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By introducing the electromagnetic field in the customary way, ideas are promoted that do not 
correspond to those of contemporary physics: on the one hand, ideas that stem from pre
Maxwellian times when interactions were still conceived as actions at a distance and, on the other 
hand, ideas that can be understood only from the point of view that the electromagnetic field is 
carried by a medium. A part of a course in electromagnetism is sketched in which, from the 
beginning, the electromagnetic field is presented as a system in i~s own .rig~t ~nd the local 
quantities energy density and stress are put into the foreground. In this wa~, Justice is done to the 
views of modern physics and, moreover, the field becomes conceptually simpler. 

I. INTRODUCTION 

The way the electromagnetic field is customarily intro
duced can be criticized in two respects. The first reproach 
has to do with the idea of what is to be understood by a 
field . Although modern physics did not change anything in 
the mathematical formalism developed by Maxwell, our 
ideas about the nature of the electromagnetic field have 
changed significantly since the time of Maxwell and Fara
day. One can say that our ideas about the field have ~ecome 
simpler. However, in teaching the electromagnetic field 
one usually does not take advantage of this fact. 

The second criticism has to do with the way we deal with 
one import~nt part of the Faraday-Maxwell theory: with 
statements about the mechanical stress within the field. 
Usually, Maxwellian stress is introduced, ifit is introduced 
at all, very late in the curriculum, and it appears to be a 
kind of curiosity, something that is not really important for 
the understanding of the electromagnetic forces. Instead, 
the so-called force laws are put into the foreground. The 
domain of application of these laws is, however, less gen
eral than Maxwell's stress laws since each of the force laws 
refers to a particular geometry. Moreover, the verbal for
mulation of the force laws is strongly reminiscent of an 
action-at-a-distance picture of electromagnetic interac
tions. On the contrary, Maxwell's expression of the stress 
tensor represents a local, field theoretical statement in 
agreement with the modern view of the electromagnetic 
field. 

In Sec. II A we will compare the concept of the field from 
Faraday and Maxwell's time to that of modern physics. In 
Sec. II B the relation between Maxwell's stress tensor and 
the force laws is discussed. In Secs. III and IV part of an 
electrodynamics course is sketched, which takes into ac
count the criticisms of Sec. II. The course was developed 
for and tested with physics students in the second semester 
at the University of Karlsruhe. To prepare the students, the 
concept of stress had been introduced in their first-semes
ter mechanics course. A simplified version of the course 
was also taught to junior-high-school pupils of age 15. 

II. CRITICISM OF THE CUSTOMARY 
INTRODUCTION OF THE ELECTROMAGNETIC 
FIELD 

A. The field concept at Maxwell's time and today 

Maxwell clearly distinguishes between the field and a 
medium that carries the field. By a field Maxwell 1 under-
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stands " .. . the portion of space in the neighborhood of elec
trified bodies, considered with reference to electric phe
nomena." 

It can be seen from many parts of his work that he is 
convinced that space is filled with a medium that carries 
the field. We cite the very last sentence of his treatise2

: 

"Hence all these theories lead to the conception- of a medi
um in which the propagation takes place, and if we admit 
this medium as an hypothesis, I think it ought to occupy a 
prominent place in our investigations, and that we ought to 
endeavour to construct a mental representation of all the 
details of its action, and this has been my constant aim in 
this treatise." 

As we know today, the validity of Maxwell's theory does 
not depend on the existence of such a medium. Rather, it 
has survived the modifications of our ideas about such a 
medium caused by the theory of relativity. 

With regard to the modern concept of the field it has first 
to be noticed that the word "field" is currently used in two 
distinct meanings. 3 On the one hand, we speak about a field 
when describing a distribution in space of a local physical 
quantity. In this sense we have, for instance, temp7rature, 
pressure, or mass density fields. On the other hand, m mod
ern field theory the word "field" is used as a name for par
ticular physical systems. "Electromagnetic field" is a name 
of a system just as "rigid body" and "perfect gas" are 
names of systems. 

Unfortunately, one does not always distinguish between 
these two meanings and it is this mixing of meanings that 
leads many students to the idea that the electromagnetic 
field is nothing more than the distribution in space of the 
quantities "electric ·field strength" and "magnetic field 
strength" (or "magnetic induction"). . . 

In this article, we will use the word field exclusively m 
the sense offield theory, i.e., as a name of a physical system. 
If we want to express the fact that the magnitude E is dis
tributed in space in a certain way we do not speak about 
"the field E" but about "the distribution of the field 
strength E(r)." 

Of course, the system "electromagnetic field" is far more 
than just a field strength distribution. It is a thing, in which 
not only the field strengths have definite values but many 
other variables too, as, for instance, energy, entropy, mo
mentum, and mechanical stress. Some variables have the 
value zero-the electric charge, for instance-but that 
does not mean that they have no value at all. 

Like every other physical system, the electromagnetic 
field can exist in different states. In certain states its en-
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tropy is zero, in others it is not. There are states in which a 
temperature and a chemical potential are defined and there 
are other states for which these quantities are not defined. 
Among the quantities of the field there are two that have 
been exclusively invented to describe the electromagnetic 
field and are not defined for any other system: the electric 
and the magnetic field strengths. 

The reason for the importance of these two quantities is 
that they are very practical: Various other dynamic quanti
ties (but not all) can easily be calculated if the field 
strengths are known, e.g., the energy density, the momen
tum density, and the mechanical stress. 

It is often convenient to treat the set of states with H = 0 
as a separate system, the "electric field," and the states with 
E = 0 as another system, the "magnetic field." 

Thanks to the modern concept of a field as a physical 
system we can form a simple intuitive picture of a field: 
Field is a kind of stuff, like air or water, and a certain quan
tity of that stuff is a kind of thing like other familiar things. 
It is no more necessary to distinguish between the medium 
that carries the field and the field itself. Unfortunately, in 
teaching electromagnetism one usually does not take ad
vantage of this fact. Of course, one does not speak anymore 
about a m~dium that carries the field. But that makes 
things even worse. The medium that Maxwell imagined 
made the field understandable at his time. Instead of telling 
students that things are easier today, that a field is a thing of 
its own right, one still gives them a description that stems 
essentially from Maxwell, but without adding that this de
scription was understood to go together with a field-carry
ing medium. In Maxwell's time it made sense to describe 
the electric field as "the portion of space in the neighbor
hood of electrified bodies" because of the medium that 
Maxwell admitted. Without such a medium, this sentence 
which every student knows today appears as a kind of so
phism. 

Here is another example of how we deal today with the 
field concept4

: "The electric field attaches to every point in 
a system a local property .... "This sentence is not wrong if 
by "electric field" the magnitude "electric field strength" is 
meant. If, however, a physical system is meant, then the 
statement is as curious as the following one: "A gas attach
es to every point in a system a local property." If we are 
convinced of the existence of a system, we do not speak in 
such terms. We say, rather, the system, a gas, for instance, 
"has properties." And we should also say that a field "has 
properties." Notice the word "has" and notice the plural of 
the word property. 

B. Mechanical stress and the force laws 

According to Maxwell, forces between bodies that are 
charged or traversed by an electric current are mediated by 
a medium that fills the whole space. Thus the medium itself 
is submitted to mechanical stress. 5 This stress is described 
by the tensor 

u;k = [ E;Dk + H;Bk - !(ED+ HB)c5;k]. 

If the field is purely electric or magnetic the tensor takes 
upon the simple forms 

u;k = (E;Dk - ! ED 8;k) 

and 

U;k = (H;Bk - ! HB 8ik ), 
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respectively. Here, 8;k is the Kronecker delta. The me
chanical stress u;k, which can also be interpreted as the 
momentum current density,6--8 must also exist ifthe mod
ern field concept is admitted. Then it is not a stress within 
the field-carrying medium but within the field itself. 

However, if one does not introduce the field as a thing in 
its own right but as a kind of mathematical construction, it 
is hard to imagine that it could be mechanically stressed 
and, as a consequence, the idea of pressure or tension ap
pears to be a very abstract idea that may be accepted by an 
advanced student but not by a beginner. Therefore, tradi
tionally the beginner learns various force laws, such as 
Coulomb's law for electric charges, Coulomb's law for 
magnetic poles, and Lorentz's law. Of course, these laws 
are correct. However, to introduce them as the basis of 
electromagnetic interactions has disadvantages. 

One disadvantage refers to the teaching of Coulomb's 
law as a basic law. Coulomb's law is valid only for a very 
particular charge distribution: for two point charges. Thus 
it describes only a very special case. Moreover, it promotes 
the old pre-Maxwellian idea of an action at a distance, since 
in it the force is expressed solely by the charges, i.e., the 
sources of the field. It suggests statements like the follow
ing: "Like charges repel each other" and "Unlike charges 
attract each other," which can indeed be found in many 
textbooks and which are strongly reminiscent of the old 
action-at-a-distance times. 

Apart from these laws, which contain only the sources of 
the fields, there is another type of force law, in which a field 
strength appears but which, nevertheless, are no real local
causes laws. What we mean are the relations 

F=Q·E 

and 

F=Q(vXB). 

Neither of these laws promotes the idea that a field is a 
system in its own right: The field strengths that appear in 
these equations are not the strengths of the fields that really 
exist but those of the fields that would exist if the body on 
which the force Fis exerted would not be there. Using these 
equations promotes the unfortunately widespread idea that 
a field is not more than a field strength distribution, and the 
field strength is not more than a practical mathematical 
tool for the calculation of forces. Like Coulomb's law, these 
relations have the disadvantage that they tell us only some
thing about the forces on a body but not about the forces 
within the field. 

An up-to-date approach to electromagnetism would 
proceed in the following way: Besides Maxwell's field 
equations, expressions for the mechanical stresses in the 
electric and magnetic fields are introduced. These expres
sions are, just like Maxwell's equations, local and very gen
eral. From these the forces on charged, magnetized, or cur
rent-carrying bodies are deduced: forces on point charges, 
magnetic poles, electric and magnetic dipoles, on current
carrying wires, etc. 

One might object that this introduction requires tensor 
calculus, unknown to beginners. We will show that this is 
not the case. The forms of the stress tensors of the electric 
and the magnetic fields are so simple that it is easy to grasp 
the whole stress state without knowing tensor calculus. All 
the student has to understand is that in the direction of the 
field lines there is tension and perpendicular to them there 
is pressure of the same amount. By the way, we deal cur-
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rently with pressure in gases and liquids without pointing 
out that pressure is equal to the diagonal elements of the 
stress tensor, which, in this case, however, is even more 
singular than in the case of the electromagnetic field. 

In our course, besides the expressions for mechanical 
stress, we derive the expression for energy density. More
over, we discuss the momentum density and the energy 
current density within the field. However, we will not enter 
into this particular subject here, since a special discussion 
about these quantities has been going on for many 
years. 9- 13 

III. SKETCH OF THE COURSE 

A. Energy and mechanical stress within the electric field 

Bodies A and Bare pushed away one from the other by a 
spring in Fig. 1 (a), and by the air in the cylinder in Fig. 
1 ( b). The two vehicles in Fig. 1 ( c) are pulled together by a 
person by means of a rope. In all these cases, momentum is 
being transferred from one body to another and in all these 
cases there is a connection between the bodies that makes 
the momentum transfer possible: a spring, air, and a rope, 
respectively. 

In Fig. 1 ( d), momentum is also being transferred, name
ly, from the electrically charged body A to the electrically 
charged body B and, of course, in this case a connection 
must also exist between A and B. This connection is invisi
ble-like the air in the case of Fig. 1 (b). We call this con
nection the "electric field." An electric field can be 
"strong" or "weak," i.e., there can be a lot or a little of it in 
a given domain of space, in the same way as there can be 
more or less air in a given domain of space. Whereas air can 
only push, i.e., exert pressure, an electric field can both 
push and pull. 

We study the field between two charged bodies A and B 
by means of a probe: another electrically charged body. 
This test body should be of small size and its charge should 
be small in order not to disturb the charge distribution on A 
and B. 

We observe the following: 
( 1') In every point of space a direction can be attributed 

(8) 

(b) 

G)----;:==;,1::~{/}t{::::::~· (~ 

to the field: the direction of the force that acts on the test 
body. 

( 2) If a probe of charge Qp0 is placed at a particular 
point and is then replaced by a probe with charge 2Qp0 , 

3Qp0 , ... , the force on the probe increases by the same fac
tor, i.e., by 2, 3, etc. Thus the factor relating the charge of 
the test body with the force on it is characteristic for the 
field without the test body. We call this factor the strength 
of the field at the location of the probe. Thus the field 
strength E is defined by 

F=EQp. (1) 

( 3) If a second charge distribution is added to the first 
one, the field strengths in every point of space add vector
ially. 

Next, we investigate the field strength distribution in 
space. We represent this distribution by field lines and we 
state that charges are the place where field lines begin or 
end so that the following relation must hold, 

Q= E0 ¢EdA. 

The integral extends over a closed surface and Q is the 
total charge within this surface. By means of this relation 
we can calculate a field strength distribution if a charge 
distribution is given, for instance, for a charge distribution 
that is spherically symmetric or for that of a parallel-plate 
capacitor. 

We are now ready to explore the mechanical properties 
of the system "electric field" and ask for their dependence 
on the field strength. Since we ask for local properties only, 
the spatial distribution of the field strength does not matter 
and we can consider the simplest distribution that can be 
imagined without restricting the validity of our results: the 
homogeneous field of the parallel-plate capacitor, Fig 2. 
Let s and 17 be the length and width of the plates, respec
tively, and; their distance. Thus the area of the plates is s'T/ 
and the volume of the field s7J;. 

J. The mechanical stress in the direction of the field 
strength 

One plate (A) pulls, by means of the field, on the other 
plate ( B). Thus there must be a tension within the field in 

(c) 

0 0 0 0 
(d) 

Fig. I. When two systems exchange momentum there must always be a connection between them. This connection is in (a) a spring, (b) air, (c) a rope, 
and ( d) an electric field. 
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Fig. 2. Parallel-plate capacitor. 

the direction of the field lines. We shall first calculate the 
value of this tension. For that purpose we consider the 
charge dQ0 of any surface element of B as a test charge in 
the field of A and obtain the forced F 0 that A exerts on it, 

dF0 = EAdQn. 

The total force F 0 that A exerts on B is 

(2) 

Here, EA is the strength of the field created by plate A 
alone, i.e., of the field that would be present if plate B would 
have been taken away. If only one of the plates A or B 
would be present, we would have the fields represented in 
Fig. 3(a) and (b), respectively. The field strengths in the 
region between z 1 and z2 would be 

EA = - (QA/2€oS1J)ez 

and 

En= CQn/2€oS1J)ez, 

respectively, where ez is the unit vector in the z direction. 
Since the absolute value of the charges of the plates is the 

same, i.e., Q0 = - QA = Q, we have 

EA= En. 

The field strength within the capacitor is obtained by 
adding EA and E0 , as in Fig. 3(c), 

E = 2EA = (Q /€oS1J)ez. (3) 

We find the force that plate A exerts on plate B as a 
function of the strength of the field E between the plates by 
substituting EA and Q0 =Qin Eq. (2) by means of (3), 

F n = ;1J(€o/2)E2ez. (4) 

This is at the same time the force plate A exerts on the 
field. To obtain the stress a 11 within the field, in the direc
tion perpendicular to the plates, i.e., parallel to the field 
lines, we have to divide this force by the (positively count
ed) surface s1J, which the field exposes to plate A, 

a 11 = (€o/2)E2
• (5) 

The fact that the stress is positive means that it is a ten
sional stress. Equation ( 5) not only yields the stress at the 
location of the plates. The stress propagates throughout the 

(a) (b) 

j j j ]A 1111 
llll mi 

(c) 

Fig.3. The field strength distribution of the complete capacitor is obtained 
by adding that of plates A and B. 
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whole field and, because of the homogeneity, has the same 
value at any location between the plates. Since ( 5) is a local 
expression, we can generalize our result: In every point of 
an electric field there is a tensional stress in the direction of 
the.field strength.Its amount is (€o/2)E2

• 

2. The energy density 

Next we shall calculate the energy content of the field. 
To this purpose we imagine a capacitor of fixed charge 
whose plates have, at the beginning, a distance of zero. The 
plates are oriented perpedicularly to the z axis, as in the 
case of the capacitor of Fig. 2. We now displace plate A in 
the z direction until the plate distance is ;. In this process, 
the field volume increases whereas the field strength re
mains constant. The energy W necessary to separate the 
plates can be calculated by means of 

W= FAtez. 

The force FA, which has to be exerted on plate A in order 
to separate it from B, is the same as the force calculated by 
means of ( 4), i.e., the force that A exerts on B. We thus 
obtain 

w = S1J;(€o/2)E2 

and, with (3), 

w = Q2; l2€oS1/· 

(6) 

(7) 

The energy density p w is obtained from ( 6) by dividing 
by the field volume s1Jt, 

Pw = (€o/2)E2
• 

It is seen that the energy density has the same value as 
the mechanical tension. We resume: The electric.field con
tains energy. The energy density is (€o/2)E2

. 

3. The mechanical stress perpendicular to the direction of 
the field strength 

We consider a capacitor whose plate's area can be in
creased by pulling two opposite edges of every plate apart, 
Fig. 4. The force F that has to be exerted on the right half of 
the capacitor in order to increase its extension in they di
rection, with Q remaining constant, is obtained by deriving 
the energy ( 7) with respect to 1J: 

F= dW e = -~e 
d11 y 2€0$112 y, 

where ey is the unit vector in they direction. With ( 3) we 
get 

F = - (€of2)E2$tey. 

This force is exerted on the right part of the capacitor. 
Since the capacitor is divided into two halves that can move 
freely with respect to each other, this force cannot be coun
terbalanced by a force exerted by the left halves of the 

A 

B f 
I 

Fig. 4. The area of the plates of this capacitor can be increased by pulling 
the plates apart in they direction. 
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plates directly on the right halves. It has to be mediated by 
the field, i.e., the outside force acts on the right halves of the 
plates, these exert a pressure on the field, and the field 
pushes against the left halves of the plates. Since the field is 
homogeneous, we can calculate the local stress within the 
field in they direction by dividing the force by the (posi
tively counted) cross section 5{; of the capacitor, 

0"1 = - Fis{;= - (€cl2)E2
• (8) 

The fact that o-1 is negative means that we have to do 
with a compressional stress. 

An analogous reasoning would lead us to the result that 
a pressure of the same amount is exerted in the x direction. 
We can thus resume: In every point of an electric field there 
is a compressional stress in the directions perpendicular to 
the field strength. Its amount is (€cl2)E2

. 

Accordingly, in every point of a field we have pressure 
and tension at the same time. How can that be imagined? 
Are there other systems standing simultaneously under 
tension and pressure? Of course, there are. To see it, take 
any deformable object, a sponge, for instance, with both 
hands, Fig. 5, pull your hands apart, and squeeze the object 
at the same time with your fingers . In this case you can give 
any value to the pressure and the tension independently. 
The electric field, on the contrary, has the peculiarity that 
at a fixed point in space pressure and tension always are of 
the same amount. 

B. Energy and mechanical stress within the magnetic 
field 

The procedure is similar to that of the electric field. In
stead of the homogeneous electric field of a parallel-plate 
capacitor, we consider the magnetic field in the slit of a 
permanent ring magnet (the magnetization is tangential to 
the circumference, the slit is radial) . The force law from 
which we start and which corresponds to Eq. ( 1) is 

F=HQm, 

where H is the magnetic field strength and Qm is the mag
netic pole strength. The reasoning is exactly the same as in 
the electric case and one gets the mechanical stresses 

o-
11 

= (µcl2)H 2 (9) 

and 

0-1 = - (µcl2)H 2 

and the energy density 

Pw = (µcl2)H 2
• 

(10) 

(11) 

Fig. 5. A sponge is under tension in the vertical direction and under pres
sure in the horizontal direction. 
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Thus, also in the magnetic field, there is tension in the 
direction of the field strength and pressure perpendicular 
to it and the absolute values of pressure, tension, and ener
gy density are the same 

IV. READING FIELD LINE PICTURES 

Usually, a field line picture is interpreted in the following 
way: The picture tells us the force that is exerted by the field 
on a test charge (or a magnetic test pole), where by "field" 
one means the field that is present before introducing the 
probe. This way of interpreting a field line picture is useful, 
for instance, in the case of an electron-optical arrangement 
in which one wants to know what will happen to an elec
tron by considering the field distribution without the elec
tron. 

There are cases, however, where the problem is different: 
Given is a field distribution and wanted are the forces on 
the matter that may be electrically charged, magnetized, or 
traversed by an electric current and to which the fields are 
attached. In this case, the above-mentioned interpretation 
of the field line pictures is not useful since the stress distri
bution of the really existing field is desired. However, these 
stresses and forces can easily be deduced from the field line 
picture by means of the results that have been obtained in 
Sec. III. Before discussing examples we shall formulate 
some rules. 

Since an electric charge is always the starting or ending 
point of field lines, it follows from Eq. ( 5) that the electric 
field exerts a tensional stress on a charge and on the matter 
carrying the charge. We thus have Rule 1: The electric field 
pulls on electric charges. 

Since on magnetic poles ff-field lines begin or end, we 
have, analogously, Rule 2: The magnetic field pulls on 
magnetic poles. 

Magnetic fields are not only attached to the poles of 
magnetized matter but also to electric currents. The mag
netic field is connected to a current in such a way that the 
field lines surround the current. Thus the current and the 
current-carrying matter are exposed to the pressure of the 
field and we have Rule 3: The magnetic field pushes on 
electric currents. 

Applying these rules we shall now interpret some field 
line pictures. 

Figure 6 shows a charged conducting sphere with its 

Fig. 6. The electric field of a charged conducting sphere pulls on the 
surface toward the outside. 
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electric field. According to Rule 1, the electric field pulls on 
the charges and, since the charges cannot leave the surface, 
it pulls on the surface of the sphere. This pull lowers the 
surface tension of a charged water drop, an effect that can 
be demonstrated experimentally. 14 The force per area that 
is exerted by the field on the surface is easily calculated by 
inserting the field strength at the surface 

IEI = Q /41T€or 

into Eq. (5), 
• 2 _2 4 

u
11 

= Q /3211€0r . 

The traditional way of describing the situation is as fol
lows. One picks out a small surface element and considers it 
in the field of the rest of the surface charges. The surface 
element is repelled by these remaining charges. This de
scription is mathematically correct. It is, however, not very 
natural because the space between the surface element un
der consideration and the remaining charges, i.e., the inte
rior of the sphere, is free of field. 

As a second example let us analyze the arrangements of 
Figs. 7 and 8 (a). In order to infer from the field line picture 
to the force on one of the charged bodies, body A, for in
stance, we have to consider the field line density at the 
surface of A. The field pulls on A in all directions. Thus 
body A is exposed to mechanical tension. However, the 
field lines are denser on the right side of A than on the left 
side. Thus the field pulls more toward the right than to
ward the left and a net force to the right results. By analo
gous arguments, we get the net forces on body B in Fig. 7 
and on bodies C and D in Fig. 8 (a). 

It is usual to describe the behavior of charged bodies by a 
sentence like the following: "Like charges attract, unlike 
charges repel each other." This way of formulating the cor
responding experience is reminiscent of the old idea that 
one body can exert a force on another without any connec
tion mediating the force. Applying our knowledge about 
the mechanical stress within the field, we can express these 
facts in local causes language: The field of unlike charges 
pulls the charges together, the field of like charges pulls them 
apart. 

Since the field in Fig. 8 (a) pulls the bodies apart, in the 
region of the field between both bodies a compressional 
stress must exist in the horizontal direction. The situation 
is particularly simple in the symmetry plane between C and 
D. In every point of this plane, the field strength vector lies 

Fig. 7. Two conducting bodies A and B with equal and opposite charges. 
The field lines are denser on the right side of A than on its left side. Thus A 
is pulled by the field toward the right. Correspondingly, Bis pulled by the 
field toward the left. 
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(b) 

pressure 

Fig. 8. (a) Two conducting bodies C and D of equal charges. The field 
lines are denser on the left side of C than on its right side. Thus C is pulled 
by the field toward the left. (b) A mechanical example of how two bodies 
C and D are pulled apart via a spring-and-yoke arrangement. 

parallel to the plane. It follows that everywhere in this 
plane there is pure pressure in the direction perpendicular 
to the plane: The part of the field on the left of the symme
try plane pushes on the part of the field on the right of it. 
Figure 8(b) shows the stress distribution of the field of Fig. 
8(a) schematically: The field is replaced by a system of 
yokes and springs. 

To derive Eq. ( 8), we considered the homogeneous field 
within the parallel-plate capacitor, Fig. 4. To understand 
the situation completely, there remains one question to be 
answered. The field pushes the plates toward the outside of 
the capacitor, in a direction parallel to the plates. How does 
the field stick to the plates? The only way it can do it is 
through the nonhomogeneous part of the field on both 
sides of the capacitor, Fig .. 9(a). This part of the field, 
which one might be inclined to consider as due to a mere 
imperfection of the capacitor, has a component that pulls 
the plates toward the outside, in they direction. Schemati
cally, the stress within the capacitor's field is pictured in 
Fig. 9 (b). Like in Fig. 8 (b), the field has been substituted 
by springs and bars. 

A magnetic field line picture, like that of Fig. 10, for 
instance, can be interpreted in the same way. The field lines 
of Fig. 10 are those of the H field strength. Again, it is 
correct to say: The field of unlike poles pulls the poles to
gether, the field of like poles pulls them apart. 

Finally, we consider current-carrying conductors and 
we begin with the magnetic field of a single hollow cylinder 
in which an electric current is flowing parallel to the cylin
der axis, as in Fig. 11. Since magnetic fields push perpen
dicularly to the field line direction, the field pushes on the 
conductor. If the conductor were deformable, the magnetic 
field would compress it. That is what indeed happens in a 
plasma and what is known as the pinch effect. 

Figures 12(a) and (b) show two parallel conductors 
with currents flowing in opposite directions and in the 
same direction, respectively. In the case of Fig. 12(a), the 
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(a) 

(b) 

tension 
pressure 

Fig. 9. (a) To pull the plates apart in the direction oft he plane of the plates 
the field grasps the plates on the bords. (b) To demonstrate the field's 
action the field is substituted by a spring-and-yoke arrangement. 

field strength is greater in the region between the conduc
tors than outside. Thus the field pushes more from this 
central region than from the outside and the resulting 
forces on the conductors are also oriented toward the out
side. Correspondingly, we see that in the case of Fig. 12 ( b) 
the field pressure is greater at the outside than in the mid
dle. 

Also in this case one often says that the wires repel or 
attract each other, respectively. Again we can formulate 
these facts more satisfactorily, thanks to our knowledge 
about the stress distribution within the fields: The field of 
two currents flowing in the same direction pushes the cur
rents together, the field of two currents flowing in opposite 
directions pushes them apart. 

V. CONCLUSIONS 

The main purpose of this article was to show how the 
electromagnetic field can be introduced in a way that 
makes it apparent that this field is a system in its own right. 
The most important means to attain this goal is to speak 
about the field in the same way as we are used to speaking 

Fig. 10. The magnetic poles are pulled together by their common field. 
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Fig. 11. The magnetic field pushes on the current within the conductor. 

(a) 

(b) 

Fig. 12. (a) The field lines near the surface of the conductors are denser 
toward the center than outside. Thus the conductors are pushed apart by 
the field. (b) The field lines are denser outside and the field pushes the 
conductors together. 
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about other physical systems. The second means is to put 
those relations into the foreground that make local state
ments about the existing field itself: about its energy den
sity and about its stress as functions of the field strengths, 
and not statements about relations between charges or cur
rents on the one side and fields on the other, which exist 
only after these charges or currents have been removed. 

The equations relating energy density and stress with the 
field strengths have the further advantage that they all have 
the same form. 
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