
The Karlsruhe Physics Course

for the secondary school A-level

The Teacher’s Manual

Electromagnetism



The Karlsruhe Physics Cours – The Teacher’s Manual
A textbook for the secondary school A-level

Electromagnetism
Thermodynamics
Oscillations, Waves, Data
Mechanics
Atomic Physics, Nuclear Physics, Particle Physics

Herrmann
The Karlsruhe Physics Course
Issue 2015
Edited by Prof. Dr. Friedrich Herrmann and Dr. Holger Hauptmann
Figures: F. Herrmann

Licensed under Creative Commons
http://creativecommons.org/licenses/by-nc-sa/3.0/de/

http://creativecommons.org/licenses/by-nc-sa/3.0/de/
http://creativecommons.org/licenses/by-nc-sa/3.0/de/


I
Physical Foundations



1. The field as an object
The field as a concept of modern physics can be imagined in two 
ways: on the one hand as a particular state of the so-called vacuum. 
This was also the idea of Faraday and Maxwell, whom we can 
consider as the inventors of the field concept. What today carries the  
inapt name „vacuum“ was at Faraday’s and Maxwell’s time called 
ether. The other possibility to imagine a field is to consider it as an 
entity, a kind of object, that resides in space, where we do not 
further ask for the nature of space, but only for that of the field. We 
can compare these two conceptions with two ideas we can have 
about a wave pulse running over the surface of the sea: Either we 
say that the wave is no more than a particular state of the water, or 
one insists in the fact that apart from the water, something new has 
emerged, something that can be considered independently from the 
water. 
In our treatment of the electromagnetic waves we decided to adopt 
the second model or interpretation. The reason is simple: We 
describe the rest of the world, i.e. that part which we call matter, in 
the same way. Indeed, the material part of the world could also be 
described as a particular state of the vacuum, but obviously one 
would not do so in a physics course for beginners. 
Actually, in the textbooks yet another idea about the field is 
frequently adopted: A field is no more than the distribution of a 
physical quantity in space: the field strength. That means that a field 
is not a physical system. It is rather a mathematical tool that allows 
to calculate forces which act on a body, and the bodies appear to be 
the only really existing entities in the world. This idea of a field may 
be useful for certain purposes. However, it obscures the view on 
other aspects of the field. It becomes difficult to understand that a 
field has yet other properties, just as material objects. 
Here a physical quantity is confounded with a physical system. It is 
like saying: „A mass hangs on a spring“, an habit that we, the 
teachers, are used to tackle. However, a sentence like „between the 
plates of the capacitor there is a field E“ can be found in many 
textbooks. 
It is hardly better to introduce the electric field as the space or region 
of space, where forces act on charged bodies. One might try to 
explain to somebody what we understand by „air“: Also air could be 
defined as a region of space where forces are acting. And as a 
measure of the air one might then introduce the pressure p. One 
would then formulate: „The air p between the walls of the 
container…“.
Here again our recommendation to the teacher: Do not confound the 
introduction of the concept field with the definition of the field 
strength.



2. The stuff the field is made of
In the Junior Highschool version of the KPK we were not 
consequent in one point: If the word „field“ is used as a name for a 
physical system or in other words, for an entity that is extended in 
space, then we need another name for the „stuff“ the entity is made 
of. At the time the Junior High version was written, we didn’t have an 
idea about how to call it and we had tried to circumvent the problem. 
However, this is somewhat like trying to explain to somebody (a 
Martian for example) what is a „sea“ without using the word „water“. 
That is why we finally decided to employ the word „field stuff“. When 
writing the text, and also when teaching it to the real pupils this 
turned out to be a real deliverance. Indeed, sometimes a distorted 
formulation, one that is difficult to understand, is caused by the fact 
that we cannot pronounce an idea that we have in mind because the 
appropriate word is missing.



3. Mechanical stress in fields
We have to give substance to the field concept. We have to discuss 
properties that do not only manifest at its boundaries, i.e. the places 
where it is connected to material bodies. Since the field „transmits“ 
forces, it must be under mechanical stress, just a material object 
that transmits a force. These stresses are well-known since the 
introduction of the field concept by Faraday and the functional 
dependence on the field strength is known since Maxwell. 
Nevertheless, in the text books they are treated rather stepmotherly; 
sometimes they are called „fictitious“ stresses.  



4. Forces and force-laws
Forces that are transmitted by fields, i.e. momentum currents that 
flow through fields, manifest mathematically in laws of three very 
distinct types. 
In Coulomb’s law

� (1)

only two charges appear; there is no electric field strength.
In the relation

� (2)
there is only Q1. The other charge is represented by the field 
strength � . In

� (3)

finally there is only one field strength.
Each of the three equations can be used to describe any single 
given force. However, the practicality of them is very different, 
according to the type of problem to solve, and according to the role 
they play in the conceptual structure of physics. 
Regarding the first criterion, i.e. the type of problem: According to 
the symmetry of the problem one or the other of the three equations 
is the most appropriate for calculating � . Coulomb’s law is suitable 
if we have to do with two point charges. Also equation (2) would be 
appropriate. However, to calculate the force in this case by means of 
equation (3) would require a cumbersome integration. Equation (2) 
is convenient if a point charge is in a field that would have a simple 
field strength distribution as long as the point charge is not there, for 
instance if this field would be homogeneous. Both equations (1) and 
(3) would require a complicated integration. Equation (3) finally is 
appropriate in the case that the resulting field has a simple structure. 
An example is the homogeneous field of a plate capacitor. 
Thus, from a practical point of view, each of the three laws has its 
reason to exist. The assessment is different when asking for the 
best way to introduce forces (or momentum currents) within the field. 
It is not advisable to use the Coulomb law for this purpose, since it 
suggests an action-at-a-distance interpretation of forces. The 
medium or whatever we will call the „something“ between the 
charged bodies does not appear in the law. The law of equation (2), 
that often is used to introduce the field strength, is in our opinion the 
cause of some confusion concerning the concept of a field. When 
saying that a body with electric charge Q1 is placed within a field of 
the field strength � , one is actually not saying the truth, because as 
soon as the charged body is in its position the field strength is no 
longer� ; the presence of the body may change it substantially. 
In our course we prefer to emphasize the tensional and 
compressional stress within the field and these are best represented 
by equation (3). In this way the local causes interpretation of electric 
(and also magnetic) interactions is obtained. The idea of the field 
being a really existing physical system is promoted. It requires a 
verbal description that corresponds to a very concrete idea of the 
field. So one would say that a field pulls on a charged body, instead 
of saying that a force is acting on it.
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5. Introduction of the field strength
The intention to take the field seriously as a physical system 
precludes the customary introduction of the field strength: the 
electric field strength via F = Q · E, and the magnetic field strength 
over F = Q · v ·B. 
Both equations prevent us from considering the field that is actually 
present, since the field strength that has to be substituted in these 
equations is that of the field without the „test charge“. Normally, 
when measuring something, one is allowed to believe that one 
measures a value that is actually realized by the considered system. 
In our case that is not true. Notice that we are not in the well-known 
situation that the measuring procedure perturbs the measured value 
and that the error can be made arbitrarily small by choosing an 
appropriate measuring instrument. A voltmeter must have in internal 
resistance that is sufficiently great, a thermometer must have a heat 
capacity that is… etc. In our case the measurement is correct even if 
the charge value of the test charge is very large. We therefore 
emphasize in our course that this way of measuring the field 
strength is only one method among others.



6. The „real“ field
Often a physical quantity is confused with the physical system to 
which it belongs. This can be experienced particularly clearly in 
discussions about which of the two quantities H and B is the more 
fundamental one. Today most textbook authors are in favor of B. We 
will later see that this is awkward for a treatment of magnetostatics. 
At the moment we are interested in the justification for favoring B. It 
is argued, B (and by some authors H) is the real field or the 
fundamental field, whereas the other one is a kind of „auxiliary 
quantity“. In our opinion such arguments should have no place in 
physics. Neither B nor H is the magnetic field. Both are quantities 
with which we can describe the field. And there are a lot more of 
such quantities: the magnetic vector potential, the scalar magnetic 
potential, the energy density, the mechanical stress; and finally we 
can construct or define as many other quantities as we want. Non of 
these quantities is the field. Of course the question is reasonable to 
ask which of these quantities is appropriate for the description of a 
certain phenomenon. It turns out that depending on the 
phenomenon to be described or the question to be answered a 
different choice will be made. For this reason a compromise has to 
be made. If we use few different quantities, the description of a 
phenomenon may become cumbersome. If we introduce too many, 
the whole teaching will become too complex.



7. Analogies in electromagnetism
In electromagnetism there are several internal symmetries or analo-
gies. Analogy means that, starting from a valid relation between 
physical quantities one obtains another valid relation by a purely 
formal replacement of the physical quantities according to certain 
given rules. In the table the most important physical quantities that 
correspond to one another are listed for three of these analogies.

Taking profit of an analogy in general contributes to the economy of 
learning and is thus a good idea. However, there is also a danger, 
that can be seen particularly well in electromagnetism. 
One problem is, that analogy 1 and analogy 2 (in our table) are in 
competition with each other, and one should avoid to use both of 
them when teaching to beginners. One has to decide for one of 
them. Today, most authors and teachers choose the second one. 
We will explain later on, why we prefer the first one. 
A second problem in the context of analogies and symmetries: 
Treating one of them rigorously with all its consequences, our pre-
sentation may become very esthetic. However, it can happen that 
the resulting presentation becomes somewhat unworldly. This can 
be seen with our analogy 1: If one decides to introduce the electric 
potential right at the beginning together with the electric field 
strength, as is usually done, one might tend to also introduce the 
magnetic scalar potential. However, an electric potential difference 
can easily be measured, whereas measuring a magnetic potential 
difference is intricate.

1.

electric potential φ magnetic scalar potential φm

electric charge Q magnetic charge Qm

electric field constant ε0 magnetic field constant μ0

magnetic flux density �
!
B

electric field strength �
!
E

electric flux density �
!
D

magnetic field strength �
!
H

2.

electric potential φ

electric charge Q electric current I

electric field constant ε0 reciprocal of  
      magnetic field constant 1/μ0

magnetic flux density �
!
Belectric field strength �

!
E

magnetic vector potential �
!
A

3.
voltage U electric current I

electric charge Q magnetic flux Φ

capacitance C inductance L

magnetic field strength �
!
Helectric field strength �

!
E



8. What belongs to electromagnetism in school
What is treated in a common textbook for the upper secondary 
school is sufficient to pass successfully the bachelor exam in 
physics at the university. In our opinion it goes beyond what should 
be learnt at a mainstream school and beyond what can be expected 
from a high school student. 
This observation is not in contradiction with the eternal complaints of 
the universities about the insufficient preparation of the school 
leavers. 
The fact that electromagnetism has spread so much may have sev-
eral causes. Simplifying seems to be possible only if the goal is a 
lower secondary course that is restricted to qualitative statements. If 
quantitive results are to be obtained, so it seems, the whole of Max-
well’s theory must be treated. Each stone that is taken out leads to a  
collapse of the whole building. 
However, if we insist that the students are able to solve those prob-
lems that are given in our final exams, the potential for a simplifica-
tion is small. 
We would like to recommend to distance from these high teaching 
objectives. Calculating the trajectory of a charged particle in a mass 
spectrometer cannot be considered a goal of a general education. 
The only justification to treat such questions would be that by doing 
so the students acquire other more fundamental insights. We doubt 
that this is the case. Finally, isn’t it true for every physics course that 
we solve those problems that we are able to solve, and not neces-
sarily those that we want to solve? Since we have to take account of 
the actual practice of the final exams, our electromagnetism has be-
come larger than we would like it to be. 
So, the omissions that we have allowed ourselves were no more 
than a poor compromise.
If we had been completely free in our choice we would have concen-
trated to present the electromagnetic field as one of the two main 
constituents of the world, namely field and matter. We would not 
have reduced our treatment of the field to its mechanical properties, 
but just as we do with matter, we would have put emphasis also on 
the thermal and chemical properties of the fields.  



II
Remarks



1. The electric field
1.2 The electric potential
We recommend to introduce the electric potential together with the 
voltage. This simplifies the understanding of the voltage and has ad-
vantages for the treatment of the electric field: the field will be intro-
duced by means of a quantity that the students know already.  

1.9 Charge and charge carriers
We emphasize that one has to distinguish between the physical 
quantity „electric charge“ and the physical system „charge carrier“. 
Otherwise it may happen that the students identify the electric 
charge and the electrons. Electrons, ions and other particles carry 
not only charge, but also the (substance-like) quantities: mass, 
amount of substance, angular momentum, momentum, entropy etc. 
The electron for instance „carries“:

electric charge  Q = e = –1.602 · 10–19 C–19,
mass m = me = 9.11 · 10–31 kg,
angular momentum L = h/4π  = 0.527 · 10–34 Js,
amount of substance n = 1/NA = 1.66 · 10–24 mol.

The values of the momentum and the entropy depend on the state 
of the electron. 

1.13 The electric field strength
The equation

�

is the first relation the students get to know, in which the electric field 
strength appears. It thus plays the role of a defining equation for the 
field strength. However, it should not be the vehicle that serves to 
create a pictorial idea of the field. The statement that precedes the 
equation does not interpret the absolute value of the field strength 
as a measure of the force that is exerted on al test body, but as a 
measure for something that is there as long as the test body is not 
there. And we do not interpret the direction of the field strength vec-
tor as the direction of the force on the test body, but as the direction 
in which we have a tensional stress within the field without the test 
body.

1.14 Graphical representation of electric fields
1. Our mental representations are considerably shaped by pictures. 
If we visualize fields mainly by field line pictures, as it is usually 
done, an idea of a field is created that is characterized by the prop-
erties of lines. We have made the experience that physics students 
at the university, in an oral examination for instance, employ the 
word „field line“ when they are supposed to speak about the physi-
cal system „field“. They identify the graphical representation with the 
object that is represented. We do not want to criticize such a behav-
ior in general, since it is our intention to create an pictorial idea of 
the object „field“. In this particular case, however, an idea of the field 
is created that often causes incorrect conclusions. The field line pic-
ture supports the idea that the field is pulling on a body on which the 
field lines end. However, the transverse direction comes off badly. 
The pressure perpendicular to the field lines appears to be less real.
There are other reasons why field line picture can mislead. Suppose 
we want to get an idea about „how much field“ there is in a given 
space element. A reasonable measure for it is the energy density, 
i.e. essentially the square of the field strength (just as we can con-
sider a measure for the density of matter the square of the wave 
function, and not the wave function itself). 
We consider the electric field of a charged conducting sphere. The 
energy density decreases with the 4th power of the distance from 
the center. A three-dimensional field line model suggests a second 
power decrease, because the field line density decreases this way. A 
two-dimensional projection of the sphere with its field lines even 
suggests a linear decrease. The impression results, that the field 
reaches far away into the surrounding space. That is why we prefer 
to represent the field by a shading that is limited so a rather small 
proximity of the body.  
2. We want to warn against some wrong conclusions that might be 
drawn by someone who is not familiar with field lines and field sur-
faces. 
Field surfaces tell us about the direction of the compressional stress; 
however, they are not isobaric lines, i.e. lines of constant pressure. 
Consider an electrically charged conducting sphere. The field pulls 
at the surface outwards. But on what does the field itself hang? 
Since the field lines go straight away „to infinity“ one might suspect 
that the tensional stress is „conducted away“ to infinity. (We know 
that „infinity“ has often to help us to solve a problem.) This would re-
quire that the tensional stress decreases with the square of the dis-
tance. However, it does not so. Like the energy density it decreases 
with the forth power of the distance. Actually and fortunately the field 
does not reach so far. As the spring-and-ring model in the students’ 
text shows, the field hangs on itself: the tension in the radial direc-
tion causes a compressional stress in the direction of a circumfer-
ence. 
3. In class we use the designations „homogeneous“ and „isotropic“, 
and we discuss examples of homogenous and isotropic media. In 
this regard, a temperature distribution can be homogenous and iso-
tropic. A piece of veined wood can be homogeneous without being 
isotropic. The electric field turns out to be a „material“ that is not iso-
tropic. 
4. On the blackboard and in the students’ exercise books many pic-
tures of fields with their field lines and field surfaces, that also ap-
pear as lines on the two-dimensional paper, are drawn. We agree 
upon two colors for the two types of lines.  

1.21 Surfaces of constant potential
1. A central experiment in our approach to the field concept is the 
measuring of equipotential surfaces in water, i.e. a liquid that is a 
poor conductor, by moving around a probe that is connected to a 
voltmeter. The experiment is important, because we to not want to 
define the potential by moving „a point charge in a field“ and mea-
suring the energy that is required to displace the charged body and 
dividing it by the charge. In this case one would again have the situ-
ation that the potential is measured in a field that would be there if 
the point charge were not there. 
2. We briefly want to explain, why and under which conditions this 
experiment gives the correct result. In the stationary state we have 
everywhere within the water
�

where �  is the electric current density.
The relation between the current density and the electric field 
strength �  is:
�

Here, σ is the electric conductivity. Inserting in the previous equation 
we obtain
�

If σ is independent of the position, it can be written outside the div 
operator
�

and we obtain
�

This is the equation for the electric field without the water. Thus, the 
condition that the potential distribution in the water is the same as in 
the purely electrostatic case is that σ has to be independent of the 
position within the water. It is easy to find examples where the origi-
nal potential distribution is distorted by a conductivity that depends 
on the position.  

1.23 The energy of the electric field
If the integral has already been introduced in the math class, the 
formula for the energy can be obtained in a more elegant way.  

1.27 How to load electrically charged particles with energy – 
electron beams 
1. The potential difference φ2 – φ1 in the equation dE = (φ2 – φ1) · dQ 
is that of the field without the test body. The traditional wording is still 
based on the old idea of an action at a distance, in wich the potential 
energy and also the potential is attributed to the test body. In Max-
well’s electromagnetism however the potential is a quantity of the 
field, in our case of the field without the test charge.
2. We would prefer a better name for the so-called particle accelera-
tors or colliders. Unfortunately no other names are in use, and we 
did not decide to introduce a new one. The machines are used to 
charge the particles with momentum and energy. The name accel-
erator is not convenient since a long time, because for a modern 
machine the particle have the terminal velocity of c already at the 
entrance. They cannot be accelerated further. „Colliding“ is an im-
portant process, but it points to the experiment that is carried out af-
ter the particles are charged with momentum.
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2. The magnetic field
2.1 Magnetic charge and magnetic field
Sometimes, the path of the historical development was weird. Often, 
concepts that are not needed survive for centuries. Sometimes good 
concepts disappear due to a misunderstanding. An example for the 
latter phenomenon is the magnetic charge. The argument against it 
is: It does not exist, because there are no magnetic monopoles. 
However, already this formulation is mistakable. One should better 
say: there are not particles that carry a net magnetic charge. Then it 
would become clear that one cannot conclude that magnetic charge 
does not exist.  
That there are no magnetically charged particles is an observational 
fact. Apparently the world is made this way. But the possibility 
cannot be ruled out that one day such particles will be discovered or 
produced.
If a physical quantity „magnetic charge“ exists or does not exist 
depends only on whether we define it and are able to measure its 
values. As many elder textbooks of electromagnetism show, the 
definition is very simple. The magnetic charge at the surface of a 
magnet can be introduced in perfect analogy to the bound electric 
charge on the surface of a dielectric. 
So, the question is not, whether magnetic charge exists or not, but 
rather whether its introduction is advantageous or not. The answer 
to this question is simple: It is advantageous. The gap that arose 
when magnetic charge disappeared from most of the textbooks, is 
best seen in the cumbersome and nebulous way in which magnetic 
poles are described. Positive and negative values of the magnetic 
charge are described by the specifications north and south. The 
simple fact, that the total charge of any body is zero, can only be 
expressed indirectly by describing an experiment in which the 
property manifests itself, for instance by showing that two new poles 
are created when a bar magnet is broken through.  

2.2 Magnetization
Usually magnetization is introduced in such a way that the 
impression results that the quantity is a subject for an advanced 
level, i.e. for university students only. We believe, that on the 
contrary magnetization is the quantity that is most appropriate for a 
first approach to magnetism. In electrostatics one usually considers 
a charge distribution (a distribution of charged bodies) as given, and 
one asks for the electric field. Correspondingly, in magnetostatics 
one would consider as given a distribution of magnetic poles. It 
might be felt as a disadvantage that there are no bodies that carry a 
net magnetic charge. But this is also an advantage: There is a very 
simple relationship between the magnetization and the distribution 
of the magnetic charge. Magnetic charge is located where 
magnetization lines begin or end. It turns out that this fact is very 
helpful for the understanding of magnetism at the secondary school. 
Among the three quantities � and � it is that one, whose 
distribution can most easily be found out.  

2.6 Soft magnetic materials
The statements about soft magnetic materials are correct only as 
long as the material does not get into the state of saturation. This 
fact must not necessarily be mentioned in class – just as we hardly 
mention that Hooke’s law is no longer correct when a spring is 
overstretched. One could say that as soon as saturation begins, the 
material is no longer soft magnetic.  

2.7 Electric current and magnetic field
We have formulated that the field surfaces of the magnetic field end 
an electric currents. This does not mean that the field pushes only 
on the surface of a conducting wire. As is well-known, the magnetic 
field reaches inside the conductor. Its field strength decreases from 
the surface of a wire until the axis linearly. Thus, the field affects the 
whole volume of the conductor, similar to the electric field of a 
homogeneously charged sphere or the gravitational field of a 
massive body. 

2.12 Magnetic field strength, magnetization and magnetic  
flux density

In class it is not worthwhile to treat the magnetization algebraically. 
Therefore, our definition of this quantity is rather brief. It is needed 
only for the transition form the field strength to the flux density.  

2.13 The coil – the inductance
Usually, the inductance is introduced in the context of the 
phenomenon of induction, namely via the equation

�

Its name suggests that the quantity has something to do with 
induction. When proceeding in this way, however, L appears rather 
unintuitive. It is like introducing the electric capacitance by means of 
the equation

�

Although this equation is correct, it hardly is appropriate for a first 
understanding of the capacitance. 
Just as it is simpler to get an idea of the capacitance by means of

Q = C · U
one gets a more direct access to the inductance by defining it by 
means of the equation

�

Just as the capacitance tells us whether for a given voltage there is 
much or few charge on the plates of a capacitor, the inductance tells 
us, whether a coil attains a great or small magnetic flux for a given 
electric current.  

2.15 „Discharge“ of the coil
In this section we discuss the phenomenon that usually is called 
self-induction. The concept of self-induction is in our opinion a 
somewhat unfortunate idea. It suggests (and sometimes it is said 
explicitly) that within a coil a voltage or an electric field is created – 
what is incorrect. To the integral

�

contribute only sections of the closed path that are outside of the 
coil. That the name „self-induction“ is not a good choice can also be 
seen if one tries to construct the analog concept for the capacitor. 

2.16 How the magnetic field presses on an electric current
In this section we discuss what normally is treated under the 
heading „Lorentz force“. Of course, we have to justify why we refuse 
an important equation its traditional name. A determinative in front of 
the name of a physical quantity force suggests, that we deal with a 
force of a particular kind, a force that appears only if an electrically 
charged body moves through a magnetic field. However, that is not 
what we want to express. In the framework of our presentation of 
electromagnetism this force is nothing more than an application of a 
more general statement, that the students have learned before: It is 
a manifestation of the compressional stress that exists in every 
magnetic field. When giving a proper name to this force, only 
because a field is caused by a moving body, one should 
consequently give names to many other up to now nameless forces. 
Instead of facilitating the insight that all forces are the same quantity 
the impression of a great complexity would be the result.
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3. The interplay between electric and  
magnetic fields

3.2 Electromagnetic induction
1. The discussion of reference frame changes is instructive, but 
usually it is complicated. As an example consider rotational 
movements in mechanics. The description in a rotating reference 
frame is interesting but intricate. Forces appear that do not exist in 
the non-rotating frame. The situation is similar in electromagnetism. 
When the reference frame is changed new fields appear: a purely 
electric field becomes electric and magnetic and vice versa. What in 
one reference frame is described by the first of Maxwell’s equations 
finds its explanation in another frame by the second equation, and 
vice versa. When discussing one phenomenon not only in one but in 
any arbitrarily chosen reference frame, the teaching time increases 
considerably. In view of the permanent lack of time we have decided 
to exclude questions that have to do with a change of the reference 
frame. They will be treated bundled and treated in a special section 
of the mechanics volume. We believe that thereby no deficit will 
show up with respect to the treatment of the phenomenon of 
induction, in particular since the integral formulation of the law of 
induction (or Maxwell’s second equation) obscures the reference 
frame problem in a tricky way. 
2. In the upper secondary physics class often Lenz’s law is 
formulated. Then with Lenz’s law one tries to justify the minus sign 
in Faraday’s law. The argument is as follows: An iron core is 
introduced into a coil that is connected to a battery. One observes, 
that the electric current decreases for a short moment. One now 
argues: dΦ/dt is positive, the induced emf is negative, thus there 
must be a minus sign in Faraday’s law. However, this argument 
contains a fallacy: How do we obtain the sign of the rate of change 
of the magnetic flux?
We have prescinded from introducing Lenz’s law as well as from 
writing a minus sign in the law of electromagnetic induction. 
If one makes a statement about the sign in an equation, it should be 
possible to check the statement by applying the equation. The 
equation tells us that the induced emf has the opposite sign of the 
rate of change of the magnetic flux. To check the sign one should be 
able to measure both these quantities including the algebraic sign. 
Imagine the following change of a flux density is realized: The �   
vector points  in the positive x-direction and its magnitude, and thus, 
its x component increases. Which is now the sign of dΦ/dt? Will the 
sign remain the same when the coordinate system is inverted, so 
that the �  vector now points in the negative x-direction? Our flux is 
surrounded by an electric conductor with a voltmeter, placed in the 
y-z plane. How do we read on the voltmeter whether the emf is 
positive or negative? 
Since our students don’t learn how to answer these questions, the 
minus sign that we had so tediously worked out is without any value. 
Instead of Lenz’s law we introduce the „left-hand rule“, formulated in 
analogy to the already known right-hand rule. 

3.5 The transformer
The two conditions

�

and

�

are valid simultaneously only for a certain interval of the load of the 
transformer. This can be seen with particular clarity, when 
considering the two extreme cases:

open circuit: Rload = ∞
short circuit: Rload = 0 .

In the open circuit case the second equation cannot apply, since 
I2 = 0 A, but I1  ≠ 0 A. In the short circuit case we have U1  ≠ 0 V, but 
U2   = 0 V, thus the first equation cannot be valid. 
Also the equation for the energy currents P1 and P2 is correct only 
for this interval of Rload . The derivation of the boundaries of this 
interval is too intricate for the school. Since normally a transformer is 
used for a load that lies within this interval, we limit the treatment to 
the simple description in which both above equations are valid.

3.7 Superconductors
1. The properties of superconductors which are discussed in the 
students’ text are those of a type-I superconductor. Type-II 
superconductors are more complicated. Their relation to type-I 
superconductors is similar to that of a body that under pressure 
deforms inelastically to one that deforms elastically. Notice that high-
temperature superconductors are typical type-II superconductors. 
For them it is not true that the magnetic field cannot penetrate the 
superconducting material.

3.9 Electromagnetic waves
1. It is a tradition to introduce electromagnetic waves via the 
oscillating circuit. We did not follow this tradition for several reasons. 
The explanation aims from the beginning at the complicated field of 
the dipole antenna. In this case we have to do not only with in 
intricate field distribution but also with the difficult distinction 
between the near and the far field. Both is not necessary for the 
understanding of an electromagnetic wave. There are wave types 
that are simpler. In order to explain the basics of wave propagation 
we prefer to limit to these simple cases: the square wave and the 
sine wave. 
2. The traditional introduction begins by explaining how to generate 
a wave. However, it is much more difficult to understand the process 
of creation than the wave itself. It is like introducing sound waves by 
explaining the working principle of a clarinet. The clarinet is a 
resonator in which an energy current flows back and forth and a 
small fraction of this current is leaking out. Also the dipole antenna is 
a resonator, and also here energy is flowing back and forth in the 
vicinity of the antenna, and only a small fraction of it is being 
emitted. 
3. We insist in giving a representation of the wave in three-
dimensional space, see figures 3.29 and 3.35 in the student’s 
manual. It is a popular method of representing a wave by drawing a 
space coordinate z to the right, in the direction of propagation of the 
wave, the x component of the electric field strength upwards and the 
y component of the magnetic field strength forwards. This 
representation is familiar to every physicist. However, in our opinion 
it is somewhat treacherous, and for our students too difficult. So, 
there is the question: Does the vertical axis have another dimension 
(that of an electric field strength) than the forward axis (magnetic 
field strength)? Or are the electric and the magnetic field strengths 
both represented as vector quantities in a plane perpendicular to the 
z direction? The worst drawback however is that the students 
misunderstand the whole image as a representation in the position 
space. Students who have only seen this representation, are 
completely perplexed when being asked for the field distribution in 
three dimensions.

!
B

!
B

U1

U2

= n1
n2

n1 · I1 = n2 · I2



III
Solutions to problems



1. The electric field
1. 3 The zero-point of the electric potential
1. Point 1: 4.5 V, Point 2: 0 V, Point 3: –4.5 V
2. Point 1: 0 V, Point 2: –12 V, Point 3: 0 V
3. Voltmeter 1: 18 V, Voltmeter 2: 9 V, Voltmeter 3: 9 V
5. Circuit in bicycle, car, airplane, rocket, satellite  

1.4 Electrotechnical problems
1. Clockwise, beginning with the straight section of the conductor: 
0 V; 4.5 V; 9 V; 5 V 
2. Lamp at the left: 1.6 A, lamp at the right: 0 A
3. Sections A: –20 V; B: 0 V; D: 40 V. 
The battery generates 60 V. When the switch is open all the poten-
tials of the points A to D are 0 V.
4. (a) φP = 12 V, UL1 = 12 V, UL2 = 0 V 
    (b) φP = 6 V, UL1 = 6 V, UL2 = 6 V
The strength of the current in lamp L1 is greater when the switch is 
closed, because in this case the voltage over L1 is greater. 
The strength of the current in lamp L2 is greater when the switch is 
open. When the switch is closed the current is 0 A.
5. (a) φ1 = 0 V, φ2 = 150 V, φ3 = φ4 = 75 V             
    (b) φ1 = φ4 = 0 V, φ2 = φ3 = 150 V
When the switch is open only the right lamp lights up.  

1.5 Characteristic curves – the electric resistance
1. U = 20 V 

I = 4 mA

�

2. R = 2 kΩ  
U = 120 V

�

3. R = 1 MΩ  
I = 0.1 mA

�
4. U = 35 V  

I = 5 A 
U1 = 10 V

�

�

�

5. U = 12 V  
Ri = 100 Ω

φabove = 12 V, φmiddle = 6 V, φbelow = 0 V
U1 = U2 = 6 V, U3 = 12 V

�  

�  
Ibatt = I1,2 + I3 = 180 mA
 
6. 

(a) �  

Total resistance = half of the resistance of the single resistors

(b)�  

Total resistance = twice the resistance of the single resistors
Similar rules are valid for the spring constant when connecting 
springs in parallel and in series, however the other way round (or in 
the same way for the reciprocal values of the spring constants). 

1.6 The resistance of voltmeter and ammeter
Voltmeter and ammeter are connected incorrectly. The ammeter 
causes a short circuit of the battery. Thereby it may break. The volt-
meter interrupts the circuit. 

1.7 The electric conductivity
1. Cross sectional area: A = 2 mm2  
    Length of forward and return line: l = 100 m 
    Copper wire: σ = 5.59 · 107 (Ω · m)–1  

�

2.  

�  
The conductor could cross the whole Milky Way. 
3. By increasing the concentration of the salt 

1.10 Charge current and charge carrier current
1. The electric current flows to the right. The current strength is
0.5 A + 0.3 A = 0.8 A.
2. 2 C/(1,6 . 10–19 C) = 1.25 . 1019  

1.12 The electric field 
1. When the two spheres are brought in contact negative charge 
carriers flow form B to A, so that B will end up with a positive net 
charge. Now both spheres are positively charged and the field 
pushes them away from each other.
2. An attraction or repulsion is also observed if the charged bodies 
are made of a material that cannot be magnetized, aluminum for in-
stance.
3. When in contact with B, A will charge with electricity that it re-
ceives from B. Now sphere A is pushed away from B, so that it will 
touch C. Here A first discharges and then charges again with elec-
tricity from C. Therefore, the field pushes A back to B, etc. Thus A 
swings back and forth  between B and C.  

1.13 The electric field strength 
1. �

2. �  

1.15 Rules for drawing electric fields 
1. (orthogonal to the field lines)
2. (orthogonal to the field surfaces)
3. (Charges are inside of the three closed field surfaces as well as 
inside of the bulged field surface at the left side below; field lines or-
thogonal to the field surfaces) 

1.16 Four important electric fields 
1. The fields are not different at all. In both cases the field lines must 
begin somewhere inside of the sphere. Since both the field and the 
sphere are spherically symmetric, the field lines can only run radially 
away. The field surfaces are concentric spherical surfaces. 
2. Apart from the sign of the charge and the orientation of the field 
lines, the field as well as the charge has two mirror axes. If the sign 
of the charge and the orientation of the field lines are taken into ac-
count, the mirror image at the vertical axis transforms into a „reflec-
tion  + change of sign + change of direction of arrows“.
3. The charge and the field have the same symmetry: a vertical and 
a horizontal mirror axis through the center of the figure. 

1.17 Calculation of electric field strengths 
1. For r > R the field strength is zero everywhere. 
2. In the equation 

�
Q is the charge of a body A, and � is the strength of the field at the 
position of A as long as A is not yet there and that is caused by an-
other body B. Therefore we write:

�
In the equation

�
Q is the charge of body B and � is the strength of the field, that is 
belongs to this charge. We therefore write:

�
and obtain:

�

Here r is the distance between the charged bodies A and B. The 
analogue mechanical law is Newton’s law of gravitation.  

1.18 Several charged bodies – the addition of vectors
1. See Fig. 4 

2. Upper plate: Field lines start vertically upwards and downwards. 
Lower plate: Field lines coming from above and from below end on 
the plate.
Above the upper plate and below the lower plate the field strengths 
add up to zero; there is no field stuff.  
3. 
A: Field strength is zero  
B: Field strength vector points down right (45°) 
C: Field strength vector points vertically down  
D: Field strength vector points top right (45°) 

1.19 Pressure and tension within the electric field
1. The easiest way is to consider the vertical midplane: There is 
pure tensional stress in the horizontal direction. This is as if the left 
part  of the figure (left sphere + left half of the field) were connected 
to the right one (right sphere + right half of the field) by stretched 
springs.
One can also consider one of the two spheres, the left one for ex-
ample. Here, the field pulls outwards at all sides of the sphere. Since 
the field strength is greater at the right side of the sphere than at the 
left side, a net pull to the right results.  

2. Analogous to exercise 1. In the midplane there is pressure in the 
horizontal direction. The field pulls more strongly on the left side of 
the left sphere, than on its right side. 

3.  

�

4. Field lines are radial, field surfaces show up in the two-dimen-
sional figure as concentric circles. 

1.20 Capacitor and capacitance
1. Q = I · t = 20 μA · 10 ms = 200 nC  
C = Q/U = 200 nC/60 V = 3.3 nF
2. Q = C · U = 16 μF · 10 V = 160 μC
3. d = ε0A/C  

= 8.854 · 10–12 C/(V·m) · 0,5 m2/(10–6 F)  
= 4.4 · 10–6 m = 4.4 μm

4. Two parallel capacitors with the same plate distance and the 
same plate surface can be considered as one single capacitor, with 
twice the plate surface. Therefore the total capacitance is twice the 
capacitance of a single capacitor. 
The total capacitance of n capacitors of equal capacitances con-
nected in parallel is n times the capacitance of one single capacitor. 
5. Two capacitors with the same plate distance and the same plate 
surface connected in series can be considered one single capacitor 
with twice the distance between the plates of a single one. There-
fore, its capacitance is half that of a single capacitor. 
The total capacitance of n capacitors of equal capacitances con-
nected in series is 1/n times the capacitance of a single capacitor. 

1.21 Surfaces of constant potential
1.  
�  

2.  

�  

1.22 More about the capacitor

�  

1.23 The energy of the electric field
1.  
(a) Q = I · t = 0.01 A · 8 s = 0.08 C

(b) �

 
2.

�

�

�

 
3.

�  

4.

(a) �  

(b) Q = C · U =  0.163 nF · 2000 V = 0.326 μC

(c) �

(d)�  

5. Increasing plate distance:
(a) Q' = Q, C' = C /3  
With E = Q2/ 2C we obtain E' = 3E.
(b) U' = U, C' = C /3  
With E = U 2 · C/2 we obtain E' = E/3.
Increasing plate surface:
(a) Q' = Q, C' = 3C  
With E = Q2/ 2C we obtain E' = E/3.
(b) U' = U, C' = 3C  
With E = U 2 · C/2 we obtain E' = 3E. 

6.

�  

The energy has decreased to half its initial value. The missing ener-
gy was needed to create entropy immediately after connecting the 
two capacitors. 
Analogous mechanical processes: inelastic collision; connecting two 
flywheels with friction clutch. 

1.24 Discharge curve of the capacitor
1.

�  

2.

�

�  

1.25 Fields and electric conductors
1. The field surfaces are cross-sectional areas of the conductor. 
Their distances are greater where the cross-sectional area of the 
conductor is greater. 
2. The interior of the metal plate is field-free. There is tensional 
stress in the plate orthogonal to the plate surface. 
3. See figure 5
4. See figure 6

 
1.26 The electric current density – Ohm’s law locally
1.

�

2.

�

3.

�

4. At place A the current density is smaller than at B. The filament 
will bum through at B. 

1.27 How to load electrically charged particles with energy –  
electron beams
1. Q = 50 · 1.6 · 10–19 C  
m = 10–5 kg  
h = 1000 m 
U = Δφ = 2 · 107 V
Egrav = m · g · h = 10–5 kg · 9.8 N/kg · 1000 m = 0.098 J
Eelectr = Δφ · Q = 2 · 107 V · 50 · 1.6 · 10–19 C = 1.6 · 10–10 J
The water drop transmits only a small fraction of the energy that it 
receives from the gravitational field to the electric field. The greater 
part is used for the creation of entropy. 

2. P = U · I = 50 000 V · 50 μA = 2.5 W
3.
(a) E = Q · (φ2 – φ1) = 1.6 · 10–19 C · 1.2 · 106 V = 1.92 · 10–13 J

(b) �

With m = 9.1 · 10–31 kg we get

�  

This is much more than the terminal velocity c. The equation for the 
kinetic energy is no longer valid.

R = U
I
= 20 V

0,004 A
= 5 kΩ

I = U
R

= 120 V
2000 Ω

= 60 mA

U =R  · I = 106Ω · 10–4A = 100 V

R1 =
U1

I
= 10 V

5 A
= 2 Ω

U2 =U –U1 = 35 V – 10 V = 25 V

R2 =
U2

I
= 25 V

5 A
= 5 Ω

I1,2 =
U

R1 +R2

= 12 V
200 Ω

= 60 mA

I3 =
U
R3

= 12 V
100 Ω

= 120 mA

R total =
U
I
= U
I1 + I2

= U
U
R

+U
R

= R
2

R total =
U
I
= U1 +U2

I
= RI +RI

I
= 2R

R = 100 m
5.59 · 107  (Ωm)–1 · 2 · 10–6  m2 =  0.9 Ω

l1
σ1

= l2
σ 2

l1 = l2
σ1

σ 2

= 1 m ⋅ 5.59 ⋅107

10−13 ≈ 6 ⋅1020m

F =Q ⋅
!
E = 1.6 ⋅10−19C ⋅80 000 V/m = 1.28 ⋅10−19N

!
E = F

Q
= 0.02 N

10 ⋅10−9C
= 2 ⋅106 V/m
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E = 2F

0A

    = 2 · 0.0025 N 
8.85 · 10–12 C/(V·m)· 0.24 m2 = 4.85·104  V/m

!
E = U

d
= 2000 V

0.5 cm
= 400 000 V/m

Point P:  
!
E = 5 V

0.6 mm
= 8300 V/m

Point Q:  
!
E = 5 V

0.2 mm
= 25 000 V/m

C ' = 3C
(1) Q = const
Q ' =Q,U ' =U / 3,

!
E ' =

!
E / 3
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!
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!
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U 2 = 2 ⋅1.6 J
108 V2 = 32 nF

Q =C ⋅U = 32 nF ⋅104 V = 320 µC

C = ε0
A
d

= 8.854 · 10–12  C/(Vm)2π  · 0.0245 m · 0.12 m
0.001 m

= 0.163 nF

E = CU
2

2
= 0.163 nF · (2000 V)2

2
= 0.326 mJ

ρE = E
A · d

= 0.326 mJ
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=  17.6 J/m3
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U +RC dU
dt

= 0

Tentative solution: 
U(t ) = f  · t 2

dU
dt

= 2f t

Introducing into the differential equation:
f t 2 + 2RCft = 0   ⇒    t + 2RC = 0
The result is a contradiction.

Dictance sphere - table: d ≈ 0.1 m
Surface of the sphere: A ≈ 5 · 10–2  m2

ε0 ≈10–11 C/(Vm)

C = ε0
A
d

≈10–11 5 · 10–2

10–1 = 5 · 10–12  F

Length of the shaft: l ≈ 0.1 m
Cross section of the shaft: A ≈1 cm2  = 10–4  m2  
Conductivity of Perspex: σ ≈10–13  (Ωm)–1

R = 1
σ
l
A
≈ 1

10–13
10–1

10–4 = 1016  Ω

τ =R  · C = 1016  Ω · 5 · 10–12  F = 5 · 104s
The time constant is of the order of hours.

!
E = U

d
= 1.5 V

100 m
= 0.015 V/m

j = σ ⋅
!
E = 5.59 ⋅107Ω−1m−1 ⋅0,015 V/m

=  8.38 ⋅105 A/m2

I = j ⋅A = 8.38 ⋅105 A/m2 ⋅10−6 m2 =0.838 A

j = I
A
= 5A

3 ⋅10−6 m2 = 1.67 ⋅106 A/m2

!
E = j

σ
= 1.67 ⋅106 A m-2

5.59 ⋅107 Ω−1m−1 = 0.03 V/m

capacitor: 
!
E = U

d
= 1000 V

0.005 m
= 200 000 V/m

j = I
A
= 0.5 A

10−6 m2 = 5 ⋅105 A/m2

!
ECu = j

σ Cu

= 5 ⋅105 A m–2

5.59 ⋅107 Ω−1m−1 = 0,0089 V/m

!
EFe = j

σFe

= 5 ⋅105 A m–2

1.02 ⋅107 Ω−1m−1 = 0.049 V/m

UCu =
!
ECu ⋅d = 0.0089 V m–1 ⋅2 m=0.018 V

UFe =
!
EFe ⋅d = 0.049 V m–1 ⋅1 m=0.049 V

E = mv
2

2
⇒v = 2E

m

v = 2 ⋅1.92 ⋅10−13J
9.1⋅10−31kg

= 0.65 ⋅109m/s

Fig. 4
For 1.18, exercise 1

Fig. 5
For 1.25, exercise 3

Fig. 6
For 1.25, exercise 4



1. The magnetic field
2.2 Magnetization
1. See Fig. 7a
2. See Fig. 7b
3. See Fig. 7c

4. Break the ring into two pieces. If it is magnetized poles will show
up at the fracture areas. 

2.3 The magnetic field strength
1.  
(a) F = Qm · H = 10–5 Wb · 6.4 A/m = 6.4 · 10–5 N 
The vector of the momentum current, that flows to the positive pole, 
points in the direction of the field lines, that which flows to the nega-
tive pole points in the opposite direction. 
(b) The field pulls the positive pole in one direction, the negative 
pole in the other. Result: the compass needle will be rotated. It will 
oscillate and finally settle down in the direction of the field.  
2. See figure 8

2.5 Four important magnetic fields
1. (a) Inside the magnet the magnetization is homogeneous. The
lines run towards the north pole at the left, and away from the south 
pole at the right. Field lines and surfaces see Fig. 9a. 
(b) The field lines enter the pole surfaces perpendicularly. Therefore, 
the field pulls at the poles. It pulls them toward each other. 
2. (a) Inside the magnet the magnetization is homogeneous. The
lines run from the outside towards the two north poles. Field lines 
and surfaces see Fig. 9b.

(b) Between the poles the field surfaces end almost perpendicularly 
on the pole surfaces. Thus, the field presses on the poles. The field 
lines depart from the left side of the left pole and from the right side 
of the right pole almost perpendicularly. Thus, the field pulls the 
poles away from each other.
3. Magnetization lines run from inside to outside. Field lines from
outside to inside, but only within the material. The regions inside of 
the inner surface and outside of the outer surface are field-free. 
4. The magnet has no poles. The magnetic field strength is zero
everywhere. There are neither field lines nor field surfaces.  

2.6 Soft magnetic materials
1. See Fig. 10. The field lines enter the soft magnetic piece form
above and from below perpendicularly. Therefore, the field pulls 
from above and from below. The metal plate is under tensional 
stress in the vertical direction.  

2. In the immediate neighborhood of the poles of the permanent
magnet poles of the opposite sign appear within the soft magnetic 
material. The corresponding antipoles are located at the inner side 
of the soft magnetic parts. The upper soft iron bar has negative 
magnetic charge (south pole) on its lower surface, the lower bar has 
positive charge (north pole) an its upper surface. In its two-dimen-
sional cross section the field looks the same as the electric field of a 
plate capacitor. 
Advantage of such a magnet: The field is nearly homogeneous. Dis-
advantage: When another magnet or a piece of a soft magnetic ma-
terial is brought in its field, the magnetic charges are easily dis-
placed. 

2.7 Electric current and magnetic field
1. See Fig. 11. Two conditions have to be met:
– the field surfaces must end on the current;
– the field image must have a rotational symmetry.

From this the shape of the field lines and field surfaces outside of 
the pipe can be deduced.  
If field surfaces would run from the conductor towards the inside the 
should meet in the center of the pipe. That would mean that in the 
middle there is pressure perpendicularly to each field surface, what 
is not correct. Thus, the inside of the pipe must be field-free. 
Since the field surfaces of the exterior field end perpendicularly on 
the surface of the pipe the field presses on the pipe from the out-
side. 
2. See Fig. 12a
3. See Fig. 12b 

2.8 Calculation of magnetic field strengths
1. The equations have a similar structure. In one of them there is the
voltage in the numerator, in the other the current. In the denominator 
there is a length in both cases.
Regarding equation (1.3): Consider two capacitors connected in 
parallel. For each of them equation (1.3) is valid. Both together can 
be considered a capacitor with twice the plate surface. For this new 
capacitor U and d have the same value as for the single capacitors. 
With equation (1.3) we obtain the same field strength. If the surface 
area appeared in the equation, the large capacitor would have a 
field strength different from that of a single capacitor – what obvious-
ly would not be correct.
Regarding equation (2.3). Consider two coils connected in series. 
They should have a quadratic cross section. For each of them equa-
tion (2.3) is valid. Now the coils can be placed one at the side of the 
other, so that they are equivalent to one coil with twice the cross-
sectional area. (On the sides where the coils touch each other there 
are two currents flowing in opposite directions. Their contribution to 
the field therefore cancels out.) For this large coil the current and the 
length have the same value as for the initial separate coils. Accord-
ing to equation (2.3) we obtain the same field strength. If the surface 
area appeared in the equation, the large coil would have a field 
strength different from that of a single coil – what obviously would 
not be correct.

2. �

3. �

4.   
(a) See Fig. 13

(b) �

5.  

�  

6. (a) We first consider only the cylinder. Outside of it the field is the
same as that of a wire with the same current. Inside there is no field. 
Next we ask for the field of the complete cable, that consists of a 
wire and a cylinder. Outside of the cable the contributions of the wire 
and the cylinder to the field are equal an opposite. Therefore they 
cancel each other; the field strength is zero A/m. Inside remains only 
the contribution of the wire.

�  

2.10 Pressure and tension within the magnetic field
1.

�

 
2.  
(a)

�

(b)

�

The gas pressure is much greater than the pressure of the magnetic 
field. The field cannot keep the gas together. 
3. Imagine a vertical plane in the middle of the field. In this plane all
the field surfaces are perpendicular to the plane. It follows that the 
two halves of the field press against each other. 
4. Imagine a vertical plane in the middle of the field. In this plane all
the field lines are perpendicular to the plane. It follows that the two 
halves of the field pull at each other.  

2.11 Electromagnets
3. d = 0.01 m,  A = 0.01 m2, n = 1000, I = 2 A

(a) �

(b) �

(c) The field strength increases by a factor of ten, the volume de-
creases to one tenth. Thus, the energy increases by a factor of ten. 
4. Both can occur. If the electromagnet is sufficiently strong (com-
pared with the permanent magnet) there will be repulsion. If it is 
weak (if the electric current is small), a south pole will be created at 
that end of the electromagnet, that had initially a north pole– due to 
electrostatic induction –, with the result that there is attraction.  

2.13 The coil – the inductance
1.

�

2. The inductance decrease to half of its initial value.

2.14 The energy of the magnetic field
1.

 �

2.  

�

3.  

�  

4.  

�

5. (a) First the connections of the coil are bridged. Since thereby the
power supply is also bridged, the power supply has to withstand a 
short. Next the coil with its two terminals still connected is separated 
from the power supply. 
(b) The capacitor, that is separated from the power supply, loses its 
energy, because it will discharge. It discharges because the insula-
tion between its plates is not perfect. The coil, that is separated from 
the power supply loses its energy because the electric current will 
cease to flow. The current ceases to flow because the wire of the 
coil is not a perfect conductor. In a superconducting coil the current 
will not decay.  

2.15 „Discharge“ of the coil
1.

�

2.

�

The energy in the coil decreases twice as fast as the electric current.  

�

2.

�

�

3.

�

The first sample contains less mobile electrons. In order to achieve 
the same current strength as in sample 2, the electrons have to 
move faster.
4.

�

The fact that the water contains positive and negative ions has no 
consequence for the Hall voltage.

!
H = n ⋅I

 l
= 3000 ⋅0.8 A

0.6 m
= 4000 A/m

n =
l ⋅
!
H
I

= 0.15 m ⋅3000 A/m
0.5 A

= 900

!
H = n ⋅I

π ⋅d
= 1000 ⋅2.5 A

π ⋅0.5 m
= 1590 A/m

(a) 
!
H = I

l
= 16 A
π ⋅0.002 m

= 2546 A/m

(b) 
!
H = 16 A

π ⋅0.02 m
= 254.6 A/m

(b) 
!
H = I

l
= 0.5 A
π ⋅0.001 m

= 159 A/m

A = 1.5 mm2 = πr 2

r = A
π

= 1.5 mm2

π
= 0.69 mm

Magnetc field strength at the surface:
!
H = I

l
= 16 A

2π · 0.00069 m
= 3691A/m

Pressure at the surface:

σ ⊥ = µ0

2
!
H

2

= – 1.257 ·10–6  Wb/(A·m)
2

·(3691 A/m)2 = 8.56 Pa

d = 0.01 m,     I = 10 000 A
!
H = I

π  · d
= 10 000 A
π · 0.01 m

= 3.18 · 105 A/m

σ ⊥ = µ0

2
!
H

2

= – 1.257 ·10–6  Wb/(A·m)
2

·(3.18 · 105  A/m)2

≈ 64 000 Pa = 0.64 bar

!
H = n  · I

d
= 1000 · 2 A

0.01 m
=  2 · 105  A/m

E = ρE  · V = µ0

2
!
H

2
· A · d =…= 2.51 J

n = 500,    A = 0.001 m2,  l  = 0.08 m

L = µ0  · n2  · A
l
=…= 3.93 · 10–3  H

!
H = 40 A/m,   V =  1 m3

E = µ0

2
⋅
!
H

2
⋅V =…= 1.01⋅10−3 J

A =  0.0004 m2,   d =  0.005 m,
!
H = 120 000 A/m

E = µ0

2
⋅
!
H

2
⋅V =…= 0.0181 J

L =  0.01 mH,   I =  2.5 A,   l =  0.1 m,   A =  0.0004 m2

(a)E = L
2
I 2 =…= 0.000 031 J

(b) ρE = E
V

=…= 0.78 J/m3

L =  0.2 mH,   R =  500 Ω,   U =  200 V

E = L
2
I 2 = L

2
U
R

⎛
⎝⎜

⎞
⎠⎟

2

=…= 0.000 016 J

R =  500 Ω,   t1/10 =  4 ms

I(t ) = I0  · e –t /τ ⇒ – t
τ
= lnI(t )

I0
⇒ t

τ
= ln I0

I(t )

⇒ 0.004 s
τ

= ln10

⇒ τ = 0.004 s
ln10

= 0.00174 s

With τ = L
R

 we obtain

L = τ  · R = 0.00174 s · 500 Ω = 0.87 H

E(t ) = L
2
I(t )2

I(t ) = I0  · e
–t /τ

E(t ) = L
2
· I0

2  · e –2t /τ

2.16 How the magnetic field presses on an electric current 
1.
I = 200 A,     H = 40 A/m,    Δs = 1m
F = I  · Δs  · B = I  · Δs  · µ0  · H

 = 200 A · 1 m · 1.257 · 10–6 Vs/Am · 40 A/m  
= 0.01001 N

H = 2400 A/m,    r = 0.1m,   m =  0.911 · 10–30  kg,   e = 1.60 · 10–19  C

r = m  · v
e  · B

v = r  · e  · B
m

= r  · e  · µ0  · H
m

E = m
2
v 2 = (r  · e  · µ0  · H )2

2m

=…= 1.279 · 10–15J = 1.279 · 10–15

1.60 · 10–19  eV = 8 keV

d = 0.005 m,     B = 1.2 T,    I = 200 mA
UH1 = 0.12 · 10–3  V,  UH2 = 0.36 · 10–6  V

UH = v  · B  · d    ⇒    v = UH

B  · d
v1 =…= 0.02 m/s
v 2 =…= 0.000 06 m/s

v = 1.1 m/s,   d = 0.002 m,   B = 3 T
UH = v  · B  · d  =…= 0.066 V

a

b

c

Fig. 7
For 2.2, exercises1, 2 and 3

Fig. 8
For 2.3, exercise 2

a b

Fig. 9
For 2.5, exercises 1 and 2a

b

Fig. 10
For 2.6, exercise 1

Fig. 11
For 2.7, exercise 1

Fig. 12
For 2.7, exercises 2 and 3a

b

Fig. 13
For 2.8, exercise 4



3. The interplay between electric and magnetic 
 fields

3.2 Electromagnetic induction
1.  

�

2. See Fig. 14

3.

(a)  �

(b) �

(c)

�

4.

�

3.3 The generator
2. Yes. The coil can be imagined to be composed of many small
quadratic coils. Each of these coils generates a sine tension of the 
same frequency.
3. No. In the relation �  A changes as the sine of the time. �
is a sine function of t only if B is constant, i.e. if the field is homoge-
neous.  

3.4 Alternating voltage and alternating current
1. �
2. In the P-t diagram draw a horizontal straight line for the P value
0.5  ·  U0  ·  I0 . For each time interval for which P is by a certain 
amount above this line there is another one for which it is by the 
same amount below. The average value of P for two such corre-
sponding time intervals is 0.5 · U0 · I0 . As a consequence, also the 
total time average has this value. 
3. No. The average value of the voltage is 0 Volt, that of the current
strength is 0 Ampere. The resulting average of the energy current 
would be 0 Watt. This cannot be correct, since the energy current 
has positive values.  

3.5 The transformer
1. 5 · 230 V = 1150 V and (1/5) · 230 V = 46 V
2. The number of turns of the primary coil is 20 times that of the
secondary coil. In the primary coil there is a current of 0.1 A. 
3. I2 = (1/10) ·  I1 = 10 mA1

U2 = 10 · U1 = 10 · 230 V = 2300 V
4. The input conductors must have a great diameter, so that the re-
sistance is not too great. The output conductors must be well insu-
lated so that no spark will jump over.
5. (a)  

�  

(b) 

�

(c) 

�  

(d) 

�

3.7 Superconductors
1. See Fig. 15. In the pipe circular currents are flowing (center of the
circle on the axis of the pipe). The direction of the current in the re-
gion of the magnet is opposite to that outside (to the left and the 
right) of the magnet.

2. The magnet will not come out at all. It is suspended by the super-
current. 

3.11 Energy transmission with electromagnetic waves

1.

� F

For an electromagnetic wave, equation (3.13) holds:
�

With equation (3.15) we get:

�

 and

� .

We calculate:

�

We thus obtain:

�

and correspondingly:

� .The energy current density of the light 

from the Sun is about 500 W/m2, i.e. greater by a factor of 100 000. 

2. The current is an alternating current. Fig. 17 shows a snapshot.
The energy flows perpendicularly to the drawing plane, away from 
the observer.

U = n ⋅ dΦ
dt

= n ⋅A ⋅ dB
dt

= 200 ⋅0.0008 m2 ⋅ 0.3 T
2 s

= 0.024 V

!
H = n ⋅I

 l
= 2000 ⋅10 A

0.5 m
= 40 000 A/m

!
B = µ0

!
H =  1.257 · 10–6(Wb/Am) · 40 000 A/m = 5.03 · 10–2  T

U = ′n ⋅ ′A ⋅ dB
dt

= ′n ⋅ ′A ⋅B
t
⇒

t = ′n ⋅ ′A ⋅B
U

= 500 ⋅1.5 ⋅10−3m2 ⋅5.03 ⋅10−2T
100 V

= 0.38 ms

U = n ⋅A ⋅ dB
dt

= 1⋅2 ⋅10−4m2 ⋅0.2 T/s = 4 ⋅10−5 V

I  = U
R

= 4 ⋅10−5 V
200 Ω

= 2 ⋅10−7A

Φ   =B ·A Φ

U0 = 2 ⋅Ueff = 2 ⋅230 V = 325 V

I = P
U

I1 =
60 000 000 W

3000 V
=  20 000 A

I2 =
60 000 000 W

300 000 V
=  200 A

U =R ⋅I
U1 = 0.05 Ω ⋅  20 000 A = 1000 V
U2 = 0.05 Ω ⋅  200 A = 10 V

U01 = 3000 V – 2000 V = 1000 V
U02 = 300 000 V – 20 V = 299 980 V

P1 = 2 ⋅U1 ⋅I1 = 2 ⋅1000 V ⋅20 000 A=40 MW
P2 = 2 ⋅U2 ⋅I2 = 2 ⋅10 V ⋅200 A=0,004 MW

jE = P
A

= 104  W
2.5 · 106  m2 = 4 · 10–3  W/m2

ε0
!
E = µ0

!
H

jE =
!
E ·
!
H = ε0

µ0

!
E

2

!
E = µ0

ε0
4 jE

µ0

ε0

= 1.257 · 10–6  (Vs/Am)
8.854 · 10–12  (As/Vm)

= 1.94 V
A

!
E = µ0

ε0
4 jE =  12,27 V/m

!
H = µ0

ε0
4 jE =  32,56 A/m

Fig. 14
For 3.2, exercise 2B

I

t

t

Fig. 15
For 3.7, exercise 1

Fig. 16
For 3.11, exercise 1

antenna
P = 10 kW

10 km

2.5 km

1 
km

Fig. 17
For 3.11, exercise 2
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