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Abstract It is an old question whether an energy current can 
be imagined as energy moving with a well defined velocity. 
It is shown that in two important systems. namely in the 
electromagnetic field and in moving matter under stress, the 
energy current can be decomposed into two parts of opposite 
directions. Each part can be imagined as energy moving with 
the velocity of light or with the velocity of sound. 
respectively. 

I. Introduction 
Physicists call some physical quant1t1es currents or 
flows, and other quantities, which are related to the 
former, current densities. However, there is no un­
ambiguous rule which allows us to say if a given 
quantity is a current or not. In some cases the 
designation 'current' seems to be near at hand, e.g. for 
a mass current or an electric current. In other cases 
the word is used with some reservation, e.g. for energy 
and entropy currents. Finally, Maxwell's true current 
(Maxwell 1954) or Hertz's magnetic current (Hertz 
1884, Herrmann 1986) which are always divergence­
frce never established themselves successfully. 

One might think that a quantity would be easily 
accepted as a current whenever it appears in a relation 
which can be interpreted as a continuity equation. 
However, Newton's second law 

F=dp/dt 

shows that this hypothesis is false. If the force F 
is identified with a momentum current this equation 
appears to be a continuity equation for the momentum 
(Wey! 1977, Herrmann and Schmid 1984. 1985). 
However, this interpretation of Newton's law is not 
common. 

We conclude that there must be another reason for 
our readiness to interpret a quantity as a current. We 
suggest this reason to be the following. It must be 

Zusammenfassung Es wird die Frage behandelt, ob man 
sich einen Energiestrom vorstellen darf als mit einer 
wohldefinierten Geschwindigkeit bewegte Energie. Es wird 
gezeigt, dal3 der Energiestrom in zwei wichtigen Systemen. 
niimlich im elektromagnetischen Feld und in bewegter, unter 
mechanischer Spannung stehender Materie, in zwei 
Teilstri:ime entgegengesetzter Richtung zerlegt werden kann. 
Jeden Teilstrom darf man sich vorstellen als Energie, die sich 
mit Licht- bzw. mit Schallgeschwindigkeit bcwegt. 

possible to describe the process under consideration as 
a 'kinematic displacement of a physical quantity'. By 
that, we mean that a relation 

ix =PxV (I) 

must exist, where Px is the density of the extensive 
quantity X, ix the current density of the current of X 
and v a velocity. This is the case, for instance, for the 
flow of a fluid where X is the mass. p x and v are 
quantities which are not defined by (I). Both of them 
can be measured independently. In particular, vis the 
velocity of a reference frame in which ix is locally 
zero. 

However, things are rarely as simple as in the above 
example. Although the electric current in a wire is 
often described by a relation of type ( 1 ), by the charge 
density PQ one does not mean the total density of the 
charge, but only that part of it which belongs to the 
'free charge carriers'. Thus, the whole charge density is 
decomposed in a free part PQ and a rest part p~, which 
is not free. However, in any reference frame in which 
the wire is not at rest, the charge carriers which are not 
free are moving, and ( 1) has to be replaced by a 
relation with two terms: 

iQ=PQV+p~v'. 

Consequently, in general one must admit that the total 
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current density consists of several terms 

ix= L Px;V;, where L p,., =Px· (2) 

Notice that such a decomposition is always possible, 
and even in infinitely many different ways. However, it 
is reasonable only if there is a procedure which allows 
the velocities v, to be determined independently one by 
one. In the example of an electric current, by the way. 
one can not only distinguish between free and bound 
charge carriers. One can even distinguish different 
kinds of free charges: those carried by electrons and 
those carried by defect electrons. 

To summarise, it can be said that a description of 
type (2) may not exist-but if it exists the idea of a 
current seems to be particularly suggestive. 

Hertz (1894) raised the question of whether the 
energy current in a drive belt and in an electro­
magnetic field could be conceived as a movement 
of energy. This question was also discussed by Mie 
(I 898). Both authors left the question unanswered. 

In the present paper we will show that in the two 
systems referred to by Hertz, i.e. the electromagnetic 
field and the sound field, an energy current can be 
represented in the form of equation (2)-and this 
with only two terms. It will be seen that every 
electric energy transport can be represented by two 
electromagnetic waves travelling in opposite directions 
and every mechanical energy transport, e.g. in a 
moving bar under stress, can be represented by two 
sound waves travelling in opposite directions. Thus, in 
both cases it is possible to imagine the energy current 
as 'moving energy'. The energy is moving with the 
velocity of light or with the velocity of sound, 
respectively. 

It will become apparent, that there is an analogy 
between these cases. The electric field E and the 
magnetic field H correspond to the mechanical strain t: 
and the velocity fl= v/cs (in units of the velocity of 
sound c5 ). 

In § 2 we treat the electromagnetic field. Section 3, 
which deals with energy transport in stressed bars, is 
organised in analogy with § 2. In § 4 special cases of 
mechanical energy transmission are discussed. 

2. The electromagnetic field 
We restrict our discussion to the case in which the 
electric field vector is perpendicular to the magnetic 
field vector. Thereby the mathematics will be easier 
and the analogy to the mechanical case in § 3 becomes 
more apparent. The extension to fields for which E is 
not perpendicular to H is simple but not of interest 
for our purpose. 

We choose the x axis to be in the direction of the E 
field and the v axis in the direction of the H field. Thus, 
we have E =· (E, 0, 0) and H = (0, H, 0). E and H can 
independently admit any value. If E = 0 and H * 0 we 
have a pure magnetic field and if H = 0 and E * 0 the 
field is purely electric. 

2.1. Energy density and energy current density/or 
arbitrary values of the field strengths 
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The energy density Pw in the point under consideration 
is 

(3) 

The energy current density vector iw = (0, O,}w) 
points in the z direction. Its z component}w is: 

Jw =E H. (4) 

We can write down a relation between Jw and Pw 
which is of the form of equation(!): 

Jw=PwV. 

However, the factor v has no other meaning than to 
relate }w and Pw. It does not represent a velocity 
which can be measured independently of the field 
strengths. 

2.2. Energy density and energy current density/or 
electromagnetic waves 
In the following we have to consider particular 
solutions of the wave equation. As was mentioned 
above we consider fields for which only the x com­
ponent of the electric field and the y component of 
the magnetic are different from zero. Moreover, we 
restrict ourselves to the case in which the values of 
both E and H are independent of x and y, i.e. to those 
solutions of the wave equation which correspond to 
perturbations which propagate in the positive or 
negative z direction. 

In this case, the wave equations of the electric and 
magnetic field strengths are: 

Here, 

(! 2 E(z, t) I 8 2 E(z, l) 
----=0 

oz2 cl ()/2 

? 2H(z, I) 
2 ---2-= 0. 

CL (!/ 

is the velocity of light. 

(5) 

The general solutions of these wave equations are 

E(z, l)= E, (z -cLl) + E 2 (z + cLt) 

H(z, l) = H, (z -ell)+ H 2 (z + c1 1). 

The magnetic fields H, and H 2 are related to the 
electric fields E 1 and E 2 according to 

(6a) 

and 

(6b) 

The field strengths E, and H, belong to a perturbation 
propagating in the positive z direction, E 2 and H 2 

correspond to a perturbation which propagates in the 
negative z direction. 
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Figure I A step like perturbation is propagating with the 
velocity of light cl in: (a} the positive. and (h} the negative~ 
direction. 

As the ·pure' perturbations, marked by indices 1 
and 2, play a particular role in what follows, we shall 
attribute to them a name of their own: we call each 
of them an electromagnetic wave. Thus, the word 
'electromagnetic wave' is not used for any solution of 
the wave equation, but only for those for which only 
one of the equations (6a) and (6b) is valid. 

Although our discussion is concerned with the field 
at a single location and at a single instant of time, it 
may be helpful to imagine an extended field which is 
homogeneous in space and constant in time. A field for 
which one of the relations (6a) or (6b) is valid and 
which is homogeneous and constant in time can be 
thought to come about when a step-like perturbation 
travels in the positive or negative z direction re­
spectively, see figure 1. Notice that the fields are called 
waves, even though the field strengths are constant in 
time after the perturbation has passed. 

Let us now determine the energy density and the 
energy current density for each of the two waves 1 and 

2. With (6a) and (6b) one obtains from (3) 

Pw1 =toEi 

and from (4) 
Pw2 =t:oE~ 

}w1 =(eo/µo)' 12 Ei 

.iw2 =-(co/µ0) 112 £~. 

With (5) one gets finally 

Jwi =-Pw2CL. 

(7a) 

(7b) 

(8a) 

(8b) 

Thus, the energy current densities belonging to the partial 
solutions 1 and 2 can be represented in the form of 
equation ( 1 ). Therefore, in the particular case that only 
one of the two solutions is non-zero, the energy flow 
can be imagined as energy travelling with the velo­
city of light in the positive or negative z direction, 
respectively. 

2.3. Decomposition of an arbitrary electromagnetic 
field into two electromagnetic waves 
Let us come back to a field with arbitrary values of E 
and H, i.e. values which are not restricted to agree with 
(6a) or (6b). Now, the field strengths E and H can be 
represented as the sum of the field strengths of two 
electromagnetic waves, i.e. of one field for which (6a) 
holds and one for which (6b) holds: 

E=E,+£2 (9a) 

H=H, + H2 =(1: 0/µ0)' 12(£1 -f:'2). (9b) 

The field strengths E, and £ 2 are obtained by solving 
(9a) and (9b): 

E, =HE+ (µo/eo) 112 H] 

E2 = l[£-(µu/1:0) 112 HJ. 
We will show now that, besides the electric and 
magnetic field strengths, the energy density and the 
energy current density superpose linearly. 

The energy density of the resulting field follows 
from (3) by means of(9a) and (9b): 

Pw = JJcu(E, + E 2) 2 + Co(E, - E2)2] =Co El+ 1:0Ei. 

It is seen that Pw equals the sum of the energy den­
sities of the partial fields (see (7a) and (7 h)). 

The energy current density is obtained from ( 4) by 
means of(9a) and (9h): 

Jw =(£, + E2)(H, + H 2) 

=(£, + £2)(£ 1 -£i)(c0/µ 0)1 2 

=(Ef--Ei)(co/µo)' 2. 

According to (8a) and (8b) this is equal to the sum of 
the energy current densities of the partial fields. t 

t Besides Pw and)w the components a" of the stress tensor 
of the fields also add linearly, but not the components a" 
and a.'"" However, these facts are not relevant for our 
considerations. 
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Finally, with these results we can write 

Jw =Pw1CL +Pw2(-cd. ( 10) 

This is an expression for the energy current density in 
an arbitrary field of the type of equation (2). The 
velocity cL is not defined by equation (IO), but it can 
be measured independently. Consequently. the energy 
flow in any arbitrary field can be conceived as a 
superposition of two partial energy currents, and each 
of these partial currents can be imagined to be 
energy moving at the speed of light in opposite 
directions. 

According to (9a) and (9b) H = 0 results when 
E 1 = E 2 , i.e. when the electric field strength of both 
waves is the same. Thus, even a purely electric field 
can be described as a sum of two electromagnetic waves. 
The net energy current is of course zero in this case. 
The same is true for a field which is purely magnetic. 

The previous discussion referred to one space-time 
point. However, it can easily be generalised to ex­
tended space and time intervals by choosing partial 
waves with the appropriate distribution in space and 
time. 

3. States of deformation and movement of matter 
We will show now that the state of deformation and 
movement of matter can be decomposed into two 
sound waves travelling in opposite directions. This is 
analogous to the decomposition of the electromagnetic 
field in the previous section. 

The system under consideration can be a moving 
bar which is under stress (e.g. the piston rod of a steam 
engine), a moving string which is under tension or a 
fluid under pressure moving in a pipe. To be specific, 
let us imagine the system to be a bar. Although our 
discussion is of local nature, i.e. refers to one point of 
the bar, it may be helpful to imagine the whole bar as a 
homogeneous field. At any moment in time all points 
of the bar are in the same state of motion and stress. 

Let the bar be oriented in the z direction. We further 
assume that the deformation and the velocity of the 
matter of the bar do not have x or y components. Let 
u(z, t) be the displacement of the matter in the z 
direction. Then 

ou(z, t) 
V=---

0 t (11) 

is the velocity of the matter (or more accurately: the z 
component of the velocity vector, the x and y 
components of which vanish). In the following we 
often use the dimensionless quantity 

(12) 

as a measure of this velocity, where Cs is the absolute 
value of the velocity of sound. Cs is related to the 
modulus of elasticity E and to the mass density Pm 
according to (Landau and Lifshitz 1963) 

Cs =(E/pm) 112
. (13) 
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The modulus of elasticity relates the linear stress in the 
z direction a to the linear strain c: 

a=Ec. 

The linear strain is defined by 

ou(z, t) 
e----- oz . 

(14) 

(15) 

If the matter under consideration is a fluid in a pipe -a 
has to be replaced by the pressure p, the modulus of 
elasticity by the compressibility and c by the relative 
change of volume d V / V. 

f3 and e can assume any values, independent from 
one other, as long as f3 <fo I and e «! I. If /3= 0 and c * 0 
the bar is deformed but at rest. If f3 * 0 and c = 0 the 
bar is moving but relaxed. 

3.1. Energy density and energy current density/or 
arbitrary values of strain and velocity 
The density of the energy of deformation and of the 
kinetic energy of the bar is 

(16) 

We will call Pw the energy density for short, although 
the total energy density is greater than Pw by the 
density of the rest energy of the relaxed bar Pm d (cL is 
the speed of light). However, the rest energy does not 
play any role in our discussion. 

According to Landau and Lifshitz ( 1959) the energy 
current density (again without the rest energy) is 

Jw =(Pw -a)v. (17) 

Jw consists of two terms: the term PwV represents 
energy which is 'transmitted convectively', the term 
-av (or pv in a fluid) is what could be described in 
traditional wording as 'the work, per cross sectional 
area, which is done by means of the bar'. 

In hydrodynamics the sum Pw + p is called the 
enthalpy density. It is apparent that ( 17) is not an 
expression of the form of equation (2): the factor 
(Pw - a) (or ( Pw + p) respectively) in front of v is not 
the energy density but the enthalpy density. 

3.2. Energy density and energy current density for 
acoustic waves 
As for the electromagnetic field, here too we ask for 
solutions of the wave equation. The wave equation for 
u(z, t) reads 

(! 2u(z, t) I f!u(z, t) 
------ ---=0 

(}zl d ot2 . 

The general solution of this equation is 

u(z, t) = u 1 (z - Cs t) + u 2(z +Cs t). 

With (11 ), (12) and ( 15) one gets (Landau and Lifshitz 
1959) 

(!Sa) 
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and 

(18b) 

where the index I refers to a perturbation travelling in 
the positive z direction and the index 2 designates a 
perturbation travelling in the negative z direction. We 
will call each of the two partial solutions I and 2 an 
acoustic wave. 

An acoustic wave corresponding to a state of 
homogeneous strain and movement can be imagined 
to originate as follows (figure 2(a)). At time t = 0 the 
left end of the bar is set into motion with velocity v 
(where Iv I~ cs). At the same instant t = 0 a wavefront 
begins to travel to the right. The matter of ihe bar left 
of the wavefront is moving with uniform velocity v, the 
matter to the right is at rest. If v > 0, then the material 
at left is compressed, if v < 0 it is rarefied. 

Let us calculate the energy density and the energy 
current density of each of the two acoustic waves. 
With (12), (13), (18a) and (18b) equation (16) 
becomes 

Pw1 =Ecf (l 9a) 

and 

(I 9b) 

Figure 2 At the time t=O the left (a) or the right (b) 
end of a bar is set in motion with velocity v. At the same 
instant a wavefront begins to propagate from the end of the 
bar with the velocity of sound. The wavefront divides the bar 
into two regions: on one side matter is at rest, on the other it 
is moving with the velocity 1·. The matter of the bar is 
compressed or extended according to the direction of 1•. The 
arrows under each bar indicate the direction of movement of 
the matter. the arrows within the bar indicate the movement 
of the wavefront. 

(a) 

(bl 

-c~[fffi~:Jf:~B 
~ 

v J 17 I 777r/////;1 -c~ Extended 
<<tL''L' 

For the energy current density (17) we get with (l 9a), 
(I 9b), (14), (12), (18a) and (18b): 

lw1 = (Eci -Er,, ksfl1 = Et:i( I -r,, ks 

and 

lw2 =(Ed -Et:2ksfl2 = -&W -c2ks· 

With (18a), (18b) and (12) one gets 

lw1 =fa~(cs +v 1) 

and 

Jw2 =&i(-cs + V2) 

and finally with (l 9a) and (l 9b) 

Jw1 =pw,(cs + v,) 

and 

(20a) 

(20b) 

These equations have the form of equation (I). That 
means that the energy current in an acoustic wave can 
be imagined to be energy displaced with the velocity 
(cs+v 1) or (-cs+v 2 ) respectively. It is easy to 
understand that the velocities in (20a) and (20b) are 
not Cs or -cs alone: the energy does not propagate in 
a medium at rest but in a medium which is itself 
moving with the velocity v, or v2 respectively. That is 
why the wavefront in figure 2(a) propagates with the 
velocity Cs + v. 

Notice that Cs is a positive quantity. The direction 
of propagation of the acoustic wave follows from the 
sign in front of Cs. On the contrary, the velocities v, (v, 
or v 2 ) can take positive and negative values. If the 
values of v, and the velocity of sound have the same 
sign, then the matter is compressed by the wave, figure 
2(a), otherwise it is rarefied, figure 2(b). 

3.3. Decomposition of an arbitrary state of 
deformation and movement in two acoustic waves 
Let us come back now to states with arbitrary values 
of f. and fl, i.e. values which are not restricted to obey 
one of the equations (18a) or (18b). For every such 
state r, and fl can be written as a sum of the de­
formations r,, or the velocities fl1, respectively, of two 
acoustic waves travelling in opposite directions: 

(2 la) 

and 
(2 Ib) 

The deformations r, 1 and c2 as well as the velocities fl, 
and fl 2 can be obtained by solving (2 la) and (2 lb): 

(22a) 

and 
(22b) 

We will show now that besides the deformations t: 1 and 
the velocities fl, the energy density and the energy 
current density superpose linearly. 
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The energy density of the resulting state follows 
from (16) by using (12), (13), (21a), and (21b): 

Pw = j(Ee 2 +Pm v2) = JE(e 2 + fJ 2) 

= jE[(e, + e2)2 + (-e, + e2)2] = E(ei + ei). 

It is seen that Pw is equal to the sum of the energy 
densities of the acoustic waves composing the state 
(see (l 9a) and (l 9b)). 

With (12), (13), (14) and (16) the energy current 
density ( 1 7) becomes: 

Jw = JEcs(e 2 + (J 2 )(J-Ecsfl· 

With (21 a) and (21 b) it follows 

Jw = Eef((J + I ks + Et;f((J- l)cs 

and finally with (12), (19a) and (19b) 

iw =Pw1 (cs + v) + Pw2(-cs + v). (23) 

According to (20a) and (20b) this is equal to the sum 
of the energy current densities of the acoustic waves I 
and 2. These waves propagate in a medium which 
itself moves with the velocity v = v 1 + v2 • Thus, we 
have found for Jw an expression of the form of 
equation (2). The energy flow in matter which is 
moving and deformed can be conceived as a linear 
superposition of the energy flow of two acoustic 
waves. The energy flow in each wave can be imagined 
to be energy moving at the speed of sound (in a 
moving medium). 

Again our discussion, which has been of local 
nature, can be generalised to extended space-time 
intervals. 

4. Special cases of the energy transmission in 
material media 
In the various technical applications the deformations 
c 1 and t: 2 (as well as the velocities fJ 1 and fJ 2) are 
related to one another in a characteristic way. This will 
be discussed now. 

First let us introduce an approximation. We insert 
( 14) and ( 16) into ( 17) and rearrange: 

Jw =eE(-1 + k)v + ~PmV 2 V. (24) 

When energy is transmitted with bars, strings or 
hydraulic liquids we always have lei~ I, so that (24) 
simplifies: 

Jw=(-eE+Jpmv 2)v=(-a+Jpmv 2 )v (25a) 

or 

(25b) 

respectively. 
The approximation introduced here is an expression 

of the fact that the energy of deformation which is 
'transmitted convectively' JEc 2v is very small com­
pared with the work done -av as long as It: I ~ I. 

Moreover, for most energy transmissions of tech­
nical importance one of the two terms in the paren­
thesis of (25 a) or (25 b) is negligible with respect to the 
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other. To convince ourselves let us consider some 
examples. 

In the jet of a Pelton turbine the first term in (25 b), 
i.e. the pressure of the water, is negligible with respect 
to the second, the density of the kinetic energy. 
However, in the pipes conducting the water to the 
turbine, the velocity is low (in order to minimise 
energy losses by friction). Here, the second term in 
the parenthesis of (25b) is negligible with respect 
to the first. For hydraulic circuits in agricultural 
and in building machines we have approximately: 
p= 100 bar= 107 Pa, Pm= 1000 kg m 3 and v = 
Im s~'. It follows that the term ~PmV 2 ~ 103 Pa is 
four orders of magnitude smaller than p. 

Let us discuss the two cases I eEI ~ lPm v 2 and 
lcEI ~ Jpmv 2 in more detail. These two conditions can 
be translated into simple statements about the partial 
waves I and 2. For this reason we write (25) with the 
help of(l2), (13) and (21) in the form: 

iw=E[-(c, +e2)+J(-t:, +c2)2 ]v. 

Now, the two special cases are characterised by 
le, +e2l~J(e2-e1) 2 and le, +c2l~J(c2-e 1 ) 2 • Since 
only the order of magnitude of each side of the 
inequalities matters, the factor l can be omitted and 
(e 2 -e,) 2 can be replaced by le 2-e,1- Thus. we obtain 

le, +e2l~lc1 -e2I and le, +c2l~lc1 -e2I 

and this is equivalent to 

c, ~-c2 and t:, ~e2. 

In each of these special cases we can make further 
distinctions: both e, and e2 can be positive or negative, 
the absolute value of e, can be greater or smaller than 
or equal to the absolute value of e2 • 

The possibilities which result from all these dis­
tinctions are summarised in table I. Some of them 
are important for particular technical applications: i.e., 
(i) a drive belt under tension which is moving in the 
positive or negative z direction or which is at rest 
corresponds to columns 9, 8 and 7, respectively; (ii) a 
hydraulic liquid which is flowing in the positive or 
negative z direction or which is at rest corresponds to 
columns 10, 11 and 12 respectively; (iii) the jet of a 
Pelton turbine which is flowing in the positive or 
negative z direction corresponds to columns I and 4, 
respectively. 

5. Conclusion 
It has been shown that the energy current in the 
electromagnetic field can be decomposed into two 
energy currents travelling with the velocity of light in 
opposite directions and that the energy current in 
moving matter under stress can be decomposed in two 
energy currents travelling with the velocity of sound in 
opposite directions. 

It has often been discussed whether it is meaningful 
to say that in crossed static E and H fields an energy 
current is flowing (Feynman et al 1964, Lai 1981, 
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Table I 

1:1 <0, C2 >0 
movement to the right 

lc1 l=lt:2I 
relaxed 
I 

11:11>1£21 
compressed 
2 

let!< lc2I 
extended 
3 

£1 >0, £2 < 0 
movement to the left 

l£1l=l£2I 
relaxed 
4 

1£1I>1£21 
extended 
5 

1£i I< 1£21 
compressed 
6 

f, i -,. i; 2 

f.i >0, C2 > 0 
extended 

l£1 l=lc2I l£i I> 1£21 lei I< 1£21 
at rest movement to movement to 

the left the right 
7 8 9 

Gough 1982). We have claimed in this paper that it is 
possible to speak about energy currents even in a static 
electric field alone or in a static magnetic field alone. 
We have also claimed that the state of a stressed bar at 
rest or the state of the relaxed water jet of a turbine 
can be characterised by two energy currents travelling 
in opposite directions. Is it not the fact that these 
statements are completely unrealistic? Indeed, the 
examples just cited represent cases in which our 
description appears to be unnatural and unnecessary. 
Actually, we do not mean that our statement 
represents a deeper insight about the physical reality. 
All we are saying is that it is possible to imagine these 
states as two waves. 

This decomposition is of similar nature to, say, the 
Fourier decomposition of a periodic non-sinusoidal 
process: the Fourier components do not represent the 
deeper truth about the process, but sometimes 1t 1s 
helpful to discuss the problem in terms of these 
components. 
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