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How does the ball-chain work? 
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(Received 23 July 1981; accepted for publication 19 January 1982) 

A well-known collision experiment can be carried out with an arrangement of several elastic balls 
suspended in a horizontal row. As we have shown in a previous article a necessary condition for 
the observed, simple behavior of this arrangement during collision is that the perturbation 
propagates throughout the system without dispersion. In the present paper, we show that the 
arrangement can be described by a series of spatially separated mass points and springs of a special 
type: the exponent of the force law of the springs is 1. 5 according to a theory of H. Hertz. It follows 
that the first collision sequence of such an experiment is not completely dispersion free. Indeed, 
slight dispersion during the first collision sequence creates the conditions for the total absence of 
dispersion in all the subsequent collisions. 

I. INTRODUCTION 

Figure 1 shows a well-known arrangement of elastic 
balls commonly used to demonstrate the law of conserva
tion of momentum. Each ball is suspended by two threads 
with neighboring balls touching one another. If a certain 
number ofballs is displaced from its position of equilibrium 
and then allowed to swing against the other balls at rest the 
same number of balls moves away to the opposite side of 
the chain after the collision as had initially been displaced. 

The observed behavior is in agreement with the laws of 
conservation of energy and momentum. Nevertheless, 
these two conservation laws are not in themselves sufficient 
to explain this behavior whenever the chain consists of 
more than two balls. It has been shown by Herrmann and 
Schmiilzle 1 that, for sufficiency, an additional condition is 
required, namely, the absence of dispersion. The simple, 
familiar behavior of the chain mentioned above follows 
only ifthe perturbation created by the collision propagates 
through the chain without changing shape. This conclu
sion is independent of the particular reason why dispersion 
might be absent. 

A trivial case of a dispersion-free arrangement is ob
tained when the balls are suspended with a small interval 
between neighboring balls. In the case of a single incident 
ball, the resulting propagation is a succession of indepen
dent single collisions between neighboring balls. In this 
case, the momentum of the incoming ball is completely 
transferred to the second ball before the second ball is in 
contact with the third one and so on. The same behavior is 
observed in an air-track experiment, whereby the balls are 
replaced with gliders: each glider is in turn equipped with a 
spring bumper and all the gliders are arranged in such a 
way that there is an interval between neighboring gliders. If 
one glider is moving toward the other gliders (at rest), it can 
easily be seen that the incoming glider decelerates until it is 
completely at rest while the second one accelerates from 
rest to the incident velocity. Thus the total momentum of 
the incoming glider is transferred to the next one and so on. 

However, how can the absence of dispersion in the famil
iar chain of balls be explained when each ball is initially in 
physical contact with its neighbors? It is easy to see that 
this question is not a trivial one if the corresponding air
track experiment is carried out. The motion of the indivi
dual gliders immediately after the collision seems to be in 
complete disorder. Apparently, the glider arrangement is 
not a good model of the ball chain. What is the fundamen-
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ta! difference between the ball chain and the glider chain? 
Could it be that the inertial and the elastical components of 
the system cannot be separately modeled? Or does the glid
er model contain other inadmissible simplifications? The 
answer to these questions is equivalent to finding the rea
son for the absence of dispersion within the chain of balls. 

II. COLLISION BETWEEN TWO BALLS 

Let us first consider the simplest possible collision exper
iment: a central elastic collision between one incident ball 
and an identical ball at rest. In this case dispersion is princi
pally absent and the conservation laws of energy and mo
mentum completely determine the outcome of the experi
ment. For this reason, the glider model experiment behaves 
in the same way as the actual ball experiment: the incident 
body is at rest after the collision and the target body moves 
away with the incident velocity. A theory of elastic two
body collisions with deformation was developed in 1881 by 
H. Hertz.: Hertz calculated the deformation of two elastic 
bodies with convex surfaces as a function of their being 
pressed one against the other. He then applied his results to 
the two-body collision problem. In particular, he comput
ed the collision time, i.e., the interval between the instant of 
first contact and the instant of separation of the balls, as a 
function of the velocity of the incoming ball. The following 
results of Hertz's work are of importance for our analysis: 

-The stress is much greater in the immediate neighbor
hood of the region of contact than throughout the rest of 
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Fig. I. Arrangement of elastic balb commonly used to demonstrate the 

law of comervation of momentum. 
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Fig, 2. Force Fas a function of the deformation x in one dimension for a 
steel ball, 5 cm in diameter, according to the theory of Hertz !solid line). 
The dashed line represents an approximation of this curve by two straight 
lines. 

the ball. Thus the elastic and inertial properties of the colli
sion can be considered to be spatially separated. The mate
rial in the neighborhood of the contact region acts as a 
spring. In this region, energy can be stored by deforming 
the material. On the other hand, the bulk of the ball acts as 
an undeformable massive body in which energy can be 
stored only by storing momentum. 

-The principal difference between the balls and the 
gliders is the manner in which the "springs" behave: The 
springs of the glider model are normal "Hookian" springs: 
the force Fis 

F=kx. ( 1) 

Here, x is the displacement of the elastic system from its 
equilibrium position and k is the spring constant. 

The "springs" of the touching balls obey another law (see 
Fig. 2): 

(2) 

In the following, we will call this relation "Hertz's law." 
The slope of the relations ( 1) and (2) is particularly inter

esting for us. For Hooke's law ( 1) the slope has the same 
value for all x, even for x = 0. It represents the "stiffness" 
of the spring. For Hertz's law (2), the slope is zero for x = 0 
and increases with x. This might be considered a6 a law for 
a spring which becomes harder and harder as it is com
pressed. Hertz's law could be approximately represented 
by two straight lines as shown in Fig. 2. This, however, is 
the exact shape of the force law for the non touching air
track gliders: The horizontal portion of the curve corre
sponds to the interval between the gliders, the linearly ris
ing portion corresponds to Hooke's law for the spring 
bumpers. We conclude from this that the dispersion in a 
system with Hertzian springs is weaker than that in a sys
tem with Hookian springs. 

Is this reduction of the dispersion sufficient to explain 
the outcome of the ball collision experiment? This question 
can be answered only after a quantitative consideration of 
the situation. Therefore, we simulated various collision ex
periments on a computer in a way to be detailed in Sec. III. 
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The computer simulation has the advantage that para
meters of the chain can be arbitrarily varied and the effect 
of these variations can be studied. 

III. COMPUTER SIMULATION OF COLLISION 
EXPERIMENTS 

During a collision process, the momentum spreads 
throughout the entire target ball. For objects as small as the 
balls in our collision experiment, this occurs over a much 
shorter time interval than the actual momentum transfer 
process itself. One might say that the "spring" through 
which the momentum flows from one ball into the other is a 
bottleneck for the momentum transfer. The collision time 
is large with respect to the period associated with the lowest 
(nontranslatory) eigenfrequency of the ball, i.e., with re
spect to the transit time across the ball for elastic waves. 
The only eigenfrequency which will be effectively excited 
by the collision is the "zeroth eigenfrequency," i.e., the 
translation. Consequently, the balls of the ball chain can be 
treated as mass points. 

In view of these remarks, we represent a chain of n inter
acting balls by n mass points of mass m each and n - 1 
springs. Each spring satisfies the following general relation 
between the force and the distortion of the spring from its 
equilibrium length: 

F= k(x, 1 -x,)'. (3) 

Here x, is the displacement of the ith masspoint from its 
position of equilibrium. This mass-spring system is repre
sented by a set of n-coupled differential equations: 

mX I + k (XI - X2)' = 0, 

mx2 - k (x 1 - x 2 )' + k (x 2 - x,)' = 0, 

mi, - k (x, I - x, )' + k (X; - x, I I )' = 0, 

mX
11 

- k (X
11 

I - X 11 )' = 0. (4) 

The exponent r is varied from one computer experiment 
to the next. For Hookian springs r equals 1.0 and for Hert
zian springs, 1.5. However, in the simulation other values 
of r have also been chosen. We take m = 0.512 kg and 
k = l.638X 10 10 N/m 112 to be in agreement with the ex
periments to be described in Sec. IV. k is calculated accord
ing to-' 

k = (2/3)[£ /(1 - o-2)][(1/2)R] 112
, 

where R is the radius of the balls, a- the Poisson ratio, and E 
Young's modulus for the material of the balls. The set of 
equations (4) doesn't take into account that the interaction 
between neighboring bodies is switched off whenever 
x, 1 - X; < 0. This condition however has been considered 
in the computer program. 

The computer calculated and plotted as a function of 
time: 

-the displacement of every ball from its equilibrium 
position; 

-the momentum of every ball; 
-the force exerted by one ball on the next one. 
The results reproduced in Figs. 3-5 are obtained by si

mulating chains with one incoming body colliding with 
four bodies at rest. The velocity of the incoming body im
mediately before the impact was choosen to be 0.443 m/s. 
This corresponds to an initial vertical displacement of the 
incident ball by 1 cm from its equilibrium level. 
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Fig. 3. Computer simulation of a collision experiment for one incoming ball colliding with 4 balls at rest. The exponent r in equation (3) is 1.0. (a) The 
displacement from equilibrium of each ball !upper plot) as a function of time. The first ball is the incoming ball. Legend: (1st ball); - - - -
(2nd ball); -·-·-·-!3rd ball);- - - - - - -14th ball);.. . ........... (5th ball). lb) The momentum of each ball (middle plot) asa function of time. (c)Theforce 
of one ball exerted on the next as a function of time. Legend: - - llst ball to 2nd); - -·--·!2nd ball to 3rd);-·-·-·-· !3rd ball to 4th);-···-···-··· (4th ball to 5th). 

Figure 3 shows the results for r = 1.0, i.e., Hooke's law. 
As could be expected, dispersion is important. This can be 
seen in all of the three plots of the figure. The upper two 
plots demonstrate that, after the collision process, all bo
dies are moving: The first three bodies move backward, the 
fourth and the last one move forward. After the collision, 
the fourth body has a momentum which represents about 
29% of the momentum of the incoming body before the 
initial impact (and not 0% as might be expected). The lower 
plot of Fig. 3 gives a good idea of the dispersion of the 
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energy-momentum transport throughout the chain. Ac
cording to Newton's second law, the force is equal to the 
rate of change of momentum. Thus the lower plot of Fig. 3 
tells us, that the exchange of momentum between the first 
and the second body occurs over a smaller time interval 
than the momentum exchange between each following pair 
of bodies. 

Figure 4 represents the corresponding curves for mass
points which are coupled by Hertzian springs. Here, clear
ly, the dispersion is weaker. After the collision, the fourth 
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Fig. 4. Same as Fig. 3. except with r = 1.5. 
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body has no more than 12 % of the initial momentum of the 
incident body. The curves in the lower part of Fig. 4 are 
more similar to one another than those in Fig. 3. Neverthe
less, one would not call the dispersion in this experiment 
negligible. 

We therefore tried force versus displacement laws with 
exponents r higher than 1.5 and found that for r>4 disper
sion is almost completely absent. Figure 5 shows the dia
gram corresponding to r = 4.0. 

What is to be concluded from these results? Is Hertz's 
law not in agreement with the experiment? Do real balls 
behave according to a law with r > 1.5? To infer the actual 
exponent, we carried out a real experiment. 

IV. EXPERIMENTAL DETERMINATION OF THE 
EXPONENT IN THE FORCE VERSUS 
DISPLACEMENT LAW 

Chains of different lengths consisting of from 2 to 15 
hardened steel balls, each 5 cm in diameter, were set up. 
Each ball was suspended by two threads and in contact 
wiJh its immediate neighbors. A convenient variable for the 
comparison of experiment with theory is the propagation 
time for a perturbation through the ball chain. We define 
the propagation time as the interval between the instant of 
first contact of the first and the second ball (t = 0 in the 
computer diagrams) and the instant of separation of the last 
two balls from each other (the instant of intersection 
between the position versus time curves of the last two 
balls). The propagation time was measured in the following 
way: an electronic clock was triggered by the electrical con
tact established when the first ball touched the second one 
and it was stopped when the electrical contact between the 
two last balls was interrupted. Table I shows the propaga
tion time for chains of 2,5, 10, and 15 balls (column 2), re
spectively. In the case of the two-ball chain, the same con
tact serves to both start and stop the clock. The 
"propagation time" of 0.171 ms in this case is in good 
agreement with the collision time calculated according to 
Hertz's theory: 0.177 ms. 
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Fig. 5. Same as Fig. 3, except with r = 4.0. 
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From the length of the chain (column 3) and the propa
gation time, a propagation speed can be calculated (column 
4). It should be noted that this propagation speed is not, as 
might be supposed, the speed of sound in steel (which is 
5100 mis). Indeed, a perturbation propagates within the 
chain with a speed which is an order of magnitude smaller 
than the speed of sound and which varies as a function of 
the momentum of the incoming ball. This can be under
stood by recalling that, for the chain of balls, there is an 
inherent time delay associated with the compression and 
relaxation of each ball during the collision. This is in addi
tion to the propagation time associated simply with the 
velocity of sound within the medium as, say, within a solid 
steel rod. In our example, this additional time delay ( ;::;o.17 
ms for the collision between two steel balls) is approximate
ly 10 times greater than the propagation time for sound 
( :::::::0.01 ms within either ball). This backs up the qualitative 
discussion in Sec. II. In analogy to an electrical delay line 
consisting of an arrangement of capacitors and induc
tances, the ball chain might be called a mechanical delay 
line. 

As the computer simulation shows, the propagation time 
depends strongly on the value of the exponent r. Thus by 
measuring the propagation time, we have a sensitive crite
rion upon which to base an inference about the value of r. 
Table II gives the propagation time read off Figs. 3-5 plus 

Table I. Propagation time and speed for a perturbation through chains 
consisting of 2, 5, I 0, and 15 balls. 

Propagation 
time 

Numberofballs (10 's) 

2 0.171 ±0.003 
s 0.434 ± 0.003 

10 0.845 ± 0.002 
15 1.278 ± 0.004 

Propagation 
Length of the speed 
chain Im) (m/s) 

0.10 585 
0.25 576 
0.50 592 
0.75 587 
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Table II. Propagation times for a chain of 5 balls from computer simula
tion with several exponents r. 

r 

1.0 
1.5 
2.0 

4.0 

Propagation time (s) 

3.2x10-' 
4.5x 10- • 
2.7x 10-' 
8.5x10- 2 

one additional figure (not shown) for an exponent of 
r = 2.0. Comparison of the propagation times in Table II 
with the experimental value for a chain of five balls (0.434 
ms) shows, that r = 1.5 provides very good agreement 
between the calculated value and the experimental values. 

V.SOLUTION 

There now seems to be a dilemma. The measurement of 
the propagation time tells us that the interaction is correct
ly described by Hertz's law. However, the computer simu
lation with this exponent yields a collision process in which 
dispersion is not at all negligible. On the other hand, direct 
visual observation of the ball chain shows that the system is 
dispersion free to a high degree: one should expect that, if 
there is a slight dispersion in one collision sequence, this 
dispersion will be amplified when the last ball swings back, 
thus provoking a second collision sequence backward 
through the chain and, similarly, as the first ball swings 
forward again, etc. After a small number of back and forth 
collisions, the positions of the balls should be in complete 
disorder, if the chain obeys Hertz's law. 

The reason why it does not, can be discovered by more 
carefully observing the chain immediately after the first 
impact. In fact, the balls, which are generally described as 
being at rest are not at rest at all. They are moving, just as 
the computer simulation with r = 1.5 predicts and not be
cause of any inherent experimental imperfections, as might 
have been supposed. The apparent dilemma has the follow
ing explanation: When, after the first collision sequence, 
the last ball swings back, the "resting" chain of balls is now 
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in a different state that it was initially. When the last ball 
swings back, the other balls are not only moving, each is 
now separated from its neighbors by a small distance. 
Therefore, the second collision sequence is a dispersion
free propagation for the trivial reason already described in 
Sec. l. As the position versus time curve of Fig. 4 shows, a 
separation of only 40 µm is sufficient for dispersion-free 
propagation through the chain. Thus the deviation from a 
perfect dispersion-free system during the first collision se
quence creates a perfectly dispersion-free collision system 
for all the later sequences. 

VI.SUMMARY 

A chain of elastic balls suspended in a row and touching 
one another can be described as a system of mass points 
interacting by springs of a special type. The springs repre
sent the material of the balls in the immediate neighbor
hood of the region of contact. 

The exponent of the force versus displacement law of 
these springs is 1.5 in agreement with a theory ofH. Hertz. 
The computer simulation of a ball chain using a force law 
with an exponent of 1.5 shows that the dispersion is re-· 
duced with respect to Hooke's law but not entirely re
moved. Careful observation of an experimental chain of 
balls shows that, after collision, the individual balls as
sumed to be at rest within the chain are actually no longer 
at rest. This is also in agreement with a computer simula
tion of the collision process. As a consequence of the slight 
dispersion within the initial chain, the balls no longer touch 
after the first collision sequence. This is the reason why, in 
all the following collision sequences, the chain is a perfectly 
dispersion-free system. 
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