less than one-tenth of a percent, it is usually 
neglected in mechanics. The elasticity modulus is generally given as   l/A·dF/dl,  
although strictly we should distinguish between an isothermal and an adiabatic 
modulus. 

3.4. Body Under Isotropic Pressure 

The next example of mechanical-thermal coupling is for a uniform body subjected 
to isotropic ambient pressure. This body could be a wooden cube, a hollow iron 
ball or the liquid enclosed in a hydraulic cylinder. Since this last one is an espe-
cially important case, we will cover it in detail. 

3.4.1. Main Equation and Coupling 

Mechanical work is required to compress a body. This work increases with 
increasing volume increment  −dV,  and with applied pressure p, and can be ex-
pressed as 

dW = −p · dV  . 

Figure 3.11 illustrates these relationships. Since p is the force acting on unit area, 
the total force applied to a flat area A is   F = p · A.  The work can now be written 
as 

( )d  = d  = d dFW F l A l p V
A

= − , 
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F = p·A

dl

l

A
 – V = A· ld d 

 – V  = A ld di i i 

liFi

Ai

dli

Fig. 3.11: Pressure, force, and work on an arbitrary body 

since the area moves by an amount dl due to the external pressure. As a result, the 
volume decreases by   A·dl.  If the surface is curved, it can be divided into many 
small, nearly flat pieces. In order to obtain the total work, the contributions from 
all pieces must be summed: 

( ) ( )d d d d di
i i i i i

i

FW F l A l p V p V
A

= = = − = −∑ ∑

d ´ d diW T S T S= =∑

. 

Similarly, the energy added as a result of entropy inputs at different surface loca-
tions can be computed as the sum of all individual contributions 

. 

The mechanical and thermal work performed on the body due to compression 
or heating is stored and can be regained in one form or another by letting the body 
relax or cool down. This is true for compact, heat-resistant materials over a wide 
pressure and temperature range, but decomposing, porous materials must be han-
dled with care. By stipulating volume and entropy, V and S, the condition of the 
material is usually fully determined if we exclude all influences other than 
changes in pressure and temperature. Thus, we have an elastic system with main 
equation 

dE = (–p)dV + TdS.  
If we select V and S as work coordinates, then −p and T become the corresponding 
forces. According to our sign convention (section 3.1.2), a positive external force 
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will tend to increase the corresponding coordinate. It should be noted, however, 
that p and V are not paired, but rather V with −p or −V with p. 

While volume and pressure characterize the state of compression of a sub-
stance, entropy and temperature determine its thermal state. These phenomena, as 
we already know, are interrelated. For example, if we add entropy to a body by 
bringing it into contact with a hotter substance, then its temperature rises (the 
primary effect of an entropy input) and the volume tries to increase (coupling 
effect). If, on the other hand, the body is compressed into a smaller space, then its 
pressure increases (the primary effect of a volume decrease) and also the thermal 
tension T increases and forces out entropy (coupling effect). As mentioned earlier, 
the body behaves like a sponge towards water. It "swells up" when entropy is 
absorbed and it releases entropy when it is squeezed. The quantities V and S are 
co-coupled. Cold water is an exception because it contracts when it is heated from 
273 to 277 K.  

3.4.2. Volume 

Since the quantities p and T may be easily adjusted, one usually treats the re-
maining quantities as functions of these variables. Figure 3.12 presents a rough 
overview of the variation in volume of a solid body with p and T. In general, the 
volume V decreases with increasing pressure; the decrease is steep initially and  

 Solid Gas 8
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~ T
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dV
d  p T dV

d  p T

dV
d  T p dV

d  T p

T
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T
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~ 1/p

8

7% for many metals at the melting point

Fig. 3.12: V(p,T)-diagram 
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becomes less pronounced later. However, it takes several thousand atmospheres of 
pressure to cause noticeable changes in volume for solids. Gases, by contrast, lose 
about half of their volume when the pressure is doubled (BOYLE-MARRIOTTE Law: 
V ~ 1/p).  In the T-direction, the   V (p,T)-surface often rises linearly. For gases, it 
is directly proportional to temperature (GAY-LUSSAC Law). For many metals, the 
increase in volume from 0 K to the melting point is about 7 % (GRÜNEISEN Rule). 
At low temperatures the variation in volume approaches a horizontal tangent. Of 
course, gases will condense before reaching the absolute zero of temperature so 
that nothing can be said about the change in volume. 

3.4.3. Entropy Content 

Entropy can be described as a quantity of work / temperature (S = W/T) and 
consequently has units of   J/K = Joule/Kelvin  for which no other abbreviation 
exists. One   J/K  has a concrete and intuitive meaning. It is almost exactly the 
amount of entropy required to melt 1cm3 of ice or to bring 1cm3 of water, initially 
at room temperature, to boil. 

If we consider that 1cm3 of a liquid or solid under normal conditions (room 
temperature and normal atmospheric pressure) contains several J/K of entropy, we 
have a good grasp of this amount. A solid loses approximately 1 to 10 % of its 
entropy if the pressure is raised to 10 000 bar and the temperature is held constant. 
When the temperature reaches 0 K, the entropy S goes to zero in the ideal case. In 
practice, this only happens for perfect crystals with a regular structure down to the 
atomic level; all other matter always traps in a certain amount of entropy that can 
be as large as 1 J/K in a volume of 1 cm3. 

Figure 3.13 illustrates the dependence of the entropy content on p and T.  The 
S(p ,T)-surface for solids starts out from the p-axis with a horizontal or nearly 
horizontal tangent and then passes over into a more or less logarithmically rising 
slope. In this range S increases by several J/K for each 1 cm3 of matter while the 
temperature rises by a power of ten. The entropy decrease parallel to the p-axis is 
similar to the loss in volume with increasing pressure. The behavior of gases is 
essentially the same. However, the entropy density at room temperature, which is 
10 J/K per liter, is a thousand times lower for gases than for solids or liquids. The 
S(p ,T)-surface cannot be extended to T = 0 due to unavoidable condensation, nor 
down to p = 0 because S approaches infinity there. The loss of entropy with in-
creasing pressure is small, only 1 J/K for a tenfold increase in pressure starting   
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from 1 dm3 of gas at normal conditions. In the T-direction the entropy increase is 
also logarithmic but steeper, several   J/K  for each power of ten. 

Since a cold body at absolute zero contains no or no retrievable entropy, the 
amount of entropy cannot be influenced by other variables; all derivatives of S at 
constant T must be zero. All non-adiabatic temperature coefficients  
( )d d Sh T ... or ( )d d Sh' T ...  of any non-thermal work coordinate h or its corre-
sponding force h' also vanishes due to the symmetry of coupling . Applying the 
flip rule gives 

( )d d Sh T ( )... ...d d 0TS h'= =      and    ( )d d Sh' T ( )... ...d d 0TS h= − = . 

S does not appear in the first term (as indicated by the crossed out S ) therefore T 
is unpaired there. Consequently, T appears in the index of the second derivative. 
For thermal expansion, for example, this yields:  

  
d d 0
d dp T

V S
T p

⎛ ⎞ ⎛ ⎞= − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

This result is illustrated in Figure 3.12 where the V(p,T)-surface starts in T-
direction with a horizontal tangent. Conversely, since temperature goes to zero 
when all entropy is released (except for the trapped in amounts), derivatives of the 
type  ( )d dh S T…  must vanish, as can be shown with the flip rule. In summary, 
the coupling between thermal and all other phenomena disappears at the absolute 
zero of temperature.  

Fig. 3.13: S (p ,T)-diagram 
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3.4.4 Compressibility, Coefficient of Expansion, and Specific Heat● 

If entropy and volume are specified at a point p, T, one can compute approxi-
mately the values in the vicinity of this point as long as the slopes along the p-axis 
and T-axis,   (dV/dp)T  and   (dV/dT )p,  as well as   (dS/dp)T  and   (dS/dT)p  are 
known. The first coefficient measures the compressibility of the material, the 
second the thermal expansion, the third the loss in entropy with increasing pres-
sure and the fourth the entropy capacity Çp (also denoted by Ç). This data is avail-
able in the literature for uniform materials.  
Mostly one does not find the desired data directly but related values of coeffi-
cients, defined such that they are independent of a particular body. For example, 
we have the compressibility χ, the coefficient of volume expansion γ, the specific 
heat• c ("specific thermal work capacity"), the pressure coefficient β, etc.:  

   
dd d d1 1 1,    ,    ,      …

d d d dp p VT

pV V STc
V p V T V T p T

χ γ β
ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= − = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

where ρ is the density. Unfortunately, these definitions are not consistent. The 
observed changes of material properties are sometimes referred to the current 
value of V, in some cases to the initial volume V0 (typically for γ) or to the mass   
m = ρ·V.  It would be more logical to use the entropy capacity normalized by the 
volume,  e = V−1(dS/dT)p,  in connection with χ and γ instead of c. Then one could 
eliminate the multiplying factor p−1 from β, as is sometimes done, because   
(dp/dT )V  is already independent of the size of the body. If we flip the derivative 
in the definition of γ and recall that −p and V are paired, we get 

 
d1
d T

S
V p

γ ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

. 

This indicates that γ describes not only the relative increase in volume of a body 
due to heating, but simultaneously the loss in entropy per unit volume due to com-
pression. 

The three coefficients, χ, γ and c, are sufficient to compute all possible de-
rivatives or coefficients composed thereof. For example, if we cut back β to p, T, 
we get 

( ) ( ) ( )d1 1 d d
d dd pV T

p V V
T pp T p p

γβ
χ

= = − =  
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The specific heat• at constant volume   cV = Tρ –1V –1 · (dS/dT)V  is smaller 
than that for constant pressure   cp = c  because adding entropy is more difficult 
when coupled volume changes, either positive or negative, are prevented. In order 
to compute the difference   c − cV  relative to c, that may be considered as a meas-
ure of the indirect effect of mechanical behavior on thermal behavior, we cut back   
(c − cV)/c  to p, T without flipping the derivative just this once: 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( )

2

d d d d d d d d
d d d d

d d d d
          .

d d d d
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p p

T p

T p

S T S T S p p Tc c
c S T S T

S p V T T
V p S T c

γ
ρ χ

− − ⋅−
= = =

− ⋅
= =

− ⋅

 

The same expression can be obtained by comparing the compressibility of the 
body with and without entropy exchange, similarly to the above. The compressi-
bility is described by the usual isothermal  χT = χ  and adiabatic                   
χS = −V−1(dV/dT)S   definitions. Note that this is an indirect effect of thermal side 
on mechanical changes:  

2
1V Sc c

c e
γχ χ

χ χ
− −

= = ≤ . 

The more suitable density of entropy capacity "e" has been substituted for c in 
order to simplify the final expression. This result is not only valid for c and χ but 
also for the primary measures, entropy capacity   (dS/dT ) x  and compressibility     
–(dV/dp)x.  Since primary measures cannot be negative for stable behavior, the 
expression   γ 2/(e·χ)   has to be less than one. The second to last equation indicates 
that the relative strength of the indirect effect is determined by a quotient of cou-
pling and primary measures (formed from the same independent variables). 

For solids under normal ambient conditions, typical values for χ are   10−5 … 
10−6 /bar,  γ lies in the range of   10−4 … 10−5 K−1  and e, including liquids, has a 
value near   10−2 (J/K)/K per cm3  of matter. 

3.5 Other Systems 

The above method can be applied qualitatively and quantitatively to com-
pletely different systems and processes such as the magneto-thermal effect, piezo-
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electric crystals, lateral expansion of a rod on compression, bending of a heated 
bimetallic strip, pyroelectric effect, etc. This list includes examples that have no 
relation to thermodynamics. This is understandable; it is only required that we can 
apply our mathematical model. In the following it is assumed that we are dealing 
with elastic systems even if it is not justified in each case. Since the thought proc-
ess and computational methods are the same, it is adequate to outline the approach 
and present a few sample calculations. 

3.5.1. Galvanic Cell 

Electric work is stored by charging a storage battery (Figure 3.14). The work per-
formed when transferring a charge dq across the terminal voltage U is given by 

dW = U · dq 
and may be retrieved without significant loss if care is taken. Furthermore, the 
thermal work   dW' = T·dS  is added or removed by heating or cooling the battery 
simultaneously. The total energy thus becomes 

dE = U · dq + T · dS. 

Since the voltage U depends on temperature, the state of charge and the thermal 
state apparently influence each other; q and S are coupled. If q and S are counter-
coupled, we can predict that the terminal voltage will increase for a lossless bat-
tery when the external temperature rises. This is so since the emission of entropy 
and therefore the charging are made more difficult (q and S are counter-coupled). 

 

+ −
U

T

    q

S

Fig. 3.14: Charge and entropy 
               flow in a galvanic cell
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By applying the flip rule we obtain the temperature coefficient β: 

( )d d
d dq T

U S
T q

β ⎛ ⎞= = −⎜ ⎟
⎝ ⎠

. 

For a lead battery, β has the relatively small value of   0.2 mV/K   for a termi-
nal voltage of 2 V. This value corresponds to an entropy decrease of   2 · 10−4 
(J/K)/C  at constant temperature. As a further example, a battery with a charging 
capacity of   50 A·h = 180 000 C  (starter battery) has to reduce its entropy content 
by 35 J/K during the charging process. This amount is sufficient to melt 35 cm3 of 
ice. 

3.5.2. Piezoelectric and Pyroelectric Effects 

When a piezoelectric material, such as a quartz or tourmaline crystal, is com-
pressed or extended, certain crystal surfaces are charged. This mechanical-
electrical coupling can be used in many ways. As an example consider a capacitor 
with an appropriately aligned piezoelectric dielectric. If we compress the dielectric 
with a force F, an electric potential difference appears across the terminals of the 
capacitor, or a pulse of current appears if the terminals are short-circuited. If we 
apply an additional external voltage U to the capacitor, charge q is transferred 
from one plate to the other, and the plate separation l tends to decrease further. 
The charge flows back completely after the removal of the external force and 
voltage. One can excite the body into periodic mechanical oscillations by applying 
an alternating voltage. These electrically driven oscillators have been used to pro-
duce ultrasound and to control clocks and watches (quartz watch). 

In setting up the main equation, we need to consider that thermal work can be 
performed in addition to electrical and mechanical work (Fig. 3.15) : 

dE = U·dq + (−F)·dl + T·dS.  

 

      Fig. 3.15: Piezoelectric crystal  
                       With applied force F 
                       and voltage U
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Furthermore, q and S may be coupled. Depending on the type of coupling, the 
capacitor is charged in one direction or the other (pyroelectric effect). 

As a numerical example let us choose a 1 cm3 cube of "sintered"   BaTiO3 
which, following polarization at high temperatures in an electric field, becomes 
piezoelectric. The capacitor plates are made by plating two opposite sides perpen-
dicular to the polarization direction. Since this is a three-actuator system (n = 3), 
we need   (n + 1)·n/2 = 6  independent coefficients for a complete description. In 
addition to the elasticity modulus   (1011 N/m2),  the coefficient of expansion   
(10−5/K)  and density of entropy capacity   (104J/K2 · m3),  we could select the 
electric capacitance in addition to the piezo- and pyroelectric charge coefficients:  

10 10 9;
, , ,

d d dC C C10 10 ; 10 .
d V d N d KF T U T U F

q q q
U F T

− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Now let us squeeze our system slowly but strongly (F = 1000 N) by applying 
a pair of pliers to the metallic ends. Since the entropy has time to escape (T = 
const.), a voltage develops between the open electrodes (q = 0): 

, ,,

 d d d 1000V
d dd U T F Tq T

U q qU F F
F UF
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This is large enough to produce a 1/2 mm long spark. Similarly, a high voltage can 
be reached by heating (∆T = 100 K) instead of applying pressure: 

( )
, , ,

d dd 1000V
d dd q F U F F T

q qUU T T
T UT

⎛ ⎞ ⎛ ⎞= ∆ = −∆ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

Conversely, by applying a voltage of −1000 V to the electrodes while holding l 
and S constant, the resulting expansion force is 100 N with a temperature rise of 
1.1 · 10−3 K.  

3.5.3. Magneto-Caloric Effect 

If we heat a piece of iron within a constant external magnetic field, then the 
induced magnetic dipole moment j decreases and vanishes almost completely at 
1040 K (770 ºC), implying that S and j are coupled. In fact, a magnetized body can 
be treated as an elastic system provided it does not exhibit significant hysteresis. 
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In the simple case of a uniform region, parallel to an external homogeneous mag-
netic field H, the main equation becomes 

dE = (–p)·dV + H·dj + T·dS  .  

In order to show that the work   H·dj  is expended during magnetization, con-
sider a thin resistanceless solenoid having a solid core. It has a cross section A, 
length l, Volume   V = A·l,  and n turns with the current I flowing through the coil 
(Fig. 3.16). The approximately uniform field in the core, with an intensity of   
H = (n·I)/l,  induces a magnetic polarisation J and a magnetic flux density   
B = µ0·H + J.  The magnetic dipole moment j of the body is given by   j = V·J  and 
the magnetic flux Φ in the solenoid by 

( )0
nn A B V H j
l

Φ µ= ⋅ = ⋅ +  . 

A change in magnetic flux dΦ induces a voltage surge   U·dt = dΦ  (t time) across 
the coil that the current has to overcome by expending work: 

( )0 0d d d d d dnIW I U t V H j V H H H j
l

µ µ= ⋅ ⋅ = + = ⋅ + ⋅  

Since the energy   V µ0 H·dH   is present even in the case of a hollow core (j = 0), 
only the second term   H·dj  represents the work of magnetization of the body. 
This work may be retrieved in the case of a lossless system, providing that j fol-
lows precisely the rise or fall in field intensity and is not delayed due to hysteresis. 

 

U I

V = A l⋅

A

l 

 

Fig. 3.16:  Magnetization  
             experiment 
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      For a paramagnetic, condensed material above the CURIE temperature TC, 
one can describe the (volume) susceptibility χ and therefore indirectly, also the 
magnetic dipole moment   j = V·J = V·µ0 χ·H  via the CURIE-WEISS Law 

C

C
T T

χ =
−

 , 

where C is the CURIE constant, and the magnetic polarization J is small relative to 
its saturation value  J∞ (of the order of 1 Wb/m2) reached at very high field inten-
sities. Since j drops with increasing temperature, i.e., the magnetic dipole moment 
j and entropy S are counter-coupled, an increase in j leads to a decrease in S. Such 
a body releases entropy when a magnetic field is applied (magneto-caloric effect). 
By using this process after pre-cooling a body with liquid helium, very low tem-
peratures (10−3 K and lower) can be reached which would not be feasible other-
wise. 

Let us estimate this effect for a paramagnetic salt (e.g.   FeSO4 · 7 H2O  or   
MnSO4 · 4 H2O) in the field of a strong electromagnet:   χ300K ≈ 10–3, Tc ≈ 0 K,   
H ≈ 106 A/m . Using    j = V · µ0H · C/T,   where   C = T χ ≈ 0.3 K,  we get: 

0 2, ,

d d
d dT p H p

jS CV H
H T T
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 . 

The amount of entropy "received" during the increase in magnetic field from 
0 to H, at constant p and T, is obtained by integration. The term   (dS/dH)T,p  can-
not be treated as a constant: 
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This value applies to a 1 cm3 cube of salt at room temperature, and corre-
sponds to the minute temperature drop of   2 · 10–4 K  during adiabatic demagneti-
zation using an entropy capacity of   1/100 (J/K)/K.  However, the above formula 
indicates that the cooling process becomes substantially more effective at low 
temperatures due to the relation   ∆S ~ 1/T2,  provided that CURIE's Law is valid. 

3.5.4. Bimetallic Strip 

A bimetallic strip (Fig: 3.17) bends when it is heated. Bending and heating — 
or more formally expressed, the work coordinates l and S — are co-coupled. If the 
strip is bent back, it must release entropy or its mean temperature must rise.  
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Fig. 3.17: Work at a bimetallic strip 

The main equation can be expressed as 

dE = F dl + TdS, 

where F is the applied force at the tip of the strip and l is the deflection in the 
direction of the force. 

For a strip 100 mm long, 10 mm wide and 1 mm thick consisting of invar (al-
loy of iron and 36% nickel) on one side and nickel or brass on the other, we have 
the following approximate results: 

( ) ( ) ( )1 2 J Kd mm d mm da few ;  10  ;  10  .
d N d N d KT F F

l l S
F T T

− −= = =  

In order to calculate how much the metal heats up internally when straightened 
out, we consider the coefficient   (dT/dl )S ,  cut back to F, T, and substitute the 
numerical values: 
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While we must heat up the strip by 100 K in order to obtain a deflection of 10 mm 
without applying a force, we only get a temperature rise   ∆T = (dT/dl )S · ∆l  of 
several hundredths of a degree when we bend the strip back adiabatically over the 
same distance (∆l = –10 mm).  
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3.6. Traditional Concepts 

In addition to the quantities used so far, various other concepts are frequently 
utilized in thermodynamics, such as internal energy, enthalpy, useful work, free 
energy, etc., for the purpose of facilitating computation and theory. The reason for 
introducing these concepts goes back to the historical development of treating 
thermal work performed on a body as a measure of added heat. Heat became a 
special form of energy either transferred to or, under certain conditions, residing in 
a body and was grouped with other forms of energy. Since one could not interpret 
entropy intuitively — it was perceived as an abstract quantity derived from ther-
mal work — computational methods that avoided this concept were preferred. As 
far as possible, entropy was expressed by energetic quantities in the final result. 
Therefore, the shortest and most reasonable approach to obtain the desired rela-
tionships appeared to be energy considerations. The traditional framework of 
thermodynamics was developed with this goal in mind and, as a result, appears 
more akin to an energy theory than to a theory of heat. 

In our presentation, in which entropy is introduced with more or less known 
and intuitive properties, we can dispense with many of these artificial aids without 
sacrificing anything. However, since the energy approach is widely used, it is 
difficult to avoid reference to some of its most important concepts. In the follow-
ing sections these are explained within the context of our viewpoint. 

3.6.1. Forms of Energy 

If we bring a body from state I to II — some concrete examples are a 
stretched wire, a gas in a cylinder, a piezoelectric crystal — then the total work W 
expended is given as the difference in energy E between the two states: 

W = EII – EI . 

The form in which the energy is exchanged, such as mechanical or thermal, de-
pends in general on the intermediate states in going from I to II. In Figure 3.18, we 
consider a gas in a cylinder. We can describe graphically different ways of moving 
from one state to another. Along the solid line in the diagram, the gas is easily 
compressed but heated up with difficulty, i.e., the required mechanical work W' is  
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Fig. 3.18: The ratio of mechanic and thermal work depends on the path 

small and the thermal work W'' required is large. The dashed line indicates the 
opposite trend. And along an arbitrary path (for example, the dotted line) the ratio 
of the two forms of energy can attain any given value. One cannot simply say that 
the body in state II, for instance, has a distinct amount of thermal work exceeding 
that in state I.  

The total energy cannot be easily divided into separate mechanical, thermal, 
electrical, etc., energy parts. It represents a common supply from which one form 
of energy flows off while another form is supplied. We say that energy is "con-
verted" from one transfer form to another. Suppose that the gas in Figure 3.18 
repeatedly follows a "cycle": from state I to II via the solid path, and back from 
state II to I via the dashed path. For each complete cycle, thermal work is supplied 
(∑W'' > 0) and mechanical work is emitted (∑W' > 0). In 1824 S. CARNOT 
examined energy transformations of this kind in reversible cycles where heat is 
added at a high temperature and released at a lower temperature, or vice versa. 
Such "CARNOT cycles" were used frequently in the past to derive thermodynamic 
relationships. 

For a system in which the work coordinate x is not appreciably coupled to 
other coordinates, or it is the only coordinate, the corresponding force y depends 
only on x and the resulting work   W † =

II
I   has a definite value. In such a 

case, one could state that the system actually contains energy in the form W † as 
received. One can define an independent supply of work E † such that 

d( )y x x∫
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W † = EII† − EI†. 

This possibility is readily achieved, allowing us to distinguish between stored and 
transferred forms of energy. For example, for a body with constant mass, the work 
for elevation in a gravitational field is determined only by the height it acquires, 
and the work for acceleration is determined only by the momentum it acquires, 
regardless of whether the body receives additional energy from heating or defor-
mation. Consequently, in mechanics we can treat potential and kinetic energy 
separately, without considering other contributions to the energy. 

The "internal energy" U of a body or system is the remainder of the total en-
ergy E after subtracting the kinetic and potential energies due to external fields, 

E = U + Ekin + Epot . 

The quantity U describes the total work due to deformations, heating, electrifica-
tion, magnetization, surface tension, etc. In contrast to other contributions to E, it 
represents the energy associated with the material structure — the inner structure 
or internal motion of a system. This energy is of primary interest in thermodynam-
ics so that most concepts are derived from U rather than from E.  

3.6.2. Heat, Work, and First Law of Thermodynamics 

Thermal work, commonly referred to as heat• and denoted by the symbol Q, 
has its own supply provided that the coupling of entropy with other work coordi-
nates is negligible within the energy balance. If this holds for all parts of a sub-
stance (i = 1,2,3 ... in Figure 3.19) as approximated by liquids and solids under 
ordinary conditions, then each part can be assigned a definite content of heat• . 
The darkness of shading in Figure 3.19 indicates the amount of Qi. When Qi de-
creases in one part and increases in another, this process can be described as the 
transfer or flow of heat• from one part to another. When the body is thermally 
insulated, the total heat• content  ∑Qi cannot decrease, but it can be increased by 
an internal electric heater, for example. Heat is thus produced but not destroyed, 
and is distributed over the entire substance. Any given part appears hotter the 
more heat• it "contains". Heat• under these circumstances possesses the properties 
assigned to heat* as discussed earlier in this book. 
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Fig. 3.19: Heat• distribution in a heated body 

This peculiarity is undoubtedly the most important reason why the term 
"heat" was established and retained for the quantity Q. Unfortunately, this name is 
responsible for many conceptual difficulties because it suggests properties pos-
sessed by Q which apply only under special circumstances. Many properties ap-
pear to be valid, but in the strictest sense, they are hardly ever satisfied. In general 
thermodynamics, where the coupling of entropy to other work coordinates is in-
vestigated, these properties are absent so that recourse to intuition often leads to 
mistakes, and abstract language is preferred. 

The thermal work performed on a body or, in other words, the heat• Q trans-
ferred to it, can be measured without knowing anything about entropy. In order to 
determine the amount of heat• required to raise the temperature of a body — let's 
say bath water — by 1 degree, it is sufficient to compute the energy Wp expended 
by an electric heater used for the process. As illustrated by Figure 3.20, Wp is 
easily calculated from the applied current, voltage and duration of heating. The 
heating coil receives electric work and gives off thermal work. If we submerge a 
hot body in the bath water, then we can conclude from the observed rise in tem-
perature how much heat• was given off by this object. Most "calorimeters" work 
on the basis of such a procedure.  

The interpretation of Q as heat• obscures the meaning of the corresponding 
work coordinate S. Q is considered measurable directly. This explains why Q is 
not perceived as work, which is usually determined by the product of force times 
displacement. Instead, heat• is given a special meaning and it is contrasted with 
"work." For example, we say that the internal energy U of a body increases by the 
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∆T ∆T

Fig. 3.20: Measuring heat• (thermal work) 

addition of heat• Q and work W performed on transition from state I to II: 

II I or d dU U Q W U Q W− = + = + . 

This equation represents a mathematical form of the "First Law of Thermodynam-
ics" as a special case of the energy principle. In essence, it says that heat• and 
work are interchangeable, but their sum, the energy, cannot be created or de-
stroyed. 

3.6.3. Temperature, Entropy, and Second Law of Thermodynamics 

Since Q is measurable, the increase of the entropy of a substance on transition 
from state I to II can be calculated from the thermal work expended, provided that 
a) no entropy is produced internally, and b) the absolute temperature is known 
throughout the incremental steps: 

revdd QS
T

=   or  
II

rev
II I

I

dQS S
T

− = ∫

*

*

 

The first condition a) is satisfied if the process is "reversible", i.e., no work losses 
occur due to friction as indicated by the subscript "rev". The second condition b) 
assumes that T is already defined. A rigorous definition is not easy within the 
traditional approach. As an aid, a temporary temperature scale T is introduced. It 
is not practical to use mercury or alcohol for the thermometer. Instead, a dilute gas 
whose temperatureT is proportional to the volume at constant pressure is used 
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Fig. 3.21:  Gas thermometer 

(Figure 3.21). If we select the difference between the freezing point  and boil-
ing point KT  of water under normal pressure as 100 degrees, then T  becomes 
273 degrees. 

*FT
*F

IIdQ

*

Now we know that Q, or the integral  I∫ ,  depends on the path taken in 
going  from state I to II. There is no reason why the expression  

II
I    

should not behave similarly. The Second Law of Thermodynamics states that there 
exists a quantity  for any macroscopic body possessing a unique value in any 
state such that the following relationship is satisfied: 

d *Q T∫
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The equal sign applies in the case where the change from state I to II is reversible. 
This theorem only states that the abstract quantity  exists, and offers no intui-
tive interpretation. Nevertheless, one can draw far-reaching conclusions. For in-
stance, since  II I   is equal to the integral  

II
I   this difference is 

independent of the path taken. The integral contains only measurable quantities 
and consequently,  can be calculated for any state II of a body once  is 
known or is somehow fixed for state I. In the case of a body which is thermally 
insulated from its environment,  dQ = 0  and hence  II

revd *Q T∫
*S *S

I
* * 0S S− ≥

II
*S I

*S
.  When this body 

changes from state I to state II,  cannot be less than  . If internal processes 
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such as diffusion, electric currents, chemical transformations, etc. occur in such a 
body,  can only increase and never decrease. And so on. *S

Later we will see that T  is equivalent to T when we consider the properties 
of dilute gases (see section 4.7.2). As a result,  and the now-familiar quantity S 
are also equivalent for the appropriate choice for the zero point. The abstractly 
formulated content and correspondences of the Second Law of Thermodynamics 
should become intuitively understandable. If we consider, for example, that   dQ/T  
represents the entropy transferred into a system from the outside, and that some 
entropy can also be produced internally, then the inequality   dS ≥ dQ/T  becomes 
more meaningful. 

*
*S

*U

* *II IQ U U= −

II I II IQ E E U U= − = −

3.6.4. Enthalpy, Heat Functions 

For a system with coupled work coordinates, we can generally obtain the individ-
ual contributions to work arising from a change in state by summing all contribu-
tions along the path from state I to II. This applies in particular to thermal work Q. 
However, since Q is readily determined calorimetrically and is usually interpreted 
as a measure of heat•, we are inclined to look for the possibility of calculating Q 
by simpler methods. One possibility is to associate Q with other variables such as  

 which can represent a heat• content under certain conditions: 

 . 

In fact, variables called "heat functions" or "enthalpy", from the Greek word 
for heat content, are easily declared. The simplest example is the total or internal 
energy for systems that can only exchange thermal work with their surroundings. 
Consequently, it follows that 

.  

A cylinder filled with gas reduces to such a system when the piston is fixed. 
As a result, no work arising from volume changes is performed. Even if the exter-
nal pressure vanishes and the piston moves "blindly", the outward motion is only 
restrained by the friction between the piston and the cylinder wall. In this case, no 
mechanical work is done on the surroundings. Unlike our previous examples, this 
system is no longer lossless. The mechanical work due to the expansion of the gas 
is lost as heat• — in a sense via a detour because the regular path for mechanical 
work is blocked. Here the variable dQ consists of two parts arising from different 
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sources. One part is the increase in entropy content dS, and the other part is the 
thermal work representing the lost energy or the newly produced entropy dSp: 

pd d dQ T S T S= −

II IQ H H= −

. 

If we go one step further and consider the system illustrated by Figure 3.22, 
where the work coordinates and force functions of the internal process are un-
known, but only heat• can be exchanged, the equation   Q = ∆U  can nevertheless  

 

Sp

S

V

V = const p  = const

S

Sp

       Fig. 3.22: Entropy 
                    as a work 

                      coordinate 

be used. We shall see later that the process of moving the piston against internal 
friction forces corresponds to a change in the work coordinate x with a missing 
external force. The useful work is lost and exchanged for heat• via a bypass. If we 
extinguish the flame and bring the process to a stop (x = const.), then we have a 
system with a fixed piston in the work cylinder and   Q = ∆U  is still valid.  

The most important case is that of a body moving against a constant pressure 
— perhaps air pressure — and performing thermal work, but otherwise not ex-
changing any energy with its surroundings. Here the auxiliary quantity 

H ≡ U + pV 
(or more explicitly,   U − (−p)V),  where H is called enthalpy, plays the role of a 
heat● content. If we consider that under these conditions   ∆U = Wtherm + Wmech = 
Q − p · ∆V  and   ∆H = ∆U + p · ∆V,  then we obtain the equation 

. 

This relationship remains valid even if energy is lost internally due to friction or 
other processes and turned into heat●, in addition to the usual thermal work. (Note: 
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the weight on the right side of Figure 3.22 is not part of the system but only helps 
to visualize the constant pressure). 

The above result can be generalized to multi-actuator systems. If, besides   x1 
= S,  all other work coordinates   x2, x3, x4 …  are fixed, then U is a heat function. 
By holding some of the corresponding forces   y2, y3, y4 …  fixed, say y2 and y4, 
but not the corresponding work coordinates x2 and x4, the following quantity 

* 2 2 4 4U U y x y x= − −  

assumes the role of the heat function. Under these circumstances 

2 2 4 4U Q y x y x∆ = + ∆ + ∆ , 

and 

* 2 2 4 4U U y x y x∆ = ∆ − ∆ − ∆
*U∆

*

…U y y y y y yα β γ α α β β γ γ

, 

yielding the result   Q = .  This equation is also valid in the case of "blind" 
coordinates as covered previously. For example, if we eliminate the external force 
y3 suddenly and x3 drifts "blindly" under the influence of opposing forces of fric-
tion, the previously useful work produces entropy internally. "Blind" coordinates, 
those with a missing external force like x3, are sometimes called "internal parame-
ters" and are not interpreted as work coordinates in the same sense as we use this 
notion. 

It is apparent that we can introduce heat functions in numerous special cases. 
For each set of forces   yα, yβ, yγ … ≠ T  (T may be constant or variable), the fol-
lowing is defined as the "associated" enthalpy U : 

ψ = − − − −…  . 

If   yα, yβ …  are kept constant and heat● and energy exchange are allowed only 
via the associated coordinates   xα, xβ … ,  then   ψαβγ…  becomes a heat function. 
(There are many other functions such as  ( )* , … ,f y yα β γ α βψ= +…

( ), , , … , …f T y y y x xα β γ α β γ µ νψ =…

U   where f is 
an arbitrary function.) If not specified differently, the independent variables of   
ψ αβγ…  include T, the forces named in the index   yα, yβ, yγ …,  and the work 
coordinates   xµ, xν …  which are neither associated with T nor the forces named 
in the index: 

. 

This equation reduces to the special form   U = f(T,V)  or   H = f(T,p)  for a 
body that can be compressed and heated (dU = TdS − pdV), and is often referred to 
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as the "caloric equation of state", compared to the so-called "thermal equation of 
state" of a body, i.e.,   p = f(T,V)  or   V = f(T,p)  where applicable. In section 3.4 
we compared   V(p,T)  and   S(p,T)  for similar reasons, but were guided by differ-
ent interpretations of heat. The most important heat● capacities can be viewed as 
temperature coefficients of properly chosen enthalpy functions. For the case under 
consideration we have   (dU )V = (dQ)V   and also   (dH ) p = (dQ)p  which yields 

( ) ( )
( ) ( ) ( )

( )

ddd d,   
d d d d

pV
V p

V pV p

QQU HC C
T T T T

= = = =  . 

Since entropy is considered an abstract and not directly measurable quantity, it is 
understandable that this special representation of the coefficients   Ca = T (dS/dT )a  
is preferred, where a denotes arbitrarily chosen conditions.  

3.6.5. Maximum Useful Work 

When a system is in equilibrium, all forces compensate, and therefore all 
work performed due to small changes of the work coordinates compensate for 
each other. There is no driving force for a spontaneous change. When the system 
is not balanced, a net force remains which can start a process that runs in one 
direction, even against some resistance. In the unbalanced system, the greater 
forces on one side perform more work (release more energy) than is gathered by 
the opposing forces on the other side. We will call the difference "free work" Wf, 
and consider it as emitted and therefore negative,   Wf < 0.  This free work is 
burned up (as far as not parts of it are stored as kinetic energy, intermediately or 
finally), by producing entropy in overcoming forces of friction. The lost work may 
be absorbed by the system together with the produced entropy or may be released 
to the environment as thermal work. In the first case Wf cancels in the energy 
balance of the system. In the second case it shows up as a smaller (more negative) 
term Q. Under some conditions it is possible to calculate the energy released in a 
desired change without knowing the individual forces. Therefore, one can identify 
the effective driving forces of a process and predict whether or not a process is 
feasible. 

If one succeeds in counteracting the excess forces, for example by intervention 
with an external force, then one can stop or even reverse the processes running in 
the system. In doing so, the previously released free energy Wf has to be expended 
and it becomes positive. Such intervention allows us to make the free work, which  
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viscous
liquid

 

Fig. 3.23:  Mechanical example for usable work 

would otherwise be lost, partially or totally used for some purpose. How Wf  is 
divided into amounts of lost and used work depends on the skill of the experi-
menter. In each case, Wf determines the maximum amount of usable free energy, 
which led to the name "maximum useful work" for   |Wf|.  A galvanic battery is a 
familiar example where the energy released by a chemical reaction is used for 
"electric power generation" through a suitable arrangement of electrodes, plates, 
etc. The electric work gained … can be further utilized to lift a weight, to generate 
light, to produce entropy, to perform electrolysis, etc. 

A simple mechanical example (Fig. 3.23) may serve to clarify the concept of 
useful work. The suspended weight and the counterweight in the fluid are initially 
in equilibrium. The vector sum of the forces is zero and the system is at rest. If the 
equilibrium is disturbed by eliminating a force (cutting the string), the remaining 
forces are not fully compensated and the system can perform work. This work is 
not stored but instead used for producing entropy in overcoming the forces of 
friction in the fluid. By some intervention we can use the work for other purposes 
(pull a wagon, drive a generator, etc.) or re-establish equilibrium (hold the string). 
We can even reverse the process (pull the string) and replace the energy released. 

3.6.6. Free Energy, Thermodynamic Potentials 

Can we predict what part of the energy content of a body or system is usable? 
Can we define a definite supply E of free work from which, under certain condi- 
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tions, energy is available for any arbitrary purpose we want, even to be wasted: 

Wf = E II − E I ? 

It turns out that this is generally not feasible because that part of the total energy 
which can be considered "free" depends strongly on specific circumstances for 
each body. There is no separate work supply, but under certain conditions auxil-
iary variables E can assume this role. As an example, if we drop a rock with mass 
m from an elevation h to ground level (Fig. 3.24), then the available work supply 
E consists of the potential energy   E = mgh: 

E = E. 
This amount is available for producing entropy, for instance. On the other hand, if 
the rock is dropped within a water column, in a pool for instance, then E is re-
duced by the work Fb h required to overcome the buoyancy Fb: 

E = E − Fb h. 

We can consider E = E or, depending from the conditions, E = E − Fb h, as auxil-
iary quantities for our purpose. 

h
mg

Fb 

Fig. 3.24:  "Free energy" of 
                   a raised stone 

A similar difficulty arises when we attempt to partition the internal energy of 
a body or system. If the system has no possibility of energy exchange other than 
the release of free work to the surroundings (this work is usually burned up pro-
ducing entropy), then  

Wf =  UII − UI    = ∆ U . 

 "E " 
This case occurs when we hold S constant — the produced entropy Sp must then 
be transferred out — and block any other exchange of energy. The energy U gen-
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erally increases by the amount of work Wf required to reverse the spontaneous 
state change back from state II → I by intervention, and by the additional work W 
due to possible changes of work coordinates: 

UII − UI = Wf + W. 

As an illustration let us use the equilibration of pressure between two gas contain-
ers (Figure 3.25). Since the system exchanges entropy with its surroundings, it 
also performs thermal work. With the restriction that the temperature T remains  

Fig. 3.25: Equilibration of pressure, 
            and the reverse process 

(  large)F
intermediate state II

intermediate state I

wasted

S

S

Wf

Wf

spontaneous process

(  small)F

forced process

expended

 

fixed, and no energy is released to the surroundings except through S (and Wf), we 
can set W = T·∆S. The term ∆S = SII − SI  describes the entropy received from the 
outside. The correct determination of Wf requires that the processes are conducted 
in such a way that no work is wasted and no entropy is produced. Therefore, we 
obtain 

Wf = ∆U − W   = ∆U − T⋅∆S                       = ∆( U − T⋅S ) . 
 "E " 
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For this special case it is no longer U but a new quantity A whose change deter-
mines the free work: 

A = U − TS,   Wf = AII − AI .    

Similar auxiliary functions — different ones depending on the situation — are 
called "free energies" or "thermodynamic potentials" (or better, "thermodynamic 
potential energies"), because they have properties similar to the potential energy in 
mechanics. The quantity A, as introduced by H. V. HELMHOLTZ, is called 
"HELMHOLTZ free energy", "HELMHOLTZ energy" or simply "free energy".  

In the more important practical case in which a body expands against a con-
stant pressure p (perhaps air pressure) we have   W = T·∆S + (−p)·∆V   and 

Wf = ∆U − W   = ∆U − T⋅∆S − (−p)⋅∆V   = ∆( U − T⋅S + p⋅V )  
                                                                                       "E " 

Here a new quantity G, introduced by W. J. GIBBS and called "GIBBS free energy", 
"GIBBS energy" or simply "free enthalpy”, assumes the role of A.  

G = U − TS + pV,  Wf = GII − GI .  

If we hold S constant rather than T, then we have   W = (−p)∆V.  In this way we 
obtain  

Wf = ∆U − W   = ∆U − (−p)⋅∆V            = ∆( U + p⋅V )  

                                                                                "E " 

We remember   U + p⋅V ≡ H.  The quantity H that was previously got to know as 
enthalpy, now serves as a thermodynamic potential.  

Just as in the case of the heat functions, we can immediately generalize these 
results. If we fix all work coordinates xi of a multi-actuator system, or allow the 
corresponding external forces yi to vanish, then U serves as thermodynamic poten-
tial. Note that in addition to Wf (as thermal waste or dissipation heat● ) no energy 
is exchanged with the surroundings in this system. However, if some forces, say 
y2 and y4, are held constant instead of the corresponding coordinates x2 and x4, 
then we have   W = y2∆x2 + y4∆x4,  and 

Wf = ∆U − W   = ∆U − y2∆x2 − y4∆x4          = ∆( U − y2x2 − y4x4 )  

 "E " 

Thermodynamic potentials can be defined for numerous special cases. For each set 
of constant forces   yα, yβ, yγ …  (unlike the heat functions, T is included here), we 
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can define a new energetic variable, which acts as a free energy. We can define as 
"associated" free energy E the quantity   Ψαβγ….  This is similar to how we de-
fined enthalpies ψ… in section 3.6.4. The free energy is viewed as a function of the 
variables   yα, yβ, yγ …  appearing as subscripts in   Ψαβγ…,  and all the work 
coordinates   xµ , xν …  that are not paired with the y's: 

Ψα,β,γ… = g(yα , yβ , yγ … xµ , xν …). 

Ψα,β,γ… as a function of its “natural” variables yα , yβ , yγ … xµ , xν … becomes 
also a characteristic function (see section 3.7.1). The ability to act as a thermody-
namic potential in the above sense is not absolutely tied to a particular choice of 
independent variables.  

3.6.7. Equilibrium Conditions 

Natural processes occurring without intervention release energy, and conse-
quently, the supply E of free work, if definable, decreases with each spontaneous 
change. For instance, the HELMHOLTZ free energy A diminishes if for a body or 
system of bodies the temperature T is constant, and all energy exchanges are 
blocked except via S. An uninhibited internal process only comes to rest if the 
system has reached a state 0 in whose immediate vicinity there are no states hav-
ing smaller free energy. In other words, A represented as some function of the 
parameter z that defines the state of the system, has a local minimum. The graph 
on the left in Figure 3.26 applies to our gas example from Figure 3.25. As a pa-
rameter, the graph utilizes the amount of gas in the smaller gas container. The 
sketch on the right in Figure 3.26 presents a mechanical analog for the graph. A 
ball rolls in a water-filled hollow where the "free energy" E is equal to the poten-
tial energy   mgh − Fbh. = E . 

Similarly to the mechanical analog, where the derivative   −dE /dz  describes 
the force acting on the ball in the z-direction, one can use   −dA/dz  as the driving 
force for the internal process of the gas example under consideration. As long as 
this driving force is not counteracted externally, the process comes to rest at equi-
librium when the forces vanish by themselves. This is equivalent to the above 
requirement that the system has to reach the minimum point of its "potential" 
curve. One can also interpret z as a work coordinate and   dA/dz,  as well as   
dE /dz,  as a force that has to be overcome by doing work on the system. If one 
succeeds in changing z by external intervention without energy losses (without 
friction), then   dWf = (dA/dz) dz,  and   dWf = (dE /dz) dz,  respectively, describes 
the energy input to the system due to the change in the work coordinate z by dz. 
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0
Wf

z

z

0

  h    ~ A*

Fig. 3.26:  Equilibrium at the 
                  minimum of the free 
                  energy 

If we need further parameters zi in order to define the state of the system (as-
suming T = const. and no energy transfer occurs except via S!), then the forces      

îi   must vanish in all directions in the final state of a completed process. 
The condition for equilibrium of the system at point   (z1, z2 … )  is given by 
(d /d zA z )

( )
ˆ

d  0  1,  2 
d

ii z

A i
z

⎛ ⎞ = = …⎜ ⎟
⎝ ⎠

) d (d /d ) dA A z z A z z

      . 

Since  ˆ ˆ1 21 1 2 2d z z = (d /d + +… ,  we can express the "equilibrium 
condition" in simpler form without referring to the parameters zi : 

dA = 0 (T = const. and no energy transfer except via S). 
Under different conditions, A is replaced by other thermodynamic potentials 

but nothing else is changed. Of particular interest are systems under constant pres-
sure and temperature that are otherwise insulated, where the most frequently used 
equilibrium condition is 

dG = 0 (p, T = const. and no energy transfer except via S,V). 
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This condition is widely used in chemical thermodynamics. The equilibrium con-
ditions discussed above make it possible to describe the equilibrium state of a 
system via energy balances as preferred by the energetic approach to thermody-
namics.  

3.7 Common Mathematical Procedures 

Mathematical procedures used in traditional thermodynamics differ from 
those employed here in essentially two respects: 

a) Instead of directly transforming the derivatives, one usually goes back to the 
differentials. 

b) In place of the flip rule, one uses various characteristic functions or appropri-
ately selected cycles. 

Let us first consider the computational aids in b). 

3.7.1. Characteristic Functions, MAXWELL Relations 

It was noted in section 3.1.2 that the energy E as a function of the work coor-
dinates   x1, x2 … xn  is the characteristic function for a lossless or elastic system. 
That means that all properties described by its main quantities can be computed as 
long as   E(x1, x2 … xn)  is known. In particular, one can find the missing forces Fi 
from the derivatives of E with respect to xi. A similar conclusion is valid for U. 

This feature of E or U is lost on choosing other independent variables such as, 
for example, the forces y1 and y3 instead of the corresponding coordinates x1 and 
x3. However, in this case the already familiar intermediate variable ψ1,3 , known 
as the free energy with y1 and y3 held constant, assumes this role. By definition, 
we have   ψ1,3 = U − y1 x1 − y3 x3  and its differential becomes: 

13 1 1 1 1 3 3 3 3d d d d d dU y x y x y x y xψ = − ⋅ − ⋅ − ⋅ − ⋅

13 1 1 2 2 3 3 4 4d d d d dx y y x x y y x

. 

By substituting this dU with the main equation   dU = y1 dx1 + y2 dx2 …,  we ob-
tain the so-called "fundamental equation" of the quantity ψ1,3 : 

ψ = − + − + +…  . 
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This equation differs from the energy differential in two respects. For the va-
riables identified by the index of the quantity ψ (here 1 and 3), x and y are inter-
changed and the sign is also changed. Now the differential of   
ψ1,3(y1 , x2 , y3 , x4 … )  can generally be expressed as: 

13
13ψ 13 13

1 2 3
1 2 3

d d dd d d d
d d d

y x y
y x y

ψ ψ ψ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠…… …
…  

Comparison of the coefficients in the last both equations shows an important re-
sult. By taking the derivatives of   ψ1,3(y1, x2, y3, x4 … )  with respect to any of the 
variables inside the brackets, we always get the corresponding main quantity with 
either positive or negative sign. This way we can compute the missing work coor-
dinates and forces, and other expressions consisting of main quantities, as long as 
the function   ψ1,3 (y1 , x2 , y3 , x4 … xn)  is known. Therefore, we can consider   
ψ1,3 ,  just as   U(x1 … xn),  to be a characteristic function of the system under 
consideration. With a different choice of independent variables   z1 … zn  (zi = xi 
or yi),   U(x1 … xn)  is replaced by the corresponding function   ψ(z1 … zn),  which 
we have already met in our earlier discussion about thermodynamic potentials. 

The real significance of the characteristic function lies in the fact that it en-
ables us to perform, either directly or indirectly, those operations that we com-
pleted by using the flip rule. For example, in order to carry out the transformation 

 d d
d dyyw uw

v x
u

⎛ ⎞⎛ ⎞ = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

for a system with the main equation   dU = udx + vdy + wdz,  we start with the 
fundamental equation of the function   ψuw = U − ux − wz,  where the independent 
variables u, y, w are the same as on the left side of the above equation. Then 

dψuw = − x du + v dy  − z dw . 

From this equation, we get   v = (dψuw/dy) uw  and   x = −(dψuw/du) yw.  Then by 
changing the order of differentiation (SCHWARZ theorem), we obtain the final 
result: 

 d d dd d d
d d d d d d

uw uw

ywyw uw uwyw uw

v x
u u y y u y

ψ ψ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 . 
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If the index and numerator of the initial derivative contain paired variables, 
then this procedure fails. In this case, one has to make an appropriate transforma-
tion of the original derivative. 

Equations derived in this way are often called "MAXWELL relations". J. C. 
MAXWELL derived them originally by considering a reversible cycle for a body 
undergoing compression and heating. It is described by the main equation   dU = 
−pdV + TdS.  The characteristic functions are   U(V,S), ψp = H(p,S), ψT = A(V,T)  
and   ψpT = G(p,T)  with corresponding fundamental equations:  

dU = −pdV + TdS,  dH = Vdp + TdS,  
dA = −pdV − SdT,  dG = Vdp − SdT. 

By taking derivatives "diagonally", i.e.,  −p with respect to S, and T with respect to 
V in the first equation, etc., and by using the SCHWARZ theorem, we obtain the 
following four equations: 

d  d  d d,
d d d dS pV S

p T V T
S V S p

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
, 

d  d  d d,p S V S⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟d d d dT pV TT V T p⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
. 

These equations can be derived directly by flipping. In this sense the flip rule can 
be considered as a tool for deriving all possible MAXWELL relations.  

3.7.2. Reversible Cycles 

The same results can be obtained with energy balance equations applied to 
appropriate cycles, as MAXWELL himself did. As an example, consider a piece of 
wire of length l that is stretched by the force F and whose entropy content can be 
increased by adding entropy against the temperature T (Figure 3.27). In order to 
derive the MAXWELL Equation 

( ) ( )d d
d dT l

S F
l T

= − , 

we perform the following lossless procedure with the wire: 

a. Stretch the wire by dl at constant temperature T as described by the first de-
rivative, and thereby add the entropy   dS = (dS/dl)T dl  to the wire. 
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S

T F

l

 

Fig. 3.27:  Deriving a MAXWELL  
                     Equation by his method

b. Heat the wire by dT while holding the length   (l + dl)  constant as required by 
the second derivative. As a result, the force changes by   dF = (dF/dT)l dT.  
(Actually dF is negative!)  

c. Reverse stage a): Shorten the wire by dl while holding the temperature    
(T + dT) constant and thus release the entropy dS. 

d. Reverse stage b): Cool down the wire by dT at fixed length such that F and 
the wire return to their initial state. 

F
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c
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Fig. 3.28:  Work- and heat-diagrams for an infinitesimal cycle 

Figure 3.28 illustrates this process by a so-called "work diagram" on the left and a 
"heat diagram" on the right. Since dF is actually negative, the process follows the 
dotted path on the left. Each increment of mechanical work dW' or increment of 
thermal work dW'' performed on the body is equal to the hatched area under the 
respective curve segment. It is positive if the corresponding work coordinates 
increase, and negative otherwise. The sum of the work increments for the four 
parts of each cycle,   ∑dW'  and   ∑dW'',  represents the area of each parallelogram 
(with sides abcd), both with a negative sign for this case. Their values can be com-
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puted geometrically as   dF·dl  and   dS·dT,  respectively, by taking into account 
the proper signs. It follows that  

∑dW' + ∑dW'' =  −dF·dl − dS·dT = 0 
because the wire has the same energy at the beginning and the end of the process. 
By substituting the expressions for dS and dF derived earlier, we get 

( ) ( ) ( ) ( )d d d dd d d d or
d d d dT l T l

S F S Fl T T l
l T l T

⎡ ⎤⎡ ⎤ = − = −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 . 

Since actually   ∑dW' < 0  and   ∑dW'' > 0,  we can say that work is reversibly 
converted to heat● in this process. 

Similar reversible cycles are, of course, possible when entropy is not men-
tioned. CARNOT cycles, which are composed of two isothermal and two adiabatic 
segments, were frequently used in earlier days, in spite of their complexity, be-
cause the computations can be made without using the entropy concept. Figure 
3.29 depicts a CARNOT cycle for our wire example. As before, the circumscribed  

 

l

F
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T
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∆S

∑W' ∑W'' 

Fig. 3.29. Work- and heat-diagrams for an infinitesimal CARNOT cycle 

areas represent the "converted" energies   ∑dW'  and   ∑dW''.  The rectangle for 
the heat● diagram of a CARNOT process is usually skipped, and   ∑dW'' = ∆S·∆T,  
with   ∆T = Th − Tl,  is computed by the formula 

h
h

d  TW'' Q
T
∆= ⋅∑ , 
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where Qh is the heat●   Th∆S  flowing into the system at the high temperature Th. 
Since part of the heat●, namely   Tl∆S,  flows out of the system in each cycle at the 
low temperature Tl, and only the part   ∑dW''/Qh = ∆T/Th   is "converted" to me-
chanical work, the "efficiency" of a CARNOT cycle is expressed as  

h

T
T

η ∆= . 

The desired thermodynamic relationships are obtained by computing the work  
−∑dW' gained from a CARNOT process by means of the work diagram, and the 
"converted" heat from   η·Qh.  In this way, no reference is made to the word en-
tropy: 

h
h

TW' Q
T
∆− = ⋅∑ . 

3.7.3. Systematic Procedure for Calculations 

To demonstrate that our guidelines apply also to the energetic approach, let us 
revisit the task formulated in section 3.2.3, namely, to express the coefficients  
( )

21d d
nv vu v …   in terms of known or more easily measurable quantities.  

In preparation, using the First Law, we write down the energy balance for our 
thermodynamic system arising from small changes in the work coordinates   x2 … 
xn  (  x1 = S  is not treated as a work coordinate): 

dU = dQ + y2dx2 + … + yndxn . 

If all state changes are reversible, implying that no entropy is produced internally, 
then on the basis of the Second Law, dQ can be replaced by   T dS: 

dU = TdS + y2dx2 + … + yndxn . 

Expressed in our terminology, this is the main equation of an elastic system. As 
before, a systematic procedure is advantageous. On the right side of the equation, 
let us establish a ranking order for each term or pair of variables, and choose from 
each pair the "more accessible" variable zi. The quantities   z1 … zn  are consid-
ered as independent variables. We recall step a) from section 3.2.3: 

"The given derivative is transformed into expressions which contain only 
derivatives, where only accessible variables appear in the denominator and 
the indices". 
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This procedure may be carried out in the following systematic way: 

a) Write down the differentials of all variables appearing in the derivative   
( )

21d d
nv vu v …   and select zi as the independent variables: 

ˆ ˆ1

1
1

d dd d … d
d d

n

n
nz z

u uu z z
z z

⎛ ⎞⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
, 

ˆ ˆ1

1 1
1 1

1

d dd d … d
d d

n

n
nz z

v vv z z
z z

⎛ ⎞⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

…………………………………………

, 

 

ˆ ˆ1

n 1
1

d d … d
d d

n

n
nz z

v z z
z z

= + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

d dn nv v⎛ ⎞⎛ ⎞ . 

b) The differentials   dv2 … dvn  vanish since the parameters    v2 … vn   are 
constant, resulting in n + 1 equations with n + 2 "unknowns", namely,   du, 
dv1, dz1 … dzn .  By eliminating dzi  and solving for du, we obtain: 

2
1

1 1

d dd d     or    
d d

nv v

u uu B v B
v v

⎛ ⎞= = =⎜ ⎟
⎝ ⎠ …

 , 

where B is composed of the coefficients from the system of equations, and 
therefore contains only derivatives with respect to zi as desired. 

This procedure, explained above in general form, appears cumbersome, but often 
leads to the solution relatively quickly. We have already encountered one applica-
tion during the derivation of the rule for "inserting an index" (see section 3.2.1). If 
the specified derivative contains auxiliary variables ψ (enthalpies, thermodynamic 
potentials, etc.), its total differentials are written with the help of the fundamental 
equation before being expanded in terms of zi . 

We also recall step b) from section 3.2.3: 

"All generated quotients that contain a numerator with higher rank than 
the denominator (top-heavy quotients) are flipped". 

This procedure can be performed by utilizing the characteristic function for all zi 
or the corresponding MAXWELL relations. The procedure was explained in the 
previous section and will not be repeated here. 
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If some differential quotients in the final result are to be replaced by more ac-
cessible coefficients, we can as before, repeat the procedure for the new coeffi-
cients and thus eliminate the undesirable ones. This might arise if entropy appears 
in the final result and a heat function is preferred in its place. Textbooks typically 
skip some steps in this computational procedure, change the sequence, use pre-
viously derived results, or resort to other aids. This can give the procedure de-
scribed above, which is fairly straightforward, a completely new appearance. 

3.7.4. Applications 

As an example, we wish to demonstrate in detail the systematic procedure for 
calculating the derivative   (dT/dF)S.  This coefficient arose in section 3.3.3 where 
we determined the change in temperature of a piece of wire (length l, cross section 
A, mass density ρ) upon stretching. As before, we assume that the elasticity coef-
ficient ε, the coefficient of linear expansion α and the specific heat● cF are known. 

a) Preparatory steps:

On the basis of the First Law: dU = dQ  + Fdl . 

By consideration of the Second Law: dU = TdS + Fdl. 

Ranking order of accessible variables: F, T. 

b) Express   (dT/dF)S   with F, T as independent variables:

List the differentials:

( ) ( )d dd d d 0
d dT F

S SS F T
F T

= + =dF,  dT, .

Solve for dT and divide by dF:

( ) ( ) ( ) ( ) ( )d d d d dd d , = 
d d d dT F S F

S S T S ST F
F T F T

= − −
d TF

. 

c) “Flip” the derivative   (dS/dF)T   because S has a higher rank than F:
Select characteristic function: ψFT (F,T) = U − TS − Fl. 

Write down fundamental equation: dψFT  = − S dT − l dF.  

( ) ( )d d
d dT F

S l
F T

=Obtain MAXWELL relation: . 
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( ) ( ) ( )d d d
d dd F FS

T l S
T TF

= − . (*) Substitute into result of step b): 

d) Introduce new coefficients α, cF: 
α = l−1(dl/dT)F   is the linear expansion coefficient, cF the specific heat ca-
pacity, defined as the derivative of the heat function (or enthalpy)   ψF(T, F) = 
U − Fl  with respect to temperature, while holding the force F constant, and 
dividing the result by the mass   m = ρ ⋅lA  

 d1
d F

l
l T

α ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 , d1
d

F
F

F
c

lA T
ψ

ρ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

d d ,       d ,       d 0F T S l F T F

.               (**) 

The coefficient α is in the desired form, but cF  must be modified by repeat-
ing the procedure above as far as necessary (here only step a): 

 a') Write down the differentials using the fundamental equation:  

  dψ = − = . 
1
lAρ

Solve for dψF , divide by dT and multiply by : 
d  d  dd d ,       = ,      
d d d

F
F F

F F F

S STT S T c
T T lA T

ψψ
ρ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (***) 

By using the additional equations (**) and (***), we can eliminate the terms  
(dl/dT)F   and   (dS/dT)F  in equation (*) to obtain the final result: 

( )d 1
d S F

TT
F A c

α
ρ

= − ⋅ . 

It is obvious that this procedure can be shortened considerably through prac-
tice and experience. For example, the last part could be omitted completely by 
realizing from the beginning that cF (like all other heat capacities) can be ex-
pressed best as an entropy derivative. The effort may be reduced further of course 
if we can fall back on earlier results. In conclusion, let us derive the often dis-
cussed volume and pressure coefficients of the heat functions   U(V,T)  and   
H(p,T),  respectively, using this streamlined procedure by applying the derived 
MAXWELL relations from section 3.7.1.  

( )d d d d d  d  d
d d d d dT T T VT

T S p V pU S VT p T p
V V V V T

−⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
, 
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( )d d d d  dd d
d d d d d pT T T T

T S V p p VH ST V T V
p p p p T

+⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = + = − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. 

Collecting and numbering hundreds of formulas for later usage is a standard 
method in conventional textbooks. One aim of the new approach is to reduce this 
apparatus to a minimum.  
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4. CHEMICAL THERMODYNAMICS 

The area of physics that deals with the macroscopic description of systems of 
reactive matter is called "chemical physics" or "chemical thermodynamics". This 
subject can be developed conceptually and formally in a manner similar to that 
used in Chapter 2 for pure thermodynamics. The most important quantities, the 
counterparts of entropy and temperature, are the amount of substance and its 
chemical potential, and we consider these quantities first. 

The concept of chemical potential used here is a somewhat generalized ver-
sion of that found in standard chemical thermodynamics. A more descriptive term 
might be substance potential (the potential of a substance, where substance can 
even refer to light), but here we shall use the well-known expression chemical 
potential. 

4.1. Introduction 

The term "substance" generally refers to a uniform substance described by a 
chemical formula and identified by certain properties such as color, density, solu-
bility, melting point, emission and absorption spectra, reactivity, etc. Our sur-
roundings comprise many different substances, distributed uniformly or non-
uniformly. Rarely does an object consist of only one kind of substance such as a 
piece of pure sugar or a copper wire. Generally we find mixtures of substances. 

In simple cases, bodies such as an air bubble, a water drop, a drinking glass 
and an emerald are uniform. Some bodies comprise a number of separate uniform 
parts, such as a granite block made up of feldspar, quartz and mica minerals, or a 
steel beam consisting of a microscopic mixture of iron and iron carbide crystals, or 
a copper coin having a structure of differently arranged crystals each with the 
same chemical composition. In addition, bodies such as a cell, a leaf or a wooden 
block are structured down to the submicroscopic scale. Others change continu-
ously from place to place such as a colorful agate mineral, or the atmosphere that 
becomes thinner and contains relatively more hydrogen at higher elevations. 
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The compositions of bodies are not fixed but exchange substances more or 
less slowly with the environment. Such substances, particularly the more volatile 
ones, tend to act like entropy by penetrating their surroundings and spreading 
uniformly within the available space, although often slowly or imperceptibly. For 
example, wood, fabric, and bricks absorb water in a moist environment and re-
lease it in a dry one. In a closed room the different amounts of moisture in indi-
vidual objects equilibrate just as temperature does (Figure 4.1). If we put a fresh  

 

Fig. 4.1:  Humidity in a closed room 

slice of bread in a bag of zwieback or crackers, the bread turns hard and brittle. 
Conversely, a piece of zwieback  or a cracker put together with fresh bread be-
comes soft and flexible. The air in the bag — more precisely, nitrogen and oxygen 
— behaves like water. The air-saturated condition of objects in our surroundings 
is normal. In contrast, boiled water is deprived of air and it slowly absorbs gases 
from its environment when left standing. If too much air is dissolved, then it is 
expelled, as in the case of fresh tap water that often contains rising bubbles and 
forms gas bubbles on container walls. Beer in an uncovered glass turns flat be-
cause the concentrated carbon dioxide is released into the atmosphere. Food items 
with a strong odor gradually transfer this odor to other items in the same storage 
container. Even a crystallized, compact body is not impenetrable. For instance, an 
iron rod can gain carbon up to 1% of its weight when carburized in glowing hot 
coals or graphite powder. Conversely, it can lose this carbon again in an oxidizing 
flame. 

The amount of substance, which penetrates a given layer of a solid, liquid or 
gaseous substance can vary enormously. For example, polyethylene lets n-heptane 
pass a thousand times more easily than water — even though n-heptane has a 
similar boiling point as water. Therefore, one can store aqueous solutions in such 
containers but not gasoline, since the latter will noticeably vanish within a few 
days. Similarly, a soap film is about one hundred times more impenetrable to 
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nitrogen than to carbon dioxide. There are large differences in the ability to pene-
trate a layer of air above a salt solution: Water can easily cross this layer but the 
less volatile salt is almost completely blocked. 

For a homogeneous body, a substance penetrating it distributes itself uni-
formly over the entire volume after a sufficient amount of time. The capacity to 
absorb foreign substances varies over a wide range, just like the penetrability. One 
liter of water at room temperature can absorb an unlimited amount of ethanol 
since water and ethanol are miscible. On the other hand, 500 liters of hydrochloric 
acid gas at one bar pressure can dissolve only approximately 10 mm3 of limestone 
or only 10−10 mm3 of silver sulfide, an amount not perceptible with an optical 
microscope. 

Amounts of substance are not constant since the substances can be converted 
into one another, or decomposed into their fundamental parts, the elements. They 
can also be rebuilt from the elements. During familiar chemical transformations 
the amount of elements remains unchanged, i.e., under the same conditions one 
obtains the same amount of elements when the mixture is analyzed before and 
after the transformation. However, processes in nuclear reactors and particle ac-
celerators show that the elements themselves may be transformed and can be split 
into hydrogen (including the neutrons!), or reconstituted from it with the amount 
of hydrogen remaining constant. If we wish, we can interpret all transformations 
of substances as changes of state of a single kind of matter.  

4.2. Amount of Substance 

Since various measures are used to quantify amounts of substance, let us first 
consider what properties we should expect of such a quantity. 

It is reasonable to assume that an amount of substance within a given space 
can only change by releasing or receiving substances to or from its environment. 
In addition, a chemical transformation can consume or create a substance. Its 
quantity cannot change simply by storing, heating, insulating or separating it from 
other substances. If we impose this property, certain measures are eliminated im-
mediately, such as the volume used in everyday transactions — a liter of water, a 
cubic meter of gas, etc. — and in a strict sense also the mass m that increases 
whenever work is performed on a particular substance due to EINSTEIN's equation  

E = m c2 . 
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E is the energy content and c is the speed of light. Because these changes in mass 
are far below the available accuracy of measurement under normal circumstances, 
this measure of quantity of substance, the mass m, has been widely accepted in 
science and in business. However, it is unsatisfactory when one considers that by 
increasing the temperature of 1 cm3 of water by 1º Celsius, its mass increases by 
5 · 10–14 g. This corresponds to the mass of around one billion water molecules.  

It is a convincing assumption that two amounts of the same substance are 
equal, provided they occupy the same volume or weigh the same under the same 
external conditions, such as the shape of the volume, pressure, temperature, field 
strength, etc.,. In order to measure the available amount of a substance, it is suffi-
cient — as we did for entropy — to divide the substance into equal pieces or fill 
up equal containers with it under identical conditions, and then count the parts. 
Basically, any arbitrary quantity can serve as a unit, provided it can be uniquely 
identified for a given substance. The unit for an amount of gas as "standard cubic 
meter" is basically such a procedure. 

Due to the atomic structure of matter, it seems natural to divide up a portion of 
substance into its component atoms or groups of atoms. It is therefore natural to 
use "particle" as a basic unit. By doing so, the concepts of the amount of substance 
and the number of particles overlap. The usual unit of measurement in chemistry, 
the "mole", is consistent with the above. The mole may be defined as  

1 mol = 0.6023 · 1024 particles, 
where the right-hand side represents the so-called LOSCHMIDT or AVOGADRO 

number. More accurately, the mole may be defined so that a portion with a mass  
m = 12 g of the pure carbon isotope with a mass number of 12 represents exactly 
an amount of substance  n(12C) = 1 mol. Since it is possible to count directly or 
indirectly the atoms or groups of atoms, the amount of substance n defined by this 
rule is a measurable quantity. Nevertheless, our measurement procedure is appli-
cable whether or not we know anything about the existence of atoms. 

If we consider all matter to be of the same kind, then this definition is not 
adequate. Logically, all substances must be brought into a consistent material 
state, such as hydrogen for instance, whose quantity can be determined by count-
ing atoms. The number of nuclear building blocks, in other words the nucleon 
number, becomes a measure of the amount of substance of a body. Expressed in 
"mol", the numerical value of this quantity agrees approximately with the mass 
given in grams. More precisely, a portion of n = 1 mol of matter in the form of 
hydrogen H weighs 1.008 g, as graphite C it weighs 1.000 g and as iron Fe it 
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weighs 0.999 g. According to this measurement procedure, there is a law of con-
servation of substance (antimatter might be count as negative) similar to that for 
electric charge. If we identify the amount of substance by its mass, essentially a 
measure of energy, then matter and energy can be treated as interchangeable due 
to EINSTEIN's equation. Thus, we encounter relationships here that are similar to 
those we learned from heat concepts (entropy or energy).  

4.3. Chemical Potential 

As mentioned earlier, the dispersion of matter in space reminds us of thermal 
processes. Past researchers were guided by this similarity and spoke of heat as a 
fluid. It seems obvious that we should use the conceptual framework for thermal 
phenomena as a model for our current topic. 

4.3.1 Energy and Potential 

We are already familiar with the fact that a body can exchange various sub-
stances with surrounding objects. In order to transfer substances in a controlled 
fashion, we can utilize a kind of syringe as we did for entropy. If we use this de-
vice to deliver a small quantity dn of any substance from one body to another — 
for example, water in the form of steam from a dry wooden block to a moist brick 
(Figure 4.2) — it requires work. This work is totally retrievable if all losses due to 
friction or other entropy-producing processes are avoided. Losses can be avoided, 
at least in an idealized thought process, by ensuring that all steps are reversible. 

In order to determine the work dW required for the substance under considera-
tion, we must transfer only this amount and avoid any additional work. Specifi-
cally, we should not transfer other substances simultaneously, nor produce any 
entropy, nor transfer any extra electric charge. Neither should the bodies be de-
formed in the process. We are assured that no parameter or component was over-
looked when a body ends up in its original state after returning the transferred 
amount of substance. In practice, this transfer can be carried out as follows: First 
the desired substance is extracted from a body through a rigid wall (the bottom) of 
the syringe that is permeable only to the substance. Then the syringe is used to 
inject the substance into the second body and the expended work is measured. 
Unfortunately, there is no such permeable wall that holds back entropy. However,  
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Fig. 4.2:  Transport work and chemical potential 

we can easily return the unwanted entropy and subtract the corresponding work 
gained from the initial value. Other unwanted substances can be treated similarly. 

The work dW does not depend on the path nor the method used because of 
energy conservation. We could transfer the substance in a single step or via sev-
eral bodies. We could use our special syringe or any other aid. Consequently, we 
can state that a small amount of substance dn from one body, or part of it, pos-
sesses a potential energy dE relative to a quantity dn from a reference body. The 
energy dE at locations I and II differs by the work expended in bringing dn from I 
to II: 

dEII − dEI  = dW         (dW = "transfer" work). 

Let us now consider multiple bodies, which may be parts of a whole, and they 
may contain larger or smaller amounts of a particular substance. Then we define 
the "chemical potential" µ for this substance in each body as the ratio 

d
d
E
n

µ= , 

where dE is the potential energy of an incremental amount dn compared to an 
arbitrary but properly selected reference body. Although dE depends on dn, the 
parameter µ is a property of the body, or a selected part of it, and is determined by 
its state. A corresponding chemical potential can be defined and measured for any 
substance, provided that it is sufficiently mobile. 
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Fig. 4.3:  The drinking duck as a chemical engine 

Just as for a heat engine where the potential drop of entropy is utilized to per-
form work, one can construct a corresponding "chemical engine". A simple setup 
of this kind is the toy known as the "drinking duck" (Figure 4.3), which is driven 
by the difference of the chemical potential of water in a glass and in the ambient 
air. The duck slowly sways back and forth, dips its beak into the water, backs up 
again and after a few oscillations restarts the game. For a lossless engine working 
between two reservoirs with fixed potentials µ1 and µ0, the energy W can be util-
ized (negative sign!) when the amount of substance n is transferred from µ1 to µ0: 

W = −n (µ1 − µ0) . 

Basically, one could compute the energy increase dE of a body due to transfer 
of substance dn from EINSTEIN's equation   E = m c2  by measuring the increase in 
mass, and thus determine a value for the absolute chemical potential   µ = dE/dn.  
However, the body should not lose or receive energy in alternative ways so that 
dE represents the energy transferred with the syringe — this is the only energy we 
have to measure. This is accomplished by holding the volume, the entropy con-
tent, and remaining amounts of substances in the body constant: 
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( )d
d SVn'n''

E
n

µ =
…

. 

This relationship shows that µ (for matter at rest and not exposed to external 
fields) agrees with the chemical potential µ from traditional thermodynamics. But 
this procedure for measuring absolute chemical potential is impractical, as shown 
by the numerical examples in section 4.3.3, because it requires precise mass meas-
urements of up to 10 to 15 decimal places in order to determine the small potential 
differences that are important for chemical processes. 

4.3.2. The Tendency of Matter to Disperse 

The chemical potentials of substances have descriptive properties similar to 
those of temperature. They indicate how difficult it is to squeeze a substance into a 
body. The greater the potential difference between two locations, the harder the 
transfer of a substance. It is convenient to think of µ as a form of tension that 
wants to distribute the considered substance throughout a given space. In order to 
move a small amount dn into the body, we have to perform work µ · dn to over-
come this tension:  

dW = µ ·dn. 
Since this work changes the composition of a body, we will refer to it as "chemi-
cal" in order to distinguish it from mechanical work,   −p·dV,  thermal work,   
T·dS,  electric work,   ϕ ·dq,  etc. This should not be confused with work arising 
from a potential energy difference ("lifting work").  

The chemical potential µ, as mentioned above, is the driving force for diffu-
sion and flow processes. It measures the drive to disperse. As long as potential 
differences exist, energy is released due to the flow of substances from locations 
with higher µ-values to locations with lower ones (Figure 4.4). Flow in the oppo-
site direction requires work. The first process occurs naturally and the energy 
released is used for entropy production. In contrast, the second process is only 
possible by external intervention. The larger the potential difference or, in other 
words, the more powerful the driving force, the stronger the flow of substances 
and also the more work is wasted. The speed of the process depends on the driving 
force and on the resistance that has to be overcome. Resistance can vary widely 
and be so high that no movement is perceived over long periods of time. In order 
to avoid work losses, the resistance has to be as small as possible and the move-
ment of substances very slow, so that the currents exist practically without driving  
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Fig. 4.4:  Flows of substance down the of chemical potential slops 

force. The substance should not "drop" down but it should be "lifted down" whilst 
the released energy is captured. Equilibrium exists when all potential differences 
vanish and the drive to disperse is the same everywhere, at least as long as no 
separation walls or low temperatures hinder the diffusion and flow, and no other 
energy-releasing processes are active: 

µ = const. equilibrium condition. 

The behavior of water in a humid room is easily understood in terms of 
chemical tension. As long as the water potential in the air is higher than that in 
adjacent objects, the objects absorb moisture. They lose moisture to the air when 
the potential difference reverses:  

µ inside  <  µ outside  inflow, 

µ inside  >  µ outside  outflow. 

Similar behavior is valid for nitrogen, oxygen and carbon dioxide when they are 
dissolved in water or are separated from it. Another example is the accumulation 
of carbon on a glowing piece of iron and its subsequent removal. If a portion of 
ether is added to water, both substances mix (Figure 4.5). The dispersion drive is 
exhausted, i.e., the chemical potentials of water and ether equalize, when the up-
per layer contains 1% water and the lower one nearly 8% ether. At that point the 
mixing process stops. 
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The greater the amount of substance that is added to a body, the higher the 
rise in the corresponding chemical potential (under some special conditions it may 
remain constant): 

d 0
dn
µ ≥ . 

If the opposite were true, the behavior would be unstable. Under such conditions 
equilibrium exists between two parts of a body provided that the µ-values are 
equal. However, if a small perturbation accidentally transfers some extra sub-
stance to one part and thus lowers the "drive" there, then the imbalance causes 
additional substance to follow until all of the substance is transferred, or at some 
point the assumed behavior   dµ/dn < 0  is no longer valid. The body would disin-
tegrate by itself into such parts that satisfy our initial statement. The always posi-
tive, rarely used, inverse   dn/dµ  of the above derivative, corresponds to the en-
tropy and charge capacities,   (dS/dT)x  and   (dq/dϕ)x.  Just like these other exam-
ples, it depends upon the given constraints (x): 

d
d x

n
µ

⎛
⎜
⎝ ⎠

⎞
⎟  "substance capacity". 

4.3.3. Water as a Numerical Example 

In contrast to temperature, the numerical values of the chemical potential pro-
vide no intuitive feel because they are not used in everyday life. In order to par-
tially close this gap, we select as an example the most familiar substance, water, in 

Fig. 4.5:  Behavior of adding ether to water 

>1% ether

water<8%
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various bodies. An amount of water of n = 1 mol under normal room conditions 
has a molar mass   Mm = 18 g/mol,  occupies a molar volume   Vm = 18 cm3/mol,  
and contains a molar entropy of   Sm = 66 J/(K·mol).  The subscript m refers to the 
word "molar" (see section 4.4.1). 

a) Different shape and elevation (Figure 4.6) 

h' 

h

  

 Fig. 4.6:  Water transfer — lifting 

 

In order to lift an amount of water dn with a mass   Mm·dn  from the lower-right 
container to either the upper container or the left container, work   dW = 
Mm·dn·g·∆h  is required, where   ∆h  is finite in the first case and zero in the sec-
ond. Since we assume the water to be pure and the temperature to be uniform, we 
do not need "selectively permeable" walls to keep out unwanted substances, and 
we do not need to return entropy. The chemical potential   ∆µ = dEII/dn − dEI/dn = 
dW/dn  is independent of the size and shape of the body and is given by 

∆µ = Mm·g·∆h. 

 For an elevation difference of 1 m, we get ∆µ ≈ 0.000 18 kJ/mole. Some text-
books use the name "gravito-chemical potential" for the quantity µ in this case, to 
indicate that it combines both gravitational and chemical influences. 
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pp'  

b) Different pressure (Figure 4.7) 

   

  Fig. 4.7: Water transfer — pressure

 Let us extract an amount of water dn with volume   Vm·dn  from the right con-
tainer and add it to the left one, expending work   dW = −p·Vm·dn + p'·Vm·dn.  
This result assumes that the pressure difference is not too high and that we 
can treat Vm as constant. Otherwise, we must include the work of compres-
sion dW' in transferring the amount dn from p to p'. Again, entropy is of no 
concern. It is true that the volume of our system changes as the water in the 
container displaces the weights, and thus the system exchanges energy with 
the weights. But this is unimportant for the measurement process. Therefore, 
we have 

∆µ = Vm·∆p. 

For a pressure difference of 1 bar, we get   ∆µ ≈ 0.0018 kJ/mol. 

c) Different temperatures (Figure 4.8) 

Fig. 4.8:  Water transfer — temperature. 

dn

dS

T' T

 

 

Let us remove an amount of water dn from the right container, accompanied 
by an entropy flow   Sm·dn.  We cannot mix cold and warm water because the 
process is irreversible. In order to raise the temperature of the water in the sy-
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ringe from T to T', we add a small amount of entropy dS' from the hotter con-
tainer with an entropy syringe and obtain the work dW'. We then transfer the 
water to the left container. In violation of our measurement procedure, the en-
tropy   Sm·dn  was also passed from the right to the left container. As part of 
the return transport we have to perform work   −Sm·dn·∆T.  If the temperature 
differences are small, dW' is negligible and the total expenditure of work be-
comes   dW = −Sm·∆T · dn.  The final expression for ∆µ is given by 

  ∆µ = −Sm·∆T     for small ∆T. 

  For a temperature difference of 1 K, we get   ∆µ ≈ −0.066 kJ/mol. 

d) Different chemical milieu (Figure 4.9) 

  

kJ
mol–3 

kJ
mol–1 

kJ
mol–23 

kJ
mol 0H SO2 4

H O2

ambient air

rusk

Fig. 4.9: Water potential of 
               water in different 
               chemical milieus 

 Compared to the value of a glass of water, the chemical potential in air with a 
relative humidity of 60…70%, typical of living room conditions, is roughly 1 
kJ/mol lower, about 3 kJ/mol lower for fresh zwieback  or crackers, and about 
23 kJ/mol lower for concentrated sulfuric acid, a strong water-extracting 
agent. Fresh bread, with a chemical potential nearly equal to that of a glass of 
water, will dry out if left exposed to ambient air, while a piece of zwieback or 
cracker will lose its crispiness by absorbing water. 

e) Absolute value 

 If we add 10−3 mol of water to a 1 m3 cube filled with water at constant eleva-
tion, volume, entropy content, etc., the mass increases by   ∆m = 18.0153… 
mg and the energy by   ∆E = ∆m · c2 = 1.62 · 1012 J.  Therefore the chemical 
potential µ of water has the absolute value of 1.62 · 1012 kJ/mole. 
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The result that cold water has a higher chemical potential than warm water, 
indicating a stronger tendency to disperse, seems to contradict our experience. We 
know that wet clothes dry out near the oven and water condenses on cold win-
dowpanes. For those cases with a large temperature difference, a strong entropy 
flow dictates the flow of substances, and supplies sufficient energy to transfer 
substances against opposing potential drops.  

4.4. Coupling of Substance Transfer to Other Processes 

An object that receives substances increases its volume, energy and entropy 
content in most cases. However, it can also bend, distort, accept or reject another 
substance, change its state of charge and so on. The following sections present a 
description of such processes. 

4.4.1. Volume and Entropy Demands of a Substance, "Molar Mass" 

A gelatine cube, a wooden block and even a granite block swell when wet and 
shrink when dried. We can attribute these changes in volume to the space re-
quirements of the water inside the respective bodies. If we add 1 cm3 of water to 
one liter of concentrated sulfuric acid and also to the same amount of half-
concentrated sulfuric acid, then the volume increases by 0.48 cm3 in the first case 
and by 0.97 cm3 in the second. Evidently water does not always require the same 
space even when the temperature and pressure remain constant, so it becomes 
necessary to define this concept more precisely. 

We will consider the volume required for a given amount of substance as the 
volume by which a body expands when the substance is added. For a more rigor-
ous treatment, we will add only an incremental quantity dn in order to avoid sig-
nificant changes to the composition of the body. The resulting volume increase dV 
can be computed for a convenient amount of substance, say a mole, as                
Vm = dV/dn.  The quantity Vm is called the (partial) molar volume of the substance 
in the body. Let us now specify the conditions under which this procedure has to 
be performed. It is required that pressure, temperature, field strength, etc. remain 
constant in order to avoid errors due to thermal expansion, compressibility, elec-
trostriction and similar effects. Simultaneously, no other substances can be intro-
duced. Finally, we define 
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ˆ

d
d

i

i
i pT n

VV
n

⎛ ⎞≡ ⎜ ⎟
⎝ ⎠ …
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where the subscript i replaces the subscript m in order to refer to the molar volume 
of a particular substance under consideration. The symbol  with i  denotes the 
amounts of all other substances besides i.  

Note that the molar volume Vi may be negative in the exceptional case where 
the total volume drops when a substance penetrates a body. Therefore, we prefer 
the name "volume demand" for Vi because it is more descriptive. For an estimate 
of Vi, we can start with the fact that 1 mol of atoms in the condensed state occu-
pies a volume of around 10 cm3, and about a thousand times more volume in the 
gaseous form under normal room conditions. For homogeneous bodies consisting 
of a single pure substance, the volume demand is given by the total volume V 
divided by the total amount of substance n, because under the specified conditions 
V ~ n: 

m
VV
n

=  for a pure substance. 

As a general rule, if the volume of a body increases when a substance is 
added, the entropy content also increases. This entropy increase is due not only to 
the contribution from the substance, but also to the additional entropy exchanged 
to keep the temperature from rising or falling. For example, by dissolving a tea-
spoonful of Glauber salt (Na2SO4 · 10H2O), sodium nitrate (NaNO3) or potassium 
nitrate (KNO3) in a glass of water, the solution turns so cold that water condenses 
on the glass. In order to keep the temperature constant, entropy has to be received 
from the environment. The entropy is released when the salts precipitate from a 
super-saturated solution, and as a result the solution becomes noticeably warmer 
(Figure 4.10). The same amount of a substance has a different entropy content 
depending on whether it is pure or dissolved in another substance. The molar  

 

Fig. 4.10:  Entropy change when a 
                  substance dissolves (left) 
                  or precipiates (right) 
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entropy of a pure substance Sm, or the (partial) molar entropy Si of a substance i, 
distributed in another substance, is defined in a similar fashion to Vm and Vi by the 
equation: 

ˆ

d
d

i

i
i pT n

SS
n

⎛ ⎞≡ ⎜ ⎟
⎝ ⎠ …

 

For homogeneous bodies consisting of a single substance, Sm is computed simi-
larly to Vm by dividing the total entropy S by the total amount of substance n: 

m
SS
n

=    for a pure substance. 

It can be estimated from Vm and values of entropy density. If a substance is evapo-
rated or mixed with other substances, then the entropy demand increases signifi-
cantly.  

Similarly we can describe the energy increase dE of a body due to the addi-
tion of the incremental amount of substance dn, and define a (partial) molar en-
ergy Ei of a substance in that body:   Ei = ( )d d ˆ… ii pT n .  This and a number of 
related quantities (partial molar enthalpy, free energy, free enthalpy, etc.) play an 
important role in traditional thermodynamics, but they are dispensable here. On 
the basis of EINSTEIN's equation   m = E/c2,  we can assign via Ei a (partial) molar 
mass to each substance (or more concisely, "molar mass")   Mi = Ei/c2 = 

E n

( ) …d d îpT nm ni .  The relative changes of this quantity under different conditions 
are so small that Mm is considered constant for most applications. As such, we 
speak of the mass   m = n · Mm  of the amount n of a substance. If we know the 
elemental composition, i.e., the chemical formula of a substance, the molar mass 
can be calculated with sufficient accuracy by adding the Mi-values or "atomic 
weights" for the elements. Since masses can be easily and precisely determined 
from weight measurements, and the amounts of substance ni by dividing by the 
molar mass, this method tends to be used almost exclusively. 

4.4.2. Main Equation and Coupling 

If we change the volume, entropy or amount of substances in a body, then its 
energy content is modified by the mechanical, thermal and chemical work ex-
pended in the process: 

( ) 1 1 2 2d d d d d dk kE p V T S n n nµ µ µ= − + + + + +… . 
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If we subject the body to an electric or magnetic field, and charge or accelerate it, 
then additional terms have to be included in the above equation. For simplicity, we 
will omit these terms. By proceeding at a sufficiently slow rate to avoid wasting 
energy on diffusion, all contributions to the work are retrievable and the system 
can be considered as elastic. The parameters p, T and ni are easily measured and 
are hence usually selected as independent variables. We already know that V and S 
are coupled with the amounts of substance ni, and V and S are themselves coupled, 
so that we can expect various relationships among the main quantities. Let us now 
evaluate some of these relationships. 

a) Coupling between V and ni  

If the volume increases on addition of substance i, i.e., Vi is positive, then an 
increase in pressure p makes the addition more difficult, and the correspond-
ing value of µi increases. By using the flip rule, we get 

  
ˆ ˆ

d
d d

i i i

i
i

iTn n pTn

V V
p n

⎛ ⎞⎛ ⎞ = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

dµ . 

 Vi not only describes the volume demand of substance i, but also the pressure 
coefficient of its chemical potential. For solids and liquids, for which Vi is not 
influenced much by pressure, the µi (p)-curve varies linearly with p. For 
gases, the µi (p)-curve is approximately logarithmic and much steeper (Figure 
4.11). 
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Fig. 4.11:  Pressure- and temperature dependence of µ 
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b) Coupling between S and ni  

 A positive Si denotes that entropy tends to flow into the body as the substance i is 
added. An increase in temperature not only increases S but also aids the addition 
of the substance. As a result, the chemical potential µi is lowered provided that no 
additional amount of substance i is added (ni = const.): 

ˆ ˆ

d d
d d

i i

i
i

n i pTn

S S
T n
µ ⎛ ⎞⎛ ⎞ = − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

. 
ipn

 Si not only represents the entropy demand of the substance i but also the negative 
temperature coefficient of its chemical potential µi. Figure 4.11 depicts the tem-
perature variation of µ. The µ( T)-curve starts with a horizontal tangent, as it 
should since the entropy content vanishes for T = 0, and then drops off more and 
more steeply. This drop-off is faster for gases and substances in dilute solutions 
than for solids or liquids because the first two contain more entropy. 

c) Coupling between ni and nj 

acetone
acetone

NaCl

 

up the process

NaCl

air injection to speed  

Fig. 4.12:  Interplay between 
                 acetone and NaCl 
                 in water 

 If we add drops of acetone to a saturated solution of table salt, then the salt 
begins to precipitate. As the acetone evaporates, the salt slowly dissolves again 
(Figure 4.12). This is an example of counter-coupling between two amounts of 
substance ni and nj, where one substance tries to drive out the other. On the other 
hand, a small amount of solid lead chloride PbCl2 at the bottom of a glass of water 
will dissolve on addition of potassium nitrate KNO3 ("salting-in effect"). This 
provides an example of co-coupling. The change of the chemical potential of one 
substance indicates the strength of the effect caused by a second substance. This is 
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( )d dexpressed more precisely by the coefficient  
ĵi j pT n .  Due to the symme-

try of the coupling, the reverse effect of the second substance on the first, meas-
ured by the coefficient  

nµ

( ) ˆd d
ij i pT nnµ ,  is equally strong, as can be shown with

the flip rule: 
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   . 

Qualitatively it is easy to demonstrate the inverse effect with our first example: By 
adding table salt to an acetone-water mixture with a 1:1 ratio, the acetone sepa-
rates into a second layer above the solution ("salting-out effect"). 

For a substance that exists in pure form in a homogeneous body, it is possible 
to evaluate µ as a function of p and T compared to a reference value   µ(p0, T0)  
since Vm and Sm can be measured readily:  

. 

Sometimes it is easier to investigate a simpler piece of matter that is in chemical 
equilibrium with the body in question, since both substances have the same 
chemical potential. For example, we can determine the potential of water in a 
cane sugar solution by evaluating the potential of the pure water vapor above the 
solution when isolated from the outside air. Its µ -value can be computed as that 
of a pure substance using the above equation. 

4.5. Transformations of Substances 

This section deals with the laws that govern the chemical conversions and 
transformations of different forms of substances. 

4.5.1. Conditions for Chemical Conversion   

So far we have ignored the fact that a substance penetrating a body may be 
changed chemically, either destroyed or produced. If a small amount of substance 
dn disappears in the process, its potential energy   µ ·dn  is released, provided that 
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it is not captured by the reaction products. Since this energy may be used to pro-
duce entropy and cannot be recovered, the chemical potential µ in a way forces the 
substance to destroy or transform itself. The quantity µ therefore assumes a new 
meaning as a "self-destructive drive ". Without conservation of matter this drive 
would destroy the substance into nothing, or rather, radiate it away. Instead, the 
destruction of one substance leads to the formation of another. During chemical 
conversions, excluding element changes, the amounts of the participating elements 
must remain unchanged. In a chemical equation this requirement is met by ensur-
ing that the total number of atoms of each kind is equal on both sides. 

According to this idea the conversion   A → B  should only take place spon-
taneously if the "destructive" or "transforming" drive µA of the reactant is greater 
than that of the product µ B. In other words,   µA > µ B.  Several substances may be 
involved in the reaction,  

A + B → 2 C or more generally νA A + νB B + νC C … = 0 .  

The above notation includes "stoichiometric coefficients" νi which are negative 
for the reactants and positive for the products  (νA = –1,  ν B = –1,  νC = +2).  
Since the total "destructive drive" of the vanished substance must be greater than 
that of the newly formed ones, we impose the following requirement: 

µA + µ B > µ C + µ C  or more generally νAµ A + νBµ B + … < 0 . 

In the opposite case, the drive of the reaction is reversed. Since chemical poten-
tials vary with pressure, temperature, composition, etc., it is likely that the same 
chemical reaction can run in either direction depending on these conditions.  

In order to confirm our assumption, let us consider what happens with the en-
ergy. The p gress of a reaction is usually described by a variable ξ called "extent 
of reaction" hat is explained by the equation 

∆ni = ν  , 

where  ∆ni  is the change of the amount of the substance i. If νi is negative,  ∆ni  
indicates a loss of the substance i. We can denote the common expression "unit 
conversion" more precisely by  ξ = 1 mol.  In our example, 1 mol of  A and B 
each are used up to create 2 mol of C. If the reaction progresses by the small 
amount dξ and the components change by   dn i = νi dξ,  then the potential energy           
µA·dξ + µ B·dξ   is released during the destruction of the reactants. Simultane-
ously, energy   2µ C·dξ   has to be supplied for the newly created products. The 
total expenditure of work or "chemical work" is therefore given by 

 

ro
 t

iξ
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)

m A B C ... f A B C ...BA Ca b c a b cW a b cµ µ µ µ µ= − − − − ≡ ∆…

i

dW = (−µA − µ B + 2µ C) dξ   or more generally  dW = (ν1µ1 + ν2µ2 + …) dξ. 

The reaction can only run by itself (dξ > 0) if energy is released, or in other words 
dW is negative. The expression in parentheses in the equation above must be nega-
tive, as we suspected earlier. This difference of the "chemical potentials of prod-
ucts minus reactants",   −µA − µ B + 2µ C  or  ∑νi ·µ i ,  is usually abbreviated by 
the symbol ∆Rµ where the general R (R for reaction) can be replaced with other 
symbols for a particular reaction. The term   −∆Rµ  represents the forward drive or 
so-called "affinity"   A = −∆R µ  of a reaction, while   +∆R µ  is the reverse drive. 
The conversion conditions can now be simply expressed as  

∆R µ  < 0  reaction driven forwards, 

∆R µ  = 0  equilibrium,   (∆R µ ≡ ∑νi·µi) 

∆R µ  > 0  reaction driven backwards. 

In order to describe the dispersion of a substance D, we can arbitrarily fix the 
zero point for its chemical potential since only the difference   ∆µ D  is important 
for the spread of D. That is convenient for many calculations. As soon as we in-
clude chemical conversions, however, we only have this freedom for the elements. 
All other substances consist of combinations of the elements: 

aA + bB + cC + … → Aa Bb Cc … . 

During the formation (indicated by f) of a compound   AaBbCc…  from its ele-
ments, which exist in some (well defined) standard state ( , the following work is 
expended for each mole produced: 

 

By using the chemical potential µ
m f ,

 of the elements in their standard states and 
measuring  W µ= ∆ A B C ... a bµ µ µ µ= ∆ + + +…

…a bµ µ⋅ + ⋅ +
-

 the quantity  BAa b c a b c   
becomes fixed and can no longer be freely chosen. Conversely, because the terms  

BA   drop out during affinity calculations, we are free to do what 
we want with the

f A B C ...

µ

-

values. The chemical potential of a pure substance at 1.013 
bar pressure and 298 K temperature, compared to that of its elements in pure, 
stable form under the same pressure and temperature, is tabulated for many sub-
stances (standard free enthalpies of formation). By setting the µ

f A B C ...

values of the 
elements to zero, we can identify the quantity  a b cµ∆

A B C ...

  for any compound 
using the chemical potential  a b cµ   of this compound, which simplifies the 
notation and evaluations. This possibility is removed if we allow changes to the 
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elements themselves (i.e., nuclear reactions) because differences in chemical po-
tentials between them would become important. 

4.5.2. Coupling of V, S and ξ 

Let us now consider a homogeneous or non-homogeneous body consisting of 
various substances Ai. This body can be compressed and heated and has the reac-
tion   ∑ νi Ai = 0  running internally. The effect of such a chemical reaction is 
identical to that of an exchange of substance with the environment, except that the 
quantities ni are no longer independent, but are related by the extent of reaction ξ:   
dni = νi · dξ.  As a result of this relation and   R µ∆ = −A ,  the main equation has 
the form 

dE = −pdV + TdS + ∑ µ i dni = (−p)dV + TdS + (−A)dξ . 

On the basis of the above relation we can consider S, V and ξ as elastically 
coupled. We are already familiar with some of the possible primary and coupling 
effect indicators such as   (dS/dT)pξ   representing the entropy capacity Ç. The 
index ξ merely indicates that the substances of the body will not change. Other 
coefficients such as   (dV/dξ)pT  and   (dS/dξ)pT  that describe the change in vol-
ume and entropy content during the reaction can easily be calculated. Applying 
the chain rule  to the function   V(p, T, n1(ξ), n2(ξ)… )  and its counterpart for S, 
we get: 

ˆ ˆ1 2

1 2
1 1 2 2

1 2

d dd d d
d d d d dpT pTn pTn

n nV V V V V
n n

ν ν
ξ ξ ξ

⎛ ⎞ ⎛ ⎞⎛ ⎞ = + + = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

… …  . 

The result can be summarized as follows: 

R m R m
d d,
d di i i i

pT pT

V SV V S Sν ν
ξ ξ

⎛ ⎞ ⎛ ⎞= ≡ ∆ = ≡ ∆⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑  . 

Here, the symbol ∆R is again used to simplify the notation. By further application 
of the flip rule, we get: 

R m R m
 dd d d;

d d d dppT pTT

V SV S
p T ξξ ξ ξ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= − = −∆ = = ∆⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

AA . 

These equations tell us what we could have predicted on the basis of the concept 
of coupling: If the reaction increases the volume   (∆RVm > 0),  then the reaction 
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will be hindered when higher external pressure hinders the expansion. In other 
words, the affinity A weakens when the external pressure increases. On the other 
hand, if the reaction increases the entropy   (∆RSm > 0),  the reaction will be 
boosted by a higher external temperature. Here the affinity A strengthens with 
increase of external temperature. 

If we assume the reaction has reached equilibrium (A = 0) and we want to 
maintain this equilibrium despite a temperature increase, we must simultaneously 
increase the pressure. Quantitatively, we obtain the following relation between p 
and T (generalized [CLAUSIUS]-CLAPEYRON Equation, derivation hint: cut back to 
p, T, ξ): 

R m

R m

d  d d d d
d d d dd p pT pTT

p SS V
T pT Vξξ ξ ξ ξ

∆⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ∆⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠A

A A  . 

The term   ∆RSm·dξ   describes the increase in entropy content of the body as 
the reaction progresses by dξ (at constant p and T). This amount should not be 
confused with the entropy that is input from the surroundings   Śm · dξ.  If the 
energy released by the reaction   dW = −A · dξ  is burned up producing the entropy   
Sp = −dW/T  we must subtract it from the increase in entropy content. The total 
entropy input from the surroundings becomes: 

m R m
dd dŚ S

T
ξξ ξ ⋅⋅ = ∆ ⋅ − A

m R mŚ S
T

= ∆ − A     or  . 

T·Śm  represents the heat● of reaction that arises from two different sources and is 
therefore not a characteristic quantity. In earlier times it was interpreted as a 
measure of the driving force of a chemical reaction. Since the term   T·∆RSm  is 

A
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q
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Fig. 4.13:  Galvanic cell compared 
                  to cylinder with piston 
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substantially smaller than A, its contribution was overlooked. Since the total reac-
tion heat● is approximately equal to A scientists tended to ignore the mistake. 

While we can arbitrarily set the work coordinates S and V to within certain 
limits, this is not possible for changes in ξ. A galvanic cell provides an exception 
whereby the transported charge q has a fixed relationship to the extent of reaction 
ξ of the internal chemical reaction, similar to the relationship between volume V 
and piston position l in a gas cylinder (Figure 4.13). The affinity A is related to the 
terminal voltage U — just as the cylinder pressure p is related to the force F on the 
piston — and can be measured easily without regard to p, T and ξ provided that 
the constant of proportionality α between q and ξ is known. 

4.5.3. Phase Transitions 

Phase transition means the change of a substance from one phase into another, 
i.e., the conversion of a single substance. We restrict the scope of our analysis to 
the influence of pressure and temperature. 

For each state of aggregation and each modification of a substance,   µ(p, T)  
shows different behavior (solid curves in Figure 4.14). The form with the lowest 
chemical potential, often called "poorest in energy", is the most stable. In the fig-
ure, form I is stable below transition temperature Tt, and form II at temperatures 
above Tt, while form III should not exist. Nevertheless, form III may be created 
during a chemical reaction if its rate of formation exceeds that of its competitors. 
It changes more or less rapidly to the stable, "lowest-energy form" as a result of its 
greater chemical potential. 
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The location of the transition point at a given pressure is given by the equa-
tion 

µ I = µ II . 

At this temperature the structure of form I becomes unstable and transforms into 
II. A step change in properties is associated with this transition. The entropy con-
tent increases (dashed curve in left graph of Figure 4.15) and, in general, the 
vol-ume also increases. During the melting process the change in entropy for a 
mona-tomic substance is around 10 J/K per mol (RICHARDS' Rule) and the 
volume change is 3% on average. It requires an amount of entropy of 100 J/K to 
evaporate 1 mol of a substance at 1 bar pressure (PICTET-TROUTON'S Rule). 

At the transition point Tt, the entropy capacity   Çm = (dSm/dT)p  diverges to 
infinity (see Figure 4.15, right graph, dashed line). The curves start at zero, or 
slightly above, and increase   ~ T 2  (DEBYE's law). The maximum value for simple 
solids occurs at approximately Θ/4  where Θ is the DEBYE characteristic tempera-
ture that falls in the range of 100 to 500 K. At higher temperatures the entropy 
capacity approaches a hyperbolic asymptote that essentially depends only on the 
number of atoms, and not on its structure or state of bonding (DULONG-PETIT and 
KOPP-NEUMANN rules).  

Since an increase in pressure changes the chemical potential, it can also shift 
the transition temperature. Starting with an equilibrium, i.e.,   µ I = µ II ,  the tem- 
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Fig. 4.15:  Entropy content (left side) and entropy capacity (right side) 
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perature must change by dT to restore equilibrium of the chemical potential after a 
pressure change of dp. The pressure change causes the chemical potential increase 
of   VI · dp  and   VII · dp.  The new equilibrium condition becomes: 

µ I VI dp – SI dT = µ II + VII dp − SII dT . 

It follows that   0 = ∆tVm · dp − ∆tSm · dT  or 

t t m

t m

d
d
T V
p S

∆
=

∆
 [CLAUSIUS-]CLAYPERON Equation. 

4.5.4. λ –Transitions 

The transition from one material structure of a substance to another during a 
rise in temperature does not always occur discontinuously, but can sometimes 
develop slowly. The Sm-curve in the latter case has no discontinuity but increases 
steeply until it approaches the vertical, and then at temperature TC  makes a sharp 
turn to follow the Sm-curve for the second state. The point of inflection is called 
the CURIE-point of the transition. The Çm-curve, obtained by differentiating the 
Sm-curve, has the shape of the Greek letter λ (note the shape of the dotted curve in 
the right graph of Figure 4.15). For this reason, the process is called a λ -
transition. Such a transition occurs when the two forms I and II have stable inter-
mediate forms with lower chemical potentials than the two basic forms (dotted 
curves in Figures 4.14 and 4.15). 

During a normal transition, for example, the transition from a body-centered 
cubic to a face-centered cubic lattice, all possible intermediate forms are "higher 
in energy" and, therefore, less stable. At the transition point the structure jumps 
from one form into the other. 

λ-transitions occur when superstructures disappear, or at the CURIE-point in 
ferromagnetism. With increasing temperature, the initial strict order of the build-
ing blocks at first deteriorates slowly, then more quickly because the increasing 
disorder weakens the restoring forces. It breaks down completely at the CURIE-
point TC. 
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4.6. Homogeneous Bodies  

With some care, homogeneous bodies can be broken up and put back together 
again (Figure 4.16) without the expenditure of much work. We can neglect the 
minimal work required to form the outer surfaces, and ignore the presence of ex-
ternal fields such as the gravitational field, which is only significant for a giant 
body like the Earth. This property is not self-evident, for instance charged bodies  

 

W = 0

W = 0

Fig. 4.16:  Partitioning a body 

do not have this ability. By increasing the entropy S, the volume V, and the 
amounts ni of a homogeneous body consisting of one or more substances Ai, its 
energy E grows by the same factor a. We can consider the entire body as being 
constructed of parts, each containing the same amount of energy. This condition is 
formally expressed by the equation: 

( ) ( )1 2 1 2, , , ,… , , , ,…S an an aE V S n n=

( )

E aV a . 

In order to describe the consequences of this relationship, it is advantageous 
to expand our mathematical tools. 

4.6.1. Degree of a Quantity 

A function that contains a factor a common to all terms that can be "factored 
out" to the power g: 

( )1 2 1 2, … , ,…gf ax ax a f x x= ⋅ , 

are called homogeneous functions of degree g. For example,   f(x,y) = x2 + 3xy + y2  
is homogeneous of degree 2 (all quadratic terms), and   f(x,y) = 1/x + 1/y  is ho-
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mogeneous of degree −1 (because   1/ax + 1/ay = a−1(1/x + 1/y)).  The energy 
function from the last section is linearly homogeneous (g = 1). 

Consider an elastic system with work coordinates x1, x2, … xn and a set of 
variables y, z ... that depend on xi. Although the following discussion deals with 
purely mathematical relationships, we will use physical terminology in order to 
make it easier for the mathematical novice to understand later applications. If we 
assume that for the quantity   y = f (x1, … xn)  the function f is homogeneous of 
degree g, then we will say that y itself has degree g. Since each xi increases by the 
factor a if multiplied by a, we have  g =1  for xi. 

In addition to x1, … xn it is useful to introduce the quantities z1, … zn having 
the degrees g1, … gn as independent variables. An arbitrary variable   y = h(x1, … 
xn)  of degree g can be written in the form   y = F(z1, … zn)  where F need not be a 
homogeneous function. But this function F satisfies the following equation: 

( )1 ,…, ng g ( )1 1,…,gn nF a z a z a F z z= ⋅

( ) ( ) ( )( )

( ) ( ) ( )

1 1 1 1 1

1 1 1

 …  … ,…,  … 

 …  …  … .

ng g n n n n
g gn n n

.    (+) 

 In order to prove this relation (if one is not interested in the proofs, skip the 
indented sections below) we express zi in terms of xi and consider the fact that the 
functions fi and h are homogeneous: 

F a z a z F f ax ax f ax ax

h ax ax a h x x a F z z

=

= = ⋅ = ⋅
 

The degree of a quantity composed of several others can be determined im-
mediately with rules similar to those of exponents. If u, v and w have degree s, s 
and t, then   u + v, u · w  and  u/w  have degree   s, s + t and s − t,  respectively. 
Constants have the degree 0 and the derivative  ( )

ˆ
d d

i
i zy z   has the degree of the 

ratio  y/zi . 

 In order to prove the last statement about  (
îz ,  we take the derivative 

of the above equation (+) with respect to zi and simultaneously divide both sides 
by

)d d iy z

iga . By using the shorthand notation Fi for  ( ,  we get )
ˆ

d d
i

i zF z

( ) ( )1 1 … n ig g g gi n i na z a F z z−= ⋅1  … F a z . 

 Finally, on replacing zi by fi(x1 … xn), we find that Fi  has the degree  g − gi  as 
claimed. 

Applied to our homogeneous body, this means that in addition to E, other 
quantities such as V, S, ni, m, etc., are "proportional to the size of a section of this 
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body" and are of degree 1. On the other hand, the forces derived from work coor-
dinates   ( )

ˆ
d d

i
i i xy E x=   have degree 0, and are "independent of the size of a

section". 
The last statement is most important, since it means that pressure, temperature 

and chemical potential depend only on the relationship V : S : n1 : n2 :… Even if 
the section of the body under consideration is reduced almost to a point, and the 
composition (including entropy) of the surroundings of the section are changed 
arbitrarily, the values of p, T and µi in that section remain fixed as long as the 
relationship V : S : n1 : n2 :… is preserved there. In contrast, the electric potential 
exhibits completely different behavior, since its value is not determined only by 
local conditions but is also influenced by distant charges. 

Therefore it seems reasonable to ignore the shape and size of a body and to 
introduce measures of the local composition (including entropy) of a body, and to 
express p, T and µi as functions of these variables. It is common to relate V, S, ni 
of a small section, as well as E and other parameters (all of degree 1) to the vol-
ume or total amount of all substances   n = ∑ ni   of this section. In the first case, 
relating to the volume V, we obtain the entropy density cS , the energy density 
cE ,… and the concentrations ("substance densities") ci of the individual sub-
stances. In the second case, relating to the total amount of all substances n, we get 
the average (molar) volume V , the average (molar) entropy S , ... and the mole 
fractions xi of the substances: 

( )1 ,  ,  …,  ;

, ,  …, .

i
S i

i
i

nV S c c
V V V

nV SV S x
n n n

≡ ≡ ≡

≡ ≡ ≡

All these quantities are of degree 0. Since the sum of all xi must be 1, they 
cannot be selected arbitrarily. The number of independent variables is therefore 
decreased by one in both cases. 

4.6.2. "Dissection" of a Quantity 

A variable   y = F(z1 … zn)  of degree g can be decomposed into separate 
terms in a distinct way, depending on the chosen set of independent variables: 
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2,…, 1,…, 1

1 1
1

d d … 
d d

n n

n n
nz z

y yg y g z g z
z z

−

⎛ ⎞⎛ ⎞⋅ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 . 

We will refer to this operation as a "dissection" of y with respect to zi. If we 
choose different independent variables, we can get another "dissection" of the 
same quantity. 

In order to derive this relationship we take the derivative with respect to a of 
all terms on both sides of equation (+) by first treating them as functions of a 
and later setting a = 1: 

( ) ( )11 11 1… … .i ng g g gi i i n ng z a F a z a z ga F z z− −⋅ = ⋅∑
As an example let us decompose the volume V(p, T, n1, n2 …) of our homo-

geneous body: 

1 2
1 2

d d0 0  …
d d i i

V VV n n n V
n n

⎛ ⎞ ⎛ ⎞= + + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ .

A corresponding result is obtained for the entropy S and, of course, also for en-
ergy, mass, etc. by decomposing into the same variables: 

,     ,     , … .i i i i i iV n V S n S m n M= = =∑ ∑ ∑

m m m,     ,     , … .V nV S nS m nM= = =

These equations indicate nothing more than the fact that the volume, entropy, 
mass, etc. of bodies can be composed additively from the volume demand, entropy 
demand, mass demand, etc. of their constituent parts. If a body consists of only a 
single substance, we have: 

 

These relations were mentioned in section 4.4.1. 

An important formula we get by dissecting E with respect to V, S, n1, n2 ...: 

1 2 1 2 2 1
1 2

.. .. 1 2.. ..

 d  d d d ... ,
d d d dSn n Vn n VSn VSn

E E E EE V S n n
V S n n

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

i.e. 
E = −pV + TS + µ1n1 + µ2n2 + … . 

The total energy given by this equation is divided into separate contributions from 
volume, entropy and different substances. By forming the differential   d(E − E) 
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where the first E is dissected as in the last equation, and the second dE is derived 
from the main equation, then we obtain the so-called GIBBS-DUHEM relationship: 

d(E − E) = −Vdp  + SdT + n1dµ1 + n2dµ2 + … = 0 , 
where work coordinates and forces have exchanged roles compared with the main 
equation. 

4.6.3. Reduction of Coefficients 

The required number of coefficients for an n-actuator system   (n+1)n/2  is re-
duced by n if the energy of the system is a linear homogeneous function of the 
work coordinates. We will not prove this, but illustrate it for a homogeneous body 
consisting of two substances  (n = 4).  Starting from the main equation 

dE = −pdV + TdS + µ1dn1 + µ2dn2, 

we form derivatives of the main quantities with respect to p, T, n1, n2 as independ-
ent variables: 

 dd d d
1 2 2 11 2

1 2 2 11 2

1 2 2 11 2

1

1 2

1 2

1 1 1 1

1 2

2

d d d d

 dd d d
d d d d

d d d d
d d d d

d
d

pn n pTn pTnTn n

pn n pTn pTnTn n

pn n pTn pTnTn n

Tn

p T n n

SS S S
p T n n

p T n n

p

µ µ µ µ

µ

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

VV V V⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

 

1 2 2 12

2 2 2

1 2

d d d
d d dpn n pTn pTnn T n n
µ µ µ⎛ ⎞ ⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Parameter values below the diagonal can be ignored as a result of the flip rule. 
Values in the last column are not required since they can be obtained by dissecting 
V, S, µ1 and µ2 with respect to p, T, n1 and n2. The resulting equation can be 
solved for the desired quantities:  

2 1 2 1

1 1
1 2 1 2

1 2 1 2

d dd d , … , 0 , …
d d d dpTn pTn pTn pTn

V VV n n n n
n n n n

µ µ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 
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4.7. Asymptotic Laws for Substances at High Dilution 

If all entropy is removed from a body, its temperature T becomes 0. What 
happens to the chemical potential of a substance if the amount of substance in the 
body becomes increasingly smaller? It will be shown that changes of the chemical 
potential are independent of the chosen substance and even independent of the 
body it is distributed in. It can be described by a general law that can be used for 
the analysis of dilute gases and solutions. 

4.7.1. Chemical Potential at Low Concentration 

We know that the chemical potential decreases as the amount of substance 
distributed in a body is reduced. Initially this drop in chemical potential is irregu-
lar but approaches a regular trend with decreasing concentration. If n is reduced by 
a power of ten, µ drops by a constant amount regardless of the substance under 
consideration (Figure 4.17). On a logarithmic scale for n the µ(n) curves approach 
parallel straight lines, their asymptotes, for larger n. The slope of these lines is 
directly proportional to temperature, while the intersection point with the µ-axis is 
influenced by the composition and condition (p, T, etc.) of the body, as well as by 
the kind of substance distributed in the body. In general, we can describe chemical 
potentials by: 

0
0

ln nRT
n

µ µ= + ⋅  . 

Here n0 is an arbitrary reference point and R is a universal constant, characteristic 
for the behavior of diluted substances with value 

R = 8.314 J/(K·mol). 
Although the parameter µ0 depends on n, it always remains finite for "finite" sys-
tems. "Finite" means the volume does not vanish, and neither the volume nor any 
amount of substance in the body becomes arbitrarily large.  

As a special case of the above we can state that   µ → −∞ as n → 0 for T > 0. 
This asymptotic rule reminds us of the behavior of entropy as the absolute zero of 
temperature is approached (see section 2.4). Similar exceptions also apply here. If 
a substance cannot diffuse within a body, it cannot be extracted from a body, and 
we can say it is "trapped in" even if the chemical potential outside drops to an 
arbitrary low value. The internal chemical potential cannot be obtained by meas-
urement — just like temperature in the case of trapped entropy. 
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Fig. 4.17:  µ (n) and µ (ln (n/n0)) 

Since derivatives of µ are frequently considered, let us briefly examine them. 
The most important is the derivative with respect to n for any constraint a = const.: 

0dd
d da a

RT
n n n

µµ ⎛ ⎞⎛ ⎞ = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 . 

For small n, the first term is negligible compared to the second term which in-
creases greatly with decreasing n. The derivative with respect to T 

0

0

dd ln
d da a

nR
T T n

µµ ⎛ ⎞⎛ ⎞ = + ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 , 

represents the entropy demand Sm of a substance as long as the pressure and 
amounts of substance are held constant,   a = ( p, n1, n2…).  Due to the second 
term, Sm grows slowly with increasing dilution, but in the limit it will become 
infinite. Since µ 0 remains finite under the present conditions, we expect the same 
behavior for all derivatives. There are cases where   dµ 0/dn  increases without 
bound as   n → 0.  However, this growth is so slow that it is negligible compared 
to that of    RT/n. 

4.7.2. Properties of Dilute Gases 

We can now derive a number of properties for the gaseous state of matter 
from the asymptotic law for the chemical potential discussed above. We will 
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briefly describe a few here. Consider a volume V within which small amounts ni 
of one or several substances Ai are uniformly distributed. In other words, we con-
sider a mixture of dilute gases. The main equation can be expressed as: 

dE= −pdV + TdS + µ1dn1 + µ2dn2 + … . 

If we add a small amount dni of substance i while holding the volume V and 
the temperature T constant, then the internal pressure p increases by   

.  The derivative takes the following constant value: ˆd   (d / d ) d
ii VTn ip p n n= ⋅

ˆˆ ˆ

d d d
d  d d

i ii j

ji i

i jTn nVTn j pTn

np RT
n V V n V

µ µ⎛ ⎞⎛ ⎞ ⎛ ⎞= − = ≈⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∑  

To derive this result, in the first step the derivative was flipped, and in the second 
step µi was dissected with respect to T, V , n1, n2 … 

ˆ ˆ ˆ1 2

1 2
1 2

d d d0
 d d d

i i

i i i
i

Tn n VTn VTn
V n n

V n n
µ µ µµ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅ = + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
… . 

This follows since the body is homogeneous. In order to calculate the derivations, 
we set   µ i =  µ i0 + RT ln (ni /n0)  and differentiate 

ˆ ˆ ˆ ˆ

0 0d d d d:   ;             :   .
d d d d

i i j j

i i i i

i i i j jVTn VTn VTn VTn

RTj i j i
n n n n n
µ µ µ µ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = + ≠ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
     

For small nj the term RT/ni is much larger than all other terms and is therefore the 
only one shown in the earlier equation as   ≈ RT/V. 

Let us assume an initially empty room such that the internal pressure is zero. 
By adding the amounts of substance n1, n2 … sequentially, the pressure rises in 
increments of niRT/V and the final pressure becomes   p = (n1 + n2 + …)·RT/V. 
This can be expressed as  

pV = n·RT . 

       n1 + n2 + … 

This equation is the so-called perfect or ideal gas law, where   pi = ni RT/V  is 
called the partial pressure of each gas. Since R first arose as part of this law, this 
explains its common name of "universal gas constant". This law is valid only for 
gases at low density, but is always useful for approximate calculations and is in-
dependent of the kind of substance considered. For example, 1 mol of an arbitrary 
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( )substance requires the constant volume   Vi = 
îpTnd d /iV n RT p= ,  of ap-

proximately 24 dm3 under normal room conditions. Figure 3.12 illustrates the V(p, 
T)-surface. 

The information about entropy content is not as complete as that for volume. 
To obtain a complete picture, we have to consult other sources. We will limit our 
discussion to a pure substance. From experience we know that the entropy capaci-
ties Ç for dilute gases, whose molecules consist of only a few atoms, are propor-
tional to 1/T for average temperatures, i.e., the heat• capacities C, which are 
greater by the factor T, are nearly constant. For monatomic molecules, the molar 
entropy capacity Çm is given by   5/2 (R/T)  for small polyatomic molecules (con-
sisting of a few light atoms) it is   7/2 (R/T)  if the molecules are straight, and   8/2 
(R/T)  if the molecules have bends. ÇV  is always smaller than Ç by the amount 
n·R/T: 

    V
RÇ Ç n
T

− =  . 

We can arrive at this result by cutting back to p, T, n and applying the gas law V = 
n·RT/p: 

2

2
dd d d d d .

 d d d  d d d Vn pn Tnpn Vn Tn

pS S S V V nR nRT
T p pT T p T p

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞− = ⋅ =− =− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 
If the entropy content relates to a reference point (p0 ,T0), it can be calculated for 
other p- and T-values since  

d d dd d d d d d d
d  d  dpn pnTn

S S V C nR CS p T p T p T
p T T T p T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = − + = − +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

, 

and obtain on integration, assuming C is constant: 

0
0 0

ln lnp TS S R C
p T

= − + . 

Figure 3.13 illustrates the S(p,T)-surface. 

The energy E of dilute gases at a given temperature does not depend on vol-
ume or pressure. If we differentiate E with respect to V (divide by dV) at constant 
T and n, and substitute   (dp/dT)Vn =p/T   from the gas law, we get: 
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d d  d 0
d d dTn Tn Vn

pE ST p T p
V V T

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⋅ − = ⋅ − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 . 

Since we know the pressure and temperature coefficients of µ by using Vm 
and −Sm, we can calculate   µ (p, T)  relative to a reference point µ 0. For instance, 
if we use   Vm = RT/p,  the variation with pressure is given by the simple expres-
sion 

0

0 m 0
0

d ln
p

V p RT
p

µ µ µ= + = + ⋅∫
p p

lnRT xµ µ= + ⋅◯

. 

4.7.3. Chemical Potentials in Mixtures 

Ideally the chemical potential µ of a substance in a homogeneous mixture is 
characterized by the following behavior: 

 

(x amount fraction (or mole fraction), µ◯

( )ln         or        lnRT f x RT x

 chemical potential of a pure substance). 
Since the amount fraction is proportional to the amount of substance for small x, 
this does not contradict the asymptotic law for µ. Deviations from this behavior 
are accounted for by introducing finite correction factors or additional terms: 

µ µ µ µ µ+= + ⋅ ⋅ = + ⋅ +◯ ◯ . 

The expression f ·x is called the activity a, which is something like the effective 
amount fraction of a substance, f is the activity coefficient, and µ

+
 is called the 

excess potential. 

The volume and entropy of a substance in a mixture can, as we know, be ob-
tained by differentiation with respect to p and T at fixed composition. Starting 
with the proper representation of µ and abbreviating the derivatives of µ◯  and    
µ
+

 appropriately, we get 

m m m mm m,        lnV V V S S R x S
+ +

= + = − ⋅ +
◯ ◯

. 

If we are mixing the substances A(i) with the amounts ni, then the volume and 
entropy have the values  iin V⋅∑   and  ,  respectively, before mixing, 

◯
iin S⋅∑

◯
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and  ∑   and  i in V⋅ i in S⋅∑   after mixing. The differences, the "volume of mix-
ing"   ∆MVm  and the "entropy of mixing"   ∆MSm   are given by 

M m M m,     lnS R n x− ⋅∑i ii i i iV n V S n∆ = ∆ =∑ ∑
◯ ◯

lnRT xµ µ= + ⋅◯

. 

For substances similar to gases at low pressures, or different isotopes of an 
element,  heavy and light water,  which follow ideal curves     
when mixed, the excess potential µ+  and also the excess volume    V m

+  and excess 
entropy 

+
, vanish. Their volume does not change due to the mixing process, nor 

is entropy added or released to the envir ment. The temperature remains constant 
as though different parts of the same s bstance were combined. For this reason 
such mixtures are called "ideal". In fact,  ∆MVm = 0,  but   ∆MSm ≠ 0  because the 
positive term   −R·∑ ni ln xi  does not v
for entropy has increased and consequen
as no entropy flows in from the outsid
energy is released from the drop in chem
mixing process, and the entropy produ
entropy. The work loss Wp is calculate
potential drop of all the substances. The
of the substances is given by   Wp/T: 

mS

p ln( )i i iiW n n RTµ µ= − = −∑ ∑◯

Figure 4.18 shows the dependence 
tion x. These curves are especially rema
we examine the behavior of a substance
in µ+  becomes insignificant compared w
approaches negative infinity. We can s

0µ+

(0 ln( ) RT x xµ µ µ
+

= + + ⋅
◯

 at x = 0 and write: 

From this relationship we can also 
vicinity of   x = 1  due to the special p
derive this statement, we return to the G
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( ) F Fd d d d d 0E E V p S T n nµ µ− = − + + + = . 

Now differentiate with respect to x while holding p and T constant and re-arrange 
the terms: 

( )F F F F
F

F F

d d dd 1
d d d d

F

pT pT pTpT

n n x RTx
x n x n x x x

µ µµ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ = − = − ≈ − ⋅ ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

ln( ) RT xµ µ++ +◯

( )F F                     1RT x xµ µ= − �◯

 . 

 

gradient RT

r

r+

x0 1

unstable

ideal 5.7 kJ/mol
     at 300 K

0.1
Fig. 4.18:  µ( x) in mixtures 

 

In the second step we expand   (dµF/dx)pT   by   dxF.  In the third step xF  is as-
sumed to be small, so that  nF/n ≈ xF and µF may be written as              

FF F,0 .  Finally, we use   xF = 1 − x.  The equation indicates that 
the µ(x) curves have a slope of   RT  for   x ≈ 1  or  xF ≈ 0.  The drop of the chemi-
cal potential of a pure substance due to the addition of a small amount xF of a 
"foreign" substance is generally expressed by 

. 

4.7.4. Osmosis, Boiling and Freezing Points of Dilute Solutions  

A common characteristic of the above phenomena is that they are determined 
essentially by the behavior of the chemical potential in the vicinity of  x = 1.  
Since the individual properties of substances are unimportant both in this region 
and near  x = 0,  there exist some general laws that are essentially independent of 
the kind of substance. 
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a) Osmosis  

Let us consider a container with amount n of a liquid. If we dissolve a small 
amount nF of a foreign substance in it, the chemical potential µ of this liquid 
drops by   RT · xF  ≈ RT · nF /n.  Now suppose that this container is connected 
to another container through a barrier permeable only to the solvent (Figure 
4.19). The second tank contains only pure liquid that penetrates the barrier  

µµ  − FRTx

semipermeable wall

  

Fig. 4.19:  Osmosis 

and flows into the solution in the first container because of the chemical po-
tential drop. This flow can be stopped by increasing the pressure on the solu-
tion to compensate for the drop of the chemical potential: 

−RT·nF /n + Vm·∆p = 0. 

After multiplying by n and writing   V = n · Vm  for the volume of the liquid 
— the small contribution   VF ·nF   of the foreign substance is neglected — we 
get the following expression for the "osmotic pressure" (VAN'T HOFF Equa-
tion): 

F
RTp n
V

∆ = . 

b) Vapor Pressure Lowering  

The pure liquid is initially in equilibrium with its vapor (' ) at a pressure p, in 
other words,   µ = µ'.  By dissolving a non-volatile foreign substance, the 
equilibrium is disturbed and the vapor should condense on top of the solution 
due to its higher chemical potential. The equilibrium can be restored by low-
ering the pressure by ∆p, because the chemical potential µ' of the vapor de-
creases more rapidly on account of its greater volume demand   V'  = RT/p  
compared with that of the liquid (∆p < 0!): 

m

F m m /RT x V p ' V' p ' RT p p µ µ µ− + ⋅ ∆ = + ⋅ ∆ = + ⋅ ∆ . 
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Since the term   Vm · ∆p  is negligible compared to  V'm p⋅ ∆

Fp x p∆ = − ⋅

F m mRT x S T ' S' T

,  the "vapor 
pressure lowering" (RAOULT's Law) is given by: 

 . 

c) Changes in Boiling and Freezing Points 

If Tb is the temperature at which the liquid boils at 1.013 bar pressure, at 
which its chemical potential µ is equal to the potential µ' of the vapor, then Tb 
rises when a foreign substance is dissolved in the liquid. In order to lower the 
chemical potential of the vapor compared to that of the liquid, the temperature 
can be raised instead of reducing the pressure (Figure 4.20). The temperature  

 

coefficient of µ-values is negative and particularly large in the case of gases: 

µ'  
µ

∆Tb

µ' 'm ⋅− ∆ S T
µ  − ∆F S TRTx   − ⋅m

 

Fig. 4.20:  Increasing 
                     boiling point

µ µ− − ∆ = − ∆ . 

 By solving for the boiling point, we get 

b F
V m

RTT x
S

∆ =
∆

m mS' S

. 

Usually in this equation, the entropy of evaporation   ∆VSm = −   is re-
placed by the evaporation heat•   T·∆VSm . 

Contrary to the boiling point, the freezing point Tf of a solution is lower than 
that of the pure solvent. A similar approach leads to 

f F
F m

RTT x
S

∆ = −
∆

,  

 where ∆FS represents the entropy of fusion. For an aqueous solution with con-
centration   cF = 1 mol/dm3,  the boiling point elevation ∆Tb is approximately 
0.5 K and the freezing point lowering ∆Tf  is about −2 K. 
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4.7.5. Law of Mass Action  

Consider the reaction in a solid, liquid or gaseous solution, 

A + B = C + D or more generally νA A + νB B + νC C … = 0. 

As long as   ∆R µ  = νA µ A + νB µ B + … < 0,  the initial substances are converted. 
Their amount in the solution decreases together with their chemical potentials, 
while the corresponding amount of products increases. This reaction stops when   
∆R µ = 0.  The amount fractions at which this condition is reached are easily de-
termined from the "equilibrium condition". Provided that the amount fractions are 
low, we can express the chemical potentials µ of the involved substances in sim-
plified form: 

0 ln( ) RT xµ µ µ+= + +◯

R R R0 ln 0( ) RT xµ µ µ+∆ = ∆ + + ⋅ ∆ =◯

RR 0 / ln ( )e e RTx

 

to obtain 

. 

After dividing by RT and taking the anti-logarithm, we get 

Kµ µ+− +∆∆ = =
◯

. 
The parameter K depends on p and T but not on xi . Evaluating the expression on 
the left hand side gives the well-known "law of mass action": 

1 2A B

C D
       or more generally       v vx x K x x K

x x
⋅ = ⋅ ⋅ =
⋅

… . 

Instead of xi, partial pressures  pi = xi p  are often used in the case of gas mix-
tures, and concentrations  ci = xi n/V  (where n = ∑ni = total amount of all sub-
stances) for solid and liquid mixtures. 

4.7.6. Solution Equilibria 

At low gas pressures or for small amounts of a substance in a mixture, the 
chemical potential can be expressed as (see section 4.7.2): 

0 00
ln          or        ln( )pRT RT xpµ µ µ µ µ+= + ⋅ = + +◯ . 
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If we increase x or p by the factor α, the chemical potential µ grows in both cases 
by the amount   RT ln α.  This allows us to establish several laws and relation-
ships. 
a) Solubility of Gases  

 When a body, solid or liquid, comes into contact with a gas, then the gas dif-
fuses into the body until its chemical potential inside is as high as on the out-
side. As long as the external pressure and the amount x in the body are small, 
then these quantities are proportional (HENRY's Law).  

x ~  p. 
If we raise the pressure by α, then x has to increase proportionately to main-
tain the chemical potential equilibrium. It would be more correct to take into 
account the pressure dependence of the µ-value for the dissolved gas in the 
body, but this effect is negligible. 

b) Distribution Equilibrium 

 The amount fractions x and x' of dissolved substances in adjacent bodies (Fig-
ure 4.21) behave similarly. In order to establish equilibrium, the small values  

Fig. 4.21:  Distribution equilibrium
                of a substance between 

   adjacent bodies 

solute
zone

zone

 

of x and x' become proportional (NERNST's Law) ): 

 x ~  x'. 
c) Solubility Product 

 A substance submerged in a liquid will generally begin to dissolve. The ex-
tremely low chemical potential of this substance in the pure solvent rises rap-
idly. (For x 0, we know that  0→ ln( ) RT xµ µ µ+= + + → −∞◯ .)  The process 
stops when the chemical potential µ of the substance in the solution is equal 
to that of the solid. If the substance dissociates on dissolution, like salt in wa-
ter: 

 



4. Chemical Thermodynamic 151

AB = A+ + B−, 
then the products of the dissociation together compensate for the dissolution 
drive of the salt AB:   µAB = µA + µB .  If the amount fraction xA of one prod-
uct is lowered by α, the amount fraction of the second product xB has to in-
crease by α in order to maintain the equilibrium — assuming that the concen-
trations are sufficiently low. The product 

 xA ·xB = K 

must remain constant. K is here the so-called "solubility product constant" of 
the substance AB. If for some reason the product   xA ·xB  exceeds the value K, 
i.e.,   µ A + µ B > µ AB,  the substance AB precipitates from the solution. If a 
substance dissociates into several ions, then K consists of the corresponding 
number of amount fractions. 

d) Solubility and Temperature 

 The solubility of a substance is raised with increasing temperature if the 
chemical potential of the dissolved substance µ decreases faster than that in 
its pure state µ', and vice versa. This holds when   Sm > ,  because the 
temperature coefficient of the chemical potential   (dµ /dT)p…= −Sm.  If the 
"molar entropy of solution"   ∆L Sm = Sm −   or the "molar solution heat"   
T·∆L Sm is positive, the solubility increases with temperature. In this case, en-
tropy is received from the surroundings during dissolution. We obtain the 
same result if we interpret this process as a chemical reaction   Apure → Adis-
solved  and assume that the extent of reaction and the entropy change are cou-
pled. 

mS'

mS'

4.8. Effect of External Fields 

By considering the influence of external fields on the chemical potential, we 
can calculate the substance changes caused by these fields. 

As an example, consider gas diffusion into the atmosphere. Since the work   
W = m·g·h = n·Mm·g·h  required to raise an amount n of a substance from the 
ground (h = 0) to a height h at constant p and T, the chemical potential µ is greater 
than µ0 at ground level by   Mm·g·h  (see section 4.3.3): 

µ = µ0 + Mm·g·h . 
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Equilibrium exists when the chemical potential ("gravito-chemical potential" 
would be more precise, see section 4.3.3) has the same value everywhere. In order 
to compensate for the increased chemical potential   Mm·g·dh  due to the increase 
in height dh, the pressure must drop. As a result, µ changes by  Vm·dp, or 
(RT/p)·dp  for gases: 

m
m

dd d 0,      or      dM gpRTM g h p h
p p RT

⋅
⋅ + = = − . 

After integrating and taking the anti-logarithm, we obtain the "barometric height 
formula":  

m

0 e
M g h

RTp p
⋅−

= ⋅

2I 2IZZXYZZ

. 

A magnetic field H boosts the dissociation of iodine vapour  

, 

since it lowers the chemical potential of the paramagnetic iodine atoms, attracted 
by the field, relative to the diamagnetic I2. To calculate this effect, we can start 
with the main equation   dE = −pdV + HdM + TdS + µ1dn1 + µ2dn2  of the gas 
mixture, and then evaluate   ( )

1 2
d di pTn nHµ   by using the flip rule, etc. 
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5. THERMODYNAMICS OF 
ENTROPY PRODUCING PROCESSES 

This section deals with the interactions of entropy flows, electric currents, 
substance flows, etc. This topic is generally covered under the heading "thermo-
dynamics of irreversible processes". The conceptual and mathematical framework 
is similar in many respects to the model we know as "elastic coupling". Before we 
examine general systems, let us introduce a mechanical example. 

5.1. Mechanical Example  

Consider two adjacent smooth blocks of constant thickness, with a viscous 
film of lubricant between and below them (Figure 5.1). Both blocks are pulled 
parallel to each other with forces F and F' at speeds of   v = dl/dt  and   v' = dl'/dt  

 

respectively (where l, l' are work coordinates, t is time). For an elastic body the 
work performed by the forces is stored as energy (Ws = stored work): 

dWs = Fdl + F'dl', 

Fig. 5.1:  Entropy production by friction 

F 

lubricating film

l

F'
l' 
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and is retrievable by reversing the process. But in our new example the work is 
used to produce entropy and is burned up permanently (Wp = burned up work):  

dWp = Fdl + F'dl'. 

An important indicator of the lost power is the time derivative of the work given 
by 

p
p

d
d
W

P F F' '
t

= = +v v . 

Another difference is that the forces do not depend on the positions l, l' but 
rather on the speeds of both blocks due to coupling: 

F = F(v,v' ); F' = F' (v,v') . 

By accelerating the motion by dv, dv', the forces F and F' change by 

( ) ( )d dd d d
d d'

F FF '
'

= +
v v

v v
v v

, 

( ) ( )d dd d d
d d'

F' F'F' v '
'

= +
v v

v
v v

. 

The two coefficients, on the lower left and upper right, are caused by coupling as 
discussed earlier (see section 3.1.4). The term   (dF'/dv)v'  describes the influence 
of the motion of the first block on the force applied to the second. Similarly, the 
term   (dF/dv' )v  represents the opposite interaction. Earlier we concluded that 
these two cross-coefficients were equal, based on F and F' as derivatives of E and 
an application of SCHWARZ's theorem. Such a method cannot be used here since 
we have no corresponding energy equation involving F, F', v and v'. 

Nevertheless, the two coefficients here do have the same value, simply be-
cause F and F' are the sum of the forces of friction from the support and from the 
adjacent block. The first contribution depends on v or v', respectively, and the 
second one depends on the difference v − v': 

F = f(v) + g(v − v' ), F' = h(v' ) − g(v − v'). 

By forming the derivatives   (dF/dv' )v  and   (dF'/dv)v'  we see that they are equal, 
so that the mutual coupling between the two blocks is equally strong. Formally, it 
implies that all meaningful derivatives of F, v, F' and v' can be flipped. A prereq-
uisite for the flip rule is that for a system of 2n variables   x1 … xn , y1 … yn , 
where 

 



5. Thermodynamics of entropy producing processes 155

y is a function of x, the following symmetry condition is satisfied (see section 
3.2.2): 

ˆˆ

dd
d d

ij

ji

j i xx

yy
x x

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

If we set n = 2 and substitute F, F' for y1, y2, and v, v' for x1, x2, it becomes evi-
dent that this prerequisite is indeed satisfied. 

As before we can list various effects observed during the motion of the blocks 
and identify the values of the corresponding coefficients: 

a) Primary effects  

  The faster a block moves, the greater is the opposing force: 

( ) ( )d d0,     0
d d' '

F F'
'

> >
v vv v

. 

b) Coupling effects  

 If the speed v or the force F is increased, the other block also begins to speed 
up at a constant force F'. If the speed v' is held constant, the applied force F' 
decreases: 

( ) ( ) ( )d d d0,     0,     0  … .
d d dF' F' '

' ' F'
F

> > <
v

v v
v v

 

 The motions are co-coupled since the acceleration of one block also speeds up 
the other, and vice versa. 

c) Indirect effects.  

 It is easier to accelerate one block if the other is free to move (F' = 0), and it 
becomes harder if the other block is constrained (v' = 0):  

( ) ( ) ( ) ( )d d d d,     .
d dd dF' 'v v F' '

F F
F F

< >
v v

v v  

In summary, coupling can be treated formally and conceptually as for an elas-
tic body. This is not a surprise because the underlying structure is quite similar, 
except that the coordinates x are replaced by the speeds v.  
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5.2. ONSAGER's Theorem 

The above results can be generalized. The lost power Pp of a physical system, 
i.e., the work burned up per unit time due to entropy production, separates into a 
sum of products of "speeds", "streams" or "flows" v times the driving "forces" or 
"strengths" y: 

p 1 1 2 2 n nP y y y= + + +v v v… . 

We are already familiar with such a representation from the example of our cou-
pled moving-blocks:   Pp = F · v + F' · v'.  This sum may consist of a single term in 
simple cases, for instance, a voltage U driving a current I through an electric resis-
tance:   Pp = U · I.  Often the motions or currents that cause the energy losses are 
not independent of each other. They influence each other, so that all yi become 
functions of all vj: 

( )1 2, , ,i i ny y= v v v… . 

or vice-versa. Here we consider only non-degenerate cases for which the v vanish 
when the driving forces go to zero. In order to obtain a formulation independent of 
a particular process, we will say that the speeds themselves are coupled. 

We call the above representation of lost power the "main equation" of the sys-
tem with coupled speeds. The variables on the right are called "main quantities", 
where each term consists of a product of "paired" variables. The concepts of pri-
mary and coupled effects are defined in the same way as before. While we could 
identify the force and work coordinate in an elastic system from its location in the 
main equation before or after the differential operator d, such a corresponding 
criterion is absent here because the factors are interchangeable. Usually it is clear 
how a quantity may be categorized from its context, but sometimes this approach 
fails and a more precise definition would be useful. 

Pp becomes negative if we imagine that time is reversed. The entropy pro-
duced must vanish and the burned up work must re-appear if time runs backwards 
as in a rewinding film. In consequence, only one factor in each term must change 
sign, because the resulting sign of the product must change. So the forward forces 
on the blocks maintain the same direction — a spring scale attached to the pulley 
shows the same deflection even for a rewinding film — while the speeds reverse 
direction. 

The main quantities are divided into two groups based on their behavior dur-
ing time reversal: with or without a sign change. Those quantities, which do not  
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F

v

gradient m

F( )v

in this range
  F m≈ ⋅v

 

Fig. 5.2:  Example for a F(v)-curve 

change sign are interpreted as "forces" and the others are "speeds". In general this 
classification is obvious, but for some exceptions the above criterion should be 
used to make a decision. 

An essential property of our earlier main equation is that we can apply the flip 
rule to derivatives of main quantities. The new main equation possesses the same 
property based on a theorem developed by ONSAGER, namely that the coupling 
among speeds is always symmetric: 

ˆˆ
d d

ij
j i⎝ ⎠⎝ ⎠ vvv v

dd ji yy⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟   (i, j = 1, 2, …, n). 

Hence the prerequisites for the flip rule are satisfied. However, this theorem is 
only valid when the system is at rest and all v and y vanish. Since we can deter-
mine slopes of curves and planes at this point to help us evaluate the functions in 
the vicinity (Figure 5.2), this law is valid for the entire region where the slopes are 
approximately constant. 

5.3. Coupling of Electric Currents and Entropy Flows 

A current I flows through a piece of wire when a voltage U exists across its 
ends, and an entropy current J flows through it when a temperature difference ϑ  
exists between both ends (Figure 5.3).  
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 _ 

U

JI

+

θ

 

Fig. 5.3:  Entropy flow and electricity 
                    current in a wire 

If the charge dq is moved from potential   ϕ + U  to the potential ϕ in the time 
interval dt, then the potential energy   U·dq  is released within the conductor. Si-
multaneously, the flow of entropy dS from the potential   T + θ   to the potential T 
releases energy θ ·dS. So the total lost work consists of   dWp = U·dq + θ ·dS.  The 
lost power   Pp = dWp /dt  is obtained by differentiating with respect to time (di-
vide by dt): 

pP U I Jθ= ⋅ + ⋅ . 

This is the main equation of our system where   I = dq/dt  and   J = dS/dt  corre-
spond to the speeds vi, and U and θ  to the forces yi. The flows are generally cou-
pled. In the previous section it was shown that coupling is equally strong as long 
as the flows are proportional to U and θ. For the electric current this condition 
implies that we remain in a region where OHM's law is valid. 

Due to this coupling, assumed to be co-coupling although counter-coupling is 
possible, an electric current always involves an entropy flow, even when no initial 
temperature difference exists. As a measure of this coupling we can use the "trans-
fer entropy" ε, defined as the quantity of entropy transported per quantity of 
charge (at θ  = 0): 

( )d
d
J
I θ

ε ≡ . 

The parameter ε depends on the nature and state of the conductor. It vanishes at 
the absolute zero of temperature because bodies contain no entropy there, and 
none can be transferred by an electric current. The ε-values for copper and iron at 
0º C are   +1.7 · 10−6   and   −17 · 10−6 (J/K)/C,  respectively. A current of 1 A 
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takes a week to transfer an amount of entropy of 1 J/K (sufficient to melt 1 cm3 of 
ice) in a copper wire. 

Conversely, the entropy flow pulls along electric charge. If the electric current 
is stopped, an opposing tension is created by the build-up of charge, whose 
strength is measured by the value of the parameter   −(dU/dθ )I=0,  the absolute 
differential thermal voltage (thermoelectric or SEEBECK effect). This coefficient 
has the same value as ε, as can be shown by using the flip rule. The total voltage 
−U across a longer piece of wire is obtained by summing all partial voltages     
−dU = ε·dT: 

( )
Start

dU T Tε− = ∫
End

. 

The integration is necessary because ε depends on T, and T cannot be treated 
as constant for larger temperature differences between the ends. The fact that ε 
and the total thermal voltage −U differs for each material is utilized for the design 
of thermoelectric devices (Figure 5.4) which measure the difference in thermoe-
lectric voltage between two conductors. It should be noted that connecting wires 
can generate thermoelectric voltages and entropy currents if they do not have 
uniform temperature. 

If the current of entropy is suppressed (J = 0) in a piece of wire (length l, 
cross-section A), then the transport of charge is made more difficult because the 
resistance rises. The increase ∆R relative to the value   R = (dU/dI)θ  with unhin-  
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Fig. 5.4:  Thermocouple 

 



 5. Thermodynamics of entropy producing processes 160

dered entropy flow (θ  = 0) can be calculated according to the familiar ap-
proach (cut back to θ, I): 

( ) ( ) ( ) ( ) ( ) ( )2 2d d d d d d
d dd d d d IJ I J

U U U J JR
I GI I I θθ

θ ε
θθ

∆ = − = = =

( )

. ⋅

G = (dJ/dθ )I  represents the entropy conductance in the absence of electric cur-
rents (I = 0). What is usually tabulated is not R or G but the resistivity                   
ρ (R = ρ·l/A)  and the heat• conductivity λ which is greater by a factor T than the 
entropy conductivity Λ (where   G = Λ·A/l  and   λ = T·Λ).  For a piece of iron wire 
at 0º C   (ρ = 8.6·10−8 Ω m,   Λ = 0.30 W/K2 m),  the relative difference   ∆R/R = 
1.1 %.  This thermal indirect effect is quite significant. 

Thermal conductivity Λ and electric conductivity   σ = 1/ρ  are proportional 
to each other for metals, and in general are independent of the nature, composition 
and temperature (!) of the metal:  

Λ ~ σ (WIEDEMANN-FRANZ Rule). 

If an electric current I flows through the contact area between two conductors, 
where the first (') has weak coupling and the second ('') strong coupling, then the 
location of the joint cools down because more entropy flows away than is received 
(PELTIER effect). If the current is reversed, the joint heats up (Figure 5.5).  

 

In the first case, at constant temperature, the entropy received from the outside is 
given by the difference of the entropy flows transported by the electric current: 

I

I

J

J
weak         coupling         strong

J'' 

J'' 

 J' 

 J' 

Fig. 5.5:  PELTIER effect 

J J'' J' '' ' Iε ε= − = − . 
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A rigorous treatment of thermoelectric phenomena must consider the fact that 
transferred charges in a wire are bound to electrons, and their potential is deter-
mined not only by ϕ  but also influenced by the chemical milieu. 

5.4. More Examples 

A number of other cases exist where currents of different quantities are cou-
pled. When water is passed through a body with fine pores, an electric potential 
difference can form between the entry and exit points. Conversely, when a current 
is passed through a moist body, it causes water to start dripping ("electro-
osmosis"). For a mathematical description we refer to the arrangement illustrated 
in Figure 5.06. When an amount of water dn penetrates the wall, energy   ∆µ ·dn is 
released where ∆µ is the difference of the chemical potential across the wall. The 
lost or burned up power Pp is given by   Pp = ∆µ ·Jn  where   Jn = dn/dt  represents  

 

the flow of substance. In order to determine the total lost power the electrical 
losses U·I have to be included, so the main equation becomes: 

+ −U

I
p

v

Pp = ∆µ·Jn + U·I. 
The calculation of individual coefficients is possible from this equation as 

usual. Since   ∆µ = Vm·∆p  (see section 4.3.3), the volume of water penetrating the 
wall per unit time can be described by   JV = Vm·Jn.  We can interpret the flow of 
water JV as a volume current across a pressure drop: 

Pv = ∆p ·JV + U ·I. 

Fig. 5.6:  Electro-osmosis 

porous wall

p'  
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The coupling between substance and entropy flow can be observed from the 
example in Figure 5.7. Due to the escaping entropy produced by the electric heater 
inside the porous ceramic cell, the air flows in the opposite direction through the 
pores (KNUDSEN effect). If the attached tube is sealed off — it is sufficient to  

 

JV

J

clay cell

heater

Fig. 5.7:  KNUDSEN effect 

place the tube deeper into the water — then the air pressure inside the cell builds 
up until the small excess pressure stops the flow of substance. The main equation 
for the process in the cell walls can be expressed as  

p 1 1 2 2 … P T J J Jµ µ= ∆ ⋅ + ∆ ⋅ + ∆ ⋅ + , 

where air is treated as a gas mixture. By means of the coupling concept, we can 
readily predict and evaluate the possible effects. 

The application of the above lines of thought and mathematical procedures to 
related phenomena such as thermal diffusion, membrane potentials, negative 
osmosis, etc. should no longer cause insurmountable difficulties, I hope. 
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 comp. with convent. methods .... 8, 
  ............................................ 30–35 
 energetic viewpoint................... 83 
 entropy generating processes ........  
  ........................................ 153–161 
 general .............................. 39–108 
 history ................................. 35–38 
 irreversible .............................. 153 
 problematic definitions ............... 8 
 pure ....................................... 3–38 
thermometer ................................. 87 
thermo  
 couple...................................... 157 
 electricity ................................ 157 
third law .......................→ law, third 
THOMPSON, B. .............................. 37 
THOMSON, W................................ 36 
 second law ................................ 34 
total energy..............→ energy, total 
tourmaline, piezoelectric effect .... 78 
toy ........................→ duck, drinking  
transfer  
 entropy .................................... 158 
 of charge ............................. 15, 16 
 of heat* .............. → heat* transfer 
 of mass ................................ 14, 16 
 of matter.................................. 113 
 of volume.................................. 18 
transformation of substances...... 127 
transition................................. 7, 132 
transition point ........................... 133 
turbine .......................................... 20 

U 

useable work .........→ work, useable 

V 

VAN'T HOFF Equation................. 147 
vapor pressure lowering ............. 147 
variable...........................→ quantity 
vehicle, rolling downhill ..............24 
velocity  
 as a force ...................................42 
 generalized definition ............. 156 
   coupling............................... 156 
voltage  
 caused by a matter flow .......... 161 
 caused by an entropy flow ...... 159 
 change by compression.............78 
 temperature dependency . 8, 77, 79 
 thermal .................................... 159 
   differential ........................... 159 
volume..........................................72 
  additional .........→ volume, excess 
  average molar ......................... 137 
  change 
   in mixture ............................ 145 
   in reactions .......................... 130 
   in transformations................ 133 
   on heating ..............................72 
    reduction ............................72 
   on increasing pressure ...........72 
   on matter addition................ 122 
  composition ............................ 138 
  demand ................................... 122 
   in mixtures........................... 144 
   of gases ................................ 142 
  excess...................................... 145 
  flow......................................... 161 
  of mixing ................................ 145 
 partial molar.......122f.(→ volume, 
  ........................................ demand) 
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W 

waste work w. missing ext. force .....
............................................89, 91 

water 
 as solvent ................................111 
 diffusion.......................... 110, 117 
 -fall............................................28 
 mass increase by heating.........112 
 matter potential , num. example

........................................ 118–122 
 mill ......................................20, 36 
 solvation of diethyl ether ........117 
 space requirement in H2SO4 ...122 

 temperature changes in solvation 
processes..............................122 

 to calibrate a  
   calorimeter..............................  9 
   thermometer...........................19 
 volume decrease on heating ......72 
 wheel................. 20(→ water mill) 
WIEDEMANN-FRANZ rule............160 
wire 
 live .................................. 157–161 
 thermodynamics..................67–70 
   comput. example..................106 
   reversible cycles .......... 101–104 
wood...........................................122 
work 
 and energy..................... 14–16, 34 
 capacity, thermal .......................32 
   specific...................................75 
 chemical .......................... 116, 128 
 conversation of....................15, 33 
 coordinates ................................41 
   blind.......................................91 
 cylinder ..... 83, 89(→ gas syringe) 
 diagram .................................102f. 
 electric.......................................20 
 for charge transfer ...............15, 17 
 for chemical conversions ........128 

 for heat* generation ....... 22f., 25f. 
 for heat* injection ...................20f. 
 for heat* transfer .......................14 
 for magnetisation ......................80 
 for mass transfer................14, 16f. 
 for matter injection..................116 
 for matter transfer .................113f. 
 for volume injection................20f. 
 for volume transfer....................18 
 free ..........................................92f. 
   from free energy ..............93–97 
   loss.......................................92f. 
   sign ........................................92 
   usage....................................92f. 
 general definition ......................41 
 level...........................................16 
 lost.............................................26 
   on conduction ........................28 
   on matter currents ................116 
   on mixing.............................145 
 mechanical ................................20 
 of compression........................70f. 
 opposing heat•...........................86 
 thermal ...................... 20(→ heat•) 
   definite supply .......................85 
   identity with heat•..................32 
   to charge a body......................20f. 
 to charge an accumulator ..........77 
 to deform a body .......................62 
 to increase length ......................40 
 to lift a weight ...........................14 
 useful.........................................34 
   maximum.......92(→ work, free) 

Z 

zero, absolute................................23 
 entropy content........ 29–30, 33, 73 
 heat* content ...→ entropy content 
 impossible to reach ...................34 
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 thermal expansion............... 72–74 
 vanishing of coupling................ 74 

 vanishing temp. dependency.....74 
zwieback............................. 110, 121 
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