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Abstract

Elementary texts about the strong interaction between elementary particles suggest

that the space of the color charge is three-dimensional. We discuss what should be

understood by the term “dimension of a physical quantity” and show that the space

of the color charge is two-dimensional.

Zusammenfassung

In Einführungstexten über die starke Wechselwirkung wird oft suggeriert, daß der

Raum der Farbladung dreidimensional ist. Wir diskutieren, was man unter der Di-

mension einer physikalischen Größe verstehen sollte und zeigen, daß die Farbladung

eine zweidimensionale Größe ist. 
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1. Introduction

This article is about a question which may come to the minds of those physics stu-

dents, physicists or physics teachers who are not specialists in particle physics, but

who have a good basic knowledge of physics, including quantum mechanics. Their

knowledge about quantum chromodynamics might stem from elementary text books

or from popular science magazines such as Scientific American.

The so called color charge of particles which are subject to the strong interaction

is a quantum number that is used to characterize the states of quarks, antiquarks and

gluons. To avoid confusion with the current meaning of the word “color”, in the fol-

lowing article we shall call this quantity “strong charge”. 

In the same way as other quantum numbers strong charge is an extensive quantity.

The total value of the strong charge is zero for baryons, antibaryons and mesons. (A

baryon consists of three quarks, an antibaryon of three antiquarks, and a meson of a

quark and an antiquark.) 

It was for these facts that the names of colors were attributed to the various values

which the strong charge admits and that the name color charge was coined for the

quantity itself. The values which the strong charge admits for the three “color states”

of a quark have been called red, green and blue and those for the antiquark are cyan,

magenta and yellow or also antired, antigreen and antiblue. Just as for perceptible

colors the additive mixing of red, green and blue light of appropriate intensity results

in the color impression “white” or as the mixing of light of the colors cyan, magenta

and yellow combines to white light, the addition (in the sense of mathematics) of the

strong charges red, green and blue or cyan, magenta and yellow yields the value zero.

In the same way the value of the strong charge of the mesons seems to have the cor-

rect counterpart in this model: The strong charge values of the two quarks of a meson

are one of the couples red-cyan, green-magenta or blue-yellow. The mixing of light

of these colors yields (provided that the intensities are appropriate), as everybody

knows, white light. It is seen that, in this analogy, the perceptible color “white” is put

in correspondence to the strong charge value zero and the additive mixing of light is

put in correspondence to a mathematical addition. 

Thus, in particle physics a model is being used which, at least at a first glance,

seems to work well. On closer inspection, however, the model causes some difficul-

ties. And indeed, it may mislead the students instead of helping them. Our analysis
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showed us that there are several aspects of the model which could be criticized. The

first objection to using the color model is that it suggests that the manifold of the val-

ues of the strong charge is three-dimensional. The second is of a more general nature:

We recommend to avoid giving particular names to particular values of any physical

quantity. A third objection refers to a certain use of the color code of the strong

charge: One often suggests, that the strong charge of gluons has two values, which is

not the case. These three points are discussed in turn in the following three sections.

2. The number of dimensions of a physical quantity

The space of the perceptible colors is three-dimensional. In order to specify a col-

or impression, three numbers are necessary. The color valence of a pixel of the TV

screen, for example, is defined by the intensity of three electron beams. Another

method to characterize a color valence by means of three numbers is the definition of

hue, brightness and saturation. Every person who knows a little about the three-di-

mensional color space will expect the space of the strong charge also to be three-di-

mensional. In articles for non-specialists in QCD this is even sometimes said expli-

citly (Feldman and Steinberger 1991). What is the dimensionality of the space of the

strong charge in reality?

Let us put the question in a more general context and first ask what generally is

meant when speaking about the dimension of a physical quantity. For pre-quantum-

mechanical physics the answer is easy: scalars are one-dimensional, vectors are

three-dimensional or, in a relativistic approach, four-dimensional. The question turns

out to be more complicated when coming to quantum mechanics. We shall discuss

the problem by using the familiar example of angular momentum. Let us consider the

spin of a one-electron system. The quantity spin has three components sx, sy and sz.

Each of these components is represented by a 2x2 matrix. No two of these three ma-

trices commute with one another, i. e.  the system can be in an eigenstate of only one

of the three spin components sx, sy and sz. In other words, only one of the matrices

can be diagonal in a given representation. One possible representation is given by the

Pauli matrices:

The spin components sx, sy and sz are obtained by multiplying them by h–/2. This rep-

resentation corresponds to states of the electron which are eigenstates of sz. 
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In order to tell somebody what the angular momentum state of the system is, it is

sufficient to communicate one single number, namely the value of that component of

the angular momentum to which the system is in an eigenstate. Since the correspond-

ing matrices are 2x2 matrices this component can admit one out of two values:  + h–/2

or – h–/2. To represent the manifold of possible values graphically a one-dimensional

coordinate system is needed, i. e. one single axis, where the eigenvalue can be plot-

ted, Fig. 1. 

We are in search for the “dimension” of the spin and we are now faced with three

candidates:

- The number d of components of the quantity, i. e. the number of matrices that are

necessary for representing the quantity. In the case of the spin we have d = 3.

- The maximum number n of components, that can admit sharp values, i. e. the num-

ber of components which commute. In the case of the spin we have n = 1.

- The number of eigenvalues of each component, i. e. the number l of rows and col-

umns of the matrices which represents the quantity. In the case of the spin we have

l = 2.

Of course, in the sense of classical physics the choice would be in favor of d. In

quantum mechanics, however, it seems more reasonable to interpret n as a dimen-

sion of the quantity. This is seen clearly in Fig. 1, where the eigenvalues are repre-

sented in a one-dimensional coordinate system. 

Let us now come back to the quantity we were originally interested in, the strong

charge. The strong charge is commonly represented by the eight Gell-Mann matrices

(Just as the Pauli matrices are generators of a representation of the rotation group, the

Gell-Mann matrices are generators of a representation of the special unitary group

SU(3).):

sz

– h–/2 + h–/2

Fig. 1. Values of the spin in a one-dimen-
sional coordinate system

0
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While the spin has three components, the strong charge has eight: d = 8. Two of

these eight matrices commute, i. e. two can be simultaneously diagonalized. In the

Gell-Mann representation these are the matrices λ3 and λ8. A particle described by

these matrices finds itself in an eigenstate of the matrices  λ3 and λ8. Thus, to de-

scribe this state of the particle, two numeric values have to be given and we have

n = 2. The number l of different values that each component  λ3 and λ8 can admit is

equal to three: l = 3. 

Since n = 2, for the graphical representation of a quark's state a two-dimensional

coordinate system is needed. In the above proposed meaning of dimensionality the

strong charge is two-dimensional. Fig. 2 shows the pairs of eigenvalues {f3; f8} of

the matrices λ3 and λ8 for the three quark states (multiplied by a factor of 1/2, as is

common practice). 

The antiquarks are described by eight matrices of another representation of the group

SU(3) and the eight gluons by yet another representation of the same group. Since

both the antiquark and the gluon matrices are generators of representations of the
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Fig. 2. The values of the strong charge can be repres-
ented in a two-dimensional coordinate-system.
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Fig. 3. Quarks (  ), antiquarks (  ) and gluons (  ) in the
f3-f8-coordinate system of the strong charge. Two of
the gluons carry the same charge {0,0}.
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same group SU(3), in both cases again two matrices commute. As a result,  for anti-

quarks and gluons we equally have n = 2. Antiquark and gluon states can be repre-

sented in the same two-dimensional coordinate system as quark states. Since the anti-

quark matrices are 3x3 matrices, there are l = 3 antiquark states (an antiquark trip-

lett, or antiquarks “of three different colors”). Furthermore, since the gluon matrices

are 8x8 matrices, there are l = 8 different gluon states (a gluon octet, or gluons “of

eight different colors”). In Fig. 3 the eigenvalue pairs {f3; f8} of the three quark

states, the three antiquark states and the eight gluon states are represented. Since two

of the gluons are degenerate they have the same eigenvalue pair {0;0}.

Let us come back to our original question: How many dimensions does the space

of the strong charge have? If by dimension the number of values which have to be in-

dicated to characterize a state is meant the answer is “two”. Indeed, the operations

which can be realized in the coordinate system of Fig. 3 are the very basis of the col-

or model for the strong interaction: the vectorial addition of the three quark states in

Fig. 3 gives, just as that of the three antiquark states, zero.  

Thus, when applying the color model of the strong charge, one has to pay atten-

tion to the fact that only a two-dimensional projection of the space of the perceptible

colors has to be taken into consideration, i. e. the plane of the variables hue and satu-

ration. For the third dimension – the brightness – there is no correspondence in parti-

cle physics. Whereas the additive mixing of the colors red, green and blue will gener-

ally yield a white different from that one gets by mixing of red and cyan, the addition

of the corresponding values of the strong charge gives the same result – namely zero.

When the color model of the strong charge is used the student will undoubtedly

expect a three-dimensional space for the strong charge. We therefore recommend to

refrain from using this analogy. Finally, it is not too difficult to show that the rules

that hold for the addition of the values of the strong charge of quarks, antiquarks and

gluons are the simple rules of vector addition. 

3. Proper names for values of physical quantities

Using the color model can mislead the learner yet in another respect. When the

strong charge is introduced but, instead of indicating numerical values of this quanti-

ty one operates only with proper names of these values (red, green, blue and so on),

one is suggesting that the discussion is not about different values of one single quan-

tity but about different qualities.
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It would be the same situation if to the electric charge of the electron one name

would be given, say male, and to the charge of the positron another name, female.

Then it would be necessary to formulate an additional rule like “male + female =

neutral”. Of course, it is possible to proceed in this way and to get consistent results.

It is much simpler, however, to take advantage of some modest mathematics and to

introduce the charge of the electron and the positron as two different values of one

and the same quantity. The values are equal in amount and have opposite sign, and

mathematics yields automatically the addition rule.  Indeed, in the beginning of the

research on electricity the idea that two different qualities of electricity might exist

was seriously discussed and even left traces in our present text books. One still can

read statements such as: “There are two different kinds of electric charge.” This sen-

tence is reminiscent of a statement which is currently found in texts about the strong

charge: “There are three kinds of color charge.”

4. The strong charge of the gluons

Finally, we would like to make a critical remark about the way of characterizing

gluons. One often reads that a gluon carries two color charges, red and antigreen for

instance or green and antiblue ( 't Hooft 1980). It is true that a gluon can be charac-

terized unambiguously by indicating two color names. However, this does not mean

that the strong charge has two values at the same time. It is like saying that a Li+ ion

has five electric charges: three positive and two negative ones. Nevertheless, this ion

can be characterized by giving the number of protons and electrons. Its electric

charge, however, is one positive elementary charge, the same as that of a single pro-

ton, an Fe+ ion or many other particles.

5. Conclusion

The color model of particle physics suggests that the three quark states are distin-

guished by three different qualities and not only by different values of a single physi-

cal quantity. Moreover, it suggests that these qualities extend a three-dimensional

space. In reality the space of the strong charge is two-dimensional. The impression is

further enhanced by characterizing a gluon by two color names instead of one. We

propose refraining completely from using the color model in particle physics. 
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