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Newton's second law is equivalent to the continuity equation for momentum in integral form. 
This insight provides an alternative picture of forces in terms of momentum currents. In such a 
picture, the forces exerted on an object via a field are completely described locally in terms of the 
momentum current density of the field. The momentum current picture leads to a representation 
of Maxwell's stress tensor which is easy to visualize and to sketch quantitatively. Computer 
sketches of the momentum current distributions for a few simple examples are presented. In 
particular, it is shown that two like charges are "pulled apart" by their common electric field and 
that two parallel wires carrying electric currents in the same direction are "pushed together" by 
their common magnetic field. 

I. INTRODUCTION 

The interaction between two charged bodies, say, 
between one charged particle and another is typically de-

scribed in the following way: The force acting on either 
particle is determined by the particle's own charge times 
the electric field which would be present at the particle's 
location if this particle itself were not charged. This way of 
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speaking implies that each charged particle finds itself in 
the field of the other in spite of the fact that the actual field 
at every location is given by the superposition of the fields 
of both particles. 

Obviously, this ciescription requires one to keep two dif­
ferent electric fields in mind: one field for the calculation of 
forces and another field for the calculation of such things as 
the field energy or field momentum. This inconsistency is 
unsatisfying from a didactic point of view. 

This typical description has yet other shortcomings. 
Usually when one body interacts with another via an inter­
vening medium, for example, via a rope, rod or spring, a 
hydraulic fluid, a cushion of air,. . ., it is reasonable to ask 
about the path along which the force acts through the me­
dium and, consequently, about the distribution of stress 
within this medium. But how about when this medium is 
an electric or magnetic field? When electric or magnetic 
interactions are treated in the fashion mentioned above, no 
straightforward answer can be given to this question. To 
see how misleading the typical description of the details 
about an electric interaction can be, consider the statement 
that two similarly charged particles "repel one another 
along their line of centers." This statement is incorrect if it 
is taken to mean that the force itself acts along this line 
since, after all, the electric field vanishes there at some 
point. 

Of course, electromagnetic interactions can be described 
in a consistent and straightforward manner with the help of 
Maxwell's stress tensor. This kind of description is usually 
avoided, however, because of the mathematical complica­
tions thought to be associated with it. There does not seem 
to be a simple way to visualize the physics of the stress 
tensor. However, in this paper, it will be shown that such a 
simple way does, indeed, exist. 

The local conservation of momentum and angular mo­
mentum leads to the identification of force as a momentum 
current 1

•
2 and torque as an angular momentum current. 3 

Of course, this identification is not new: The concept of 
momentum current is familiar to the theory offtuids4 and a 
discussion of angular momentum currents can be found, 
for example, in a popular European university text.5 How­
ever, until now, there has not been a direct effort to apply 
the concept of momentum current more generally to other 
areas of physics. 

In a recent paper, 6 momentum current distributions 
were investigated in static structures. This work is ex­
tended here to describe the distribution of momentum cur­
rents in the electromagnetic field. In particular, the mo­
mentum current picture provides a simple representation 
of Maxwell's stress tensor, i.e., of the momentum current 
density tensor. In this representation, the tensor field is 
easy to visualize and to sketch quantitatively. 

II. MECHANICAL STRESSES AND THE 
MOMENTUM CURRENT DENSITY 

The picture of a momentum current follows directly 
from the principle of the local conservation of momentum: 

The value of the momentum p contained within an 
arbitrary region R of space can change in time only if a 
net momentum current I flows through the (closed) 
boundary surface of R. 

This statement implies a continuity equation for momen-
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Fig. I. Two wagons are connected across the plates of a capacitor by 
means of two ropes. The wagons are being pulled together with the help of 
motors attached to each wagon. For simplicity of argument, the motors 
are assumed to be winding up the ropes around spools in such a way that 
the separation between the capacitor plates remains constant throughout 
the process. 

tum: 

~+1=0. 
dt 

A comparison of Newton's second law, 

~-F=O, 
dt 

(I) 

(2) 

with this continuity equation shows that "force" is identi­
cal to a negative momentum current: 

F= -I. (3) 

Figure I demonstrates that a momentum current is flowing 
in a static electric field. The momentum of the wagon on 
the left is increasing while the momentum of the wagon on 
the right is decreasing at the same rate. (We designate mo­
mentum to the right as positive.) The only connection 
between the wagons is the rope and the electrostatic field of 
the capacitor. Accordingly, (positive) momentum is flow­
ing from the wagon on the right through the right piece of 
rope to the right-hand plate of the capacitor. From there, 
momentum continues flowing through the electric field to 
the left-hand plate, then through the left piece ofrope and, 
finally, into the wagon on the left. 

As is well known, a force F is related to a local quantity 
<r, the mechanical stress tensor, according to 

F = fd A·<r. (4) 

In a similar way, a momentum current I is related to a local 
quantity j, the momentum current density tensor, accord­
ing to 

I= f d A·j. (5) 

Thus, (3) with the help of(4) and (5) shows that the momen­
tum current density is identical to the negative stress ten­
sor7·8: 

i= -(J'. (6) 

The reason for renaming (the negative of) the stress tensor 
as the momentum current density tensor lies in the advan­
tage the latter name has in providing a picture of stress 
phenomena in terms of the flow of momentum in a way 
analagous to the picture of, say, electric phenomena in 
terms of the flow of electric charge. For example, equations 
analogous to (I) and (5) for the conservation of charge Q 
and for the charge current IQ expressed in terms of the 
charge current density jQ can be obtained by replacing p 
and I in (I) with Q and IQ and by replacing I and j in (5) with 
IQ andjQ, respectively. Of course, Eqs. (I) and (5) are more 
complicated than their electric analogs: since Q is a scalar, 
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IQ must also be a scalar andjQ a vector; however, since pis 
a vector, I must also be a vector and j must be a second rank 
tensor. Nevertheless, it is just as easy to visualize a momen­
tum current as it is to visualize a charge current if( 1) and (5) 
are considered component by component. Accordingly, (1) 
is equivalent to three "scalar" continuity equations 

dpx +I = 0 
dt x ' 

dpy +I = 0 
dt y ' 

dp, +I,= 0. 
dt 

(7) 

Here Ix ,JY, and I, are "scalar" currents for the flow of the 
x, y, and z components of momentum, respectively (for 
short, the x momentum, y momentum, and z momentum). 
Similarly, from (5) we have 

Ix =fdA•jx, 

IY = fd A·jy, 

I, = fd A·j,, (8) 

where jx jY, and j, are "vector" current densities for the 
flow of x, y, and z momentum, respectively. Mathematical­
ly speaking, jx ,jY, and j, are simply the projections of j 
along the x, y, and z directions, respectively, and, in a ma­
trix representation of j, make up the columns (or rows) of 
the (symmetric) j matrix. 

The advantage of dealing with the three independent 
"vector" fields jx ,jY, and j, is that these can be pictorially 
represented in the usual manner in terms of stream lines. 
The stream lines of, say, jx show how x momentum flows 
throughout the physical system being considered. 

For the complete description of the flow of momentum 
in a system, three stream-line pictures are required. If, 
however, the system is sufficiently symmetric, three or two 
of these pictures become identical by a suitable orientation 
of coordinates so that one need sketch only one or two such 
pictures. 

III. MAXWELL'S STRESS TENSOR 

Already in the last century, Faraday recognized that me­
chanical stresses are present within the electromagnetic 
field: tension parallel to the E- and ff-field lines and pres­
sure perpendicular to them. Maxwell was the first to ex­
press these stresses mathemetically in terms of the electric 
and magnetic field vectors E and H. The resulting expres­
sion for the stress tensor of the electromagnetic field came 
to be known as Maxwell's stress tensor. The negative Max­
well's stress tensor represents the momentum current den­
sity tensor of the electromagnetic field 

}k1 = ~8k 1 (E·D + B•H) - EkD, - BkH,. (9) 

Here Dis the electric displacement vector, Bis the magnet­
ic induction, and ok, is the Kronecker delta. From (9), it can 
be seen that the momentum flow is not affected by revers­
ing the direction of the fields. 

Our tool for calculating the momentum current distribu­
tion in the electromagnetic field is completely contained in 
Maxwell's stress tensor. For this reason, it is helpful to 
consider some simple rules for drawing the momentum 
current density stream lines representing (9). 
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The tensor (9) becomes simpler in the special case that (i) 
one of the two fields E or H is zero and (ii) the medium is 
isotropic, i.e., the dielectric constant E or the magnetic per­
meabilityµ is a scalar: 

-ExEz ) 
-EyEz . 

E 2/2-E; 
(10) 

The columns [or rows, since (j kl) is symmetric] of the stress 
tensor ( 10) represent the current density "vectors" for the 
x, y, and z momentum, respectively: 

jx = (E 2/2 -E~. -ExEy, -EXE,), 

jy = ( - EyEx, E 2/2 - E;, -EyEz), 

j, = ( - E,Ex, - E,Ey, E 2/2 -E;). (11) 

We now consider one of the three current density "vec­
tors," say, jx, for various orientations of the vector E. 

IfE = ( ± E, 0, 0), thenjx = ( - E 2
/

2
, 0, OJ and we for-

mulate Rule I. · 
Rule I: Everywhere where Eis parallel or antiparallel to 

the x axis the x-momentum current density jx points in the 
negative x direction [Fig. 2(a)]. 

This is in agreement with the example illustrated in Fig. 
1. In view of the rule given in Ref. 6, this expresses the local 
Faraday tension along E. 
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Fig. 2. Illustration of some rules useful for sketching the direction of the jx 
stream lines (heavy lines) for various orientations of E (light lines): (a) E 
parallel or an ti parallel to the + x direction. (b) E parallel or an ti parallel to 
the + ydirection. (c) E makes an angle of + 1T/4 or - 31T/4 with the + x 
direction. (d) E makes an angk of - 1T/4 or + 31T/4 with the + x direc-
tion. 
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lfE = (0, ± E,O)or E = (0,0, ± E), thenjx = ( + E 2/2, 
0,0) and we formulate Rule II. 

Rule II: Everywhere where Eis perpendicular to the x 
axis, the x-momentum current density jx points in the posi­
tive x direction [Fig. 2(b)]. 

This expresses the local Faraday pressure perpendicular 
to E. 

Finally, if E = ( + E lfi., +E /fi,,O) or 
E = ( - E /ji., ± E /fi,,O), then jx = (0, + E 2/2,0) or jx 
= (0, - E 2 /2,0), respectively, and we formulate Rule Ill. 

Rule III: Everywhere where E (taken to lie in the xy 
plane) makes an angle of+ 1T/4 or ± 31T/4 with thex axis, 
the x-momentum current density jx points in the ± y di­
rection [Fig. 2(c) and (d)]. 

Analogous rules also pertain for they- and z-momentum 
current densities. 

Finally, the directions jx ,jY, and j2 are related by Rule 
IV. 

Rule IV: The x-, y-, and z-momentum current density 
"vectors" are perpendicular to one another at every point 
of the field. 

These rules9 remain literally valid if Eis everywhere re­
placed with H. They are, of course, restricted to isotropic 
media, i.e., media for which EllD and HllB. Obviously, the 
field stresses can be "picked apart" in this way (rules I-IV) 
for any arbitrary, pure electric or magnetic field. 

These rules might, at first sight, appear rather counterin­
tuitive. For example, one might wonder why the momen­
tum current does not reverse direction when the field is 
reversed. To better understand this, 10 recall Fig. 1 and no­
tice that the polarity of the capacitor does not matter: the 
carts would still be pulled together if the polarity were re­
versed. In order that the momentum current flowing 
between the carts be reversed, the ropes would have to be 
replaced with rods pushing on the capacitor. But then the 
plates would have to carry like charges. In this case, the 
field between the plates would be predominantly perpen­
dicular to thex direction [Fig. 2(b)], which is just the condi­
tion (Rule II) for the x-momentum current to flow in the 
other direction. 

We recommend the reader to direct his attention to these 
rules while considering the computer sketches of momen­
tum current distributions discussed in the next section. 

IV. MOMENTUM CURRENTS IN SOME SIMPLE 
FIELDS 

We first consider the momentum current density in a 
plane perpendicular to the axis of a uniform line charge. 
Considering line charges has the advantage that the result­
ing stream line pictures are identical to those for current 
carrying wires except for an overall reversal of the sense of 
direction (see below). The magnitude of the momentum 
current density drops off as l/r, where r is the separation 
between the axis of the line charge and the considered 
point. Notice that the x-, y-, or z-momentum current den­
sity stream lines do not go off to infinity (as opposed to the 
field lines of the electric field) but, rather, they return back 
to the line charge. Calculations show that the stream lines 
close in exact circles. The momentum current density in 
the Coulomb field of a point charge has the same form, only 
the density of lines drops off more rapidly, i.e., as l/r4 in­
stead of l/r. Figure 3(a) and (b) shows sketches of the L 
and jY stream lines, respectively, for the field of a line 
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Fig. 3. (a) Sketch of some L stream lines in a plane perpendicular to the 
axis of a uniform line charge. The circles become denser in the vicinity of 
the line charge. The innermost circles are not represented. If the sense of 
direction of the stream lines is reversed, this becomes the sketch of the 
L stream lines in a plane perpendicular to the axis of a line current. (b) 
Sketch of somej, stream lines in the field ofline charge. (c) Sketch of some 
j, stream lines in the field of a cylindrical object with uniform surface 
charge. The stream lines are shown to loop through the body of the object 
itself. 
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Fig. 4. (a) Sketch of the electric field lines in a plane perpendicular to the 
(parallel) axes of two equally but oppositely charged cylinders. (b) Sketch 
of the L stream lines in the electrostatic field of Fig. 4(a). If the sense of 
direction of the stream lines is reversed, this becomes the sketch of the j, 
stream lines in the magnetic field of two repelling line currents. 

charge. Notice that these stream lines are not cylindrically 
symmetric like the electric field itself. This is because a 
particular direction in space was selected out in each case 
by the corresponding choice of coordinate axes. From Fig. 
3(a) and (b), it is obvious that the divergence of the momen­
tum current density field vanishes, i.e., as expected, there 
are neither sources nor sinks for x or y momentum (or z 
momentum) in this electric field. 

If the line charge is replaced by a cylinder with a uniform 
surface charge, the electric field and, accordingly, the mo­
mentum current distribution outside the cylinder remains 
unchanged. However, the stream lines of the x-, y-, and z­
momentum current density must now close within the mat­
ter of the charged object [Fig. 3(c)]. The stream lines trans­
fer from field to matter at the location of the surface 
charges. This means the object itself will be under tension. 
The existence of this tension can be observed by an increase 
in radius of such an object, for example, by the swelling of a 
balloon upon charging its surface. 

Figure 4(a) shows the electrostatic field lines sketched in 
a plane perpendicular to the (parallel) axes of two equally 
but oppositely charged cylinders. If not somehow held 
apart, the cylinders will approach one another along the 
line connecting their axes. If we orient the x axis along this 
line, this means that x momentum flows from the cylinder 
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at the right through the electrostatic field to the cylinder at 
the left. 

With the help of the momentum current density (Max­
well's stress) tensor, it is possible to calculate how x mo­
mentum flows through the electrostatic field sketched in 
Fig. 4(a). The result is shown in Fig. 4(b). The interesting 
thing about this x-momentum current density distribution 
is that it directly gives the force acting on the charged ob­
jects. The force acting on either object is simply propor­
tional to the number of stream lines which penetrate its 
surface. It is not possible to read this force so directly from 
a sketch of the electrostatic field itself. Two types of x­
momentum current density stream lines can be recognized 
in Fig. 4(b): 

(i) Stream lines which return to the object of their origin 
and end there.The density of returning stream lines is a 
measure of the internal (material) stress in the correspond­
ing charged object. Such an internal stress manifests itself 
in a deformation of the object. Recalling from above that 
there is tension everywhere where the jx stream lines point 
in the negative x direction, we see here that there is tension 
over the entire surface of the object. In other words, the 
electric field "tugs" everywhere at the surface of the object 
as if to pull it apart. 

(ii) Stream lines which start from one object and end at 
the other. The force with which both objects attract one 
another is given alone by those stream lines which connect 
the objects together, since this force is nothing more or less 
than the net flow of momentum from one object to the 
other. Notice that these lines are not constrained to the line 
of centers connecting the objects together: The force 
between two oppositely charged objects does not act entire­
ly along their line of centers. Accordingly, it is misleading 
to say that "the force between two opposite charges acts 
along their line of centers." 

Figure 5(a) shows the electrostatic field sketched in a 
plane perpendicular to the (parallel) axes of two equally and 
similarly :::harged cylinders. Notice that the electric field 
vanishes in the middle of the line connecting their axes. But 
momentum cannot be transported through the electric 
field at locations where the field itself vanishes. Thus, no 
momentum can flow from one cylinder to the other along a 
line connecting their axes. For the same reason, no momen­
tum can flow from one spherically charged object or point 
charge to another along their line of centers. Accordingly, 
it is misleading to say that "the force between two similar 
charges acts along their line of centers." An exact calcula­
tion with the help of the stress tensor confirms this expecta­
tion. Figure 5(b) shows the x-momentum current density 
stream lines for the electric field of Fig. 5(a): No stream line 
at all can coincide with the line of centers. 

At the midplane between the objects, the stream lines 
point in the positive x direction, i.e., x momentum flows 
from the object at the left to the object at the right. Never­
theless, these left-to-right stream lines point in the negative 
x direction immediately at the surface of both objects. This 
means that the field tugs at the surface of both objects: The 
objects are pulled apart by their common electrostatic field. 

Taken together, these two examples lead to the following 
insight into the nature of electric attraction and repulsion: 
The tension along the electric field lines at the surfaces of 
two similarly charged objects is responsible for their repul­
sion as well as the tension along the electric field lines at the 
surfaces of two oppositely charged objects is responsible for 
their attraction. 
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Fig. 5. (a) Sketch of the electric field lines in a plane perpendicular to the 
(parallel) axes of two equally and similarly charged cylinders. (b) Sketch of 
the L stream lines in the electrostatic field of Fig. 5(a). If the sense of 
direction of the stream lines is reversed, this becomes the sketch of the L 
stream lines in the magnetic field of two attracting line currents. 

It is not difficult to show that the jx stream lines in the 
magnetic field of two repelling (attracting) line currents are 
identical to those in the electric field of two attracting (re­
pelling) line charges except for an overall reversal of the 
sense of direction. Thus, by drawing analogous pictures for 
the momentum currents in the magnetic fields of current 
carrying wires, it can be seen that parallel wires in which 
the electric currents have opposite directions are "pushed 
apart" by their common field, whereas wires with electric 
currents of the same direction are "pushed together" by 
their common magnetostatic field. 

These considerations involve more than just a manner of 
speaking. For example, two similarly charged elastic bo­
dies-say, two similarly charged soap bubbles or gas 
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clouds-would display quite different deformations in the 
vicinity of one another depending upon whether they are 
pushed or pulled apart by their common electric field. 
Thus, the insight provided by the considerations of com­
puter sketches similar to those shown in Figs. 3(c), 4(b), and 
5(b) (but including the combined effects of both electric and 
magnetic stresses) can be expected to be of practical value 
for real, physical problems involving interactions between 
deformable charge configurations, for example, as one 
might find in the plasma of a fusion or MHD machine. 

V. CONCLUDING REMARKS 

This paper has shown how stresses within the electro­
magnetic field can be understood on the basis of the mo­
mentum current picture. An important conceptual aspect 
of this picture is that it provides a local-causes description 
of mechanics. An important practical aspect is twofold: (1) 
diagrams of the momentum current density stream lines 
enable one to easily visualize the stress state of the field; (2) 
these diagrams enable one to easily read the value of the net 
momentum current flowing into the bodies ( = force acting 
on the bodies) where they coincide with the field sources. 
Accordingly, the stress state of any such body can easily be 
inferred. 
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