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Abstract The dissipative transport of energy is 
described in the momentum current picture. This picture 
provides a local-causes approach to mechanics whereby 
forces are considered as momentum currents. In this 
approach, friction, i.e. mechanical heat production, 
appears when a momentum current flows between two 
bodies of different velocities. The treatment of the 
transport and dissipation of energy follows the same 
rules in mechanics as in electricity. An 'Ohm's Law of 
momentum currents' is introduced in analogy to Ohm's 
Law in electricity. Newton's Third Law reduces to a 
simple statement about momentum conservation. 

1. Introduction 
Figures l(a) and l(b) illustrate two simple dissipa­
tive processes. In both cases, energy is flowing from 
one location to another: in the first case, from the 
man to the underside of the crate; in the second 
case, from the battery to the light bulb. These 
processes are typically described as follows: 

(i) The work done per unit time (=power) to 
keep the crate moving at a constant velocity v is 
given by P = v · F where F is the force exerted by 

Zusammenfassun2 Der dissipative Transport von 
Energie wird im Impulsstrombild beschrieben. Dieses 
Bild, in dem Krafte als lmpulsstri:ime aufgefaBt werden, 
beschreibt die Mechanik nahewirkungstheoretisch. 
Reibung, d.h. mechanische Warmeproduktion, tritt 
auf, wenn ein lmpulsstrom zwischen zwei sich mit 
verschiedener Geschwindigkeit bewegenden Ki:irpern 
flieBt. Die Behandlung von Energietransport und 
dissipation geschieht in Mechanik und Elektrizitatslehre 
nach denselben Regeln. Ein 'Ohmsches Gesetz fiir 
lmpulsstrome' wird eingefiihrt, in Analogie zum 
Ohnischen Gesetz fiir elektrische Strome. Das dritte 
Newtonsche Gesetz erscheint als eine einfache Aussage 
iiber die lmpulserhaltung 

the man on the crate. 
(ii) The energy per unit time (=power) dissi­

pated in the light bulb is given by P = UI0 where U 
is the potential drop maintained by the battery 
across the light bulb and 10 is the charge current 
flowing through the circuit. 

Although these processes are closely related 
physically, their descriptions use quite different 
concepts: 'work done' and 'force', in the first case, 

Figure 1 Two examples illustrating the flow of energy from one location, an energy source, to another location, an 
energy receiver, where the energy is dissipated by: (a), a man pulling a crate at a constant speed: (b ), a battery 
operating a light bulb at a constant voltage. 
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'energy' and 'charge current' in the second. This 
different usage is not a logical consequence of the 
dissimilarities between the two processes. Rather, it 
results from the fact that mechanical processes are 
described in terms of concepts which are, roughly 
speaking, one hundred years older than the con­
cepts used to describe electrical processes. For ex­
ample, a statement like 'X exerts a force on Y' 
makes no reference to any medium connecting X 
and Y which could make the exertion of the force 
possible. This results in an action-at-a-distance pic­
ture for cases in which no medium is visible (as, for 
instance, in gravitation). As another example, a 
statement like 'a force does work' obviously stems 
from a time when energy was not yet recognised as 
a physical quantity of its own right. 

In this paper we propose a description of energy 
transport and dissipation in mechanical processes 
which takes advantage of the fact that forces are 
identical to momentum currents (Herrmann 1979, 
DiSessa 1980) and, accordingly, Newton's second 
law is identical to the continuity equation for 
momentum (Herrmann and Schmid 1984). 

This description of mechanical processes em­
phasises a particular analogy between mechanical 
and electrical processes by which every mechanical 
quantity corresponds to an electrical quantity: 
momentum p to electric charge Q, momentum 
current IP (=force) to electric charge current I 0 

and velocity v to electric potential cf> (Falk and 
Ruppel 1976). Furthermore, every relation be­
tween mechanical quantities corresponds to a rela­
tion of the same mathematical form between the 
analogous electrical quantities. 

To be sure, this analogy, characterised by the 
correspondence between p and Q, is mathemati­
cally no less justified than other more familiar 
analogies (Olsen 1958, MacFarlane 1964) (as, for 
instance, those which associate Q with position r). 
However, the analogy considered here has an im­
portant additional advantage: it evokes a physical 
picture which comprises mechanical as well as 
electrical processes. This is due to the fact that 
momentum as well as electric charge are 
'substance-like' quantities (Falk et al 1983): Both 
momentum ('amount of motion') and electric 
charge ('amount of electricity') are distributed in 
space, i.e. have densities, and can flow from one 
region of space to another, i.e. have current den­
sities. In addition, the corresponding quantities v 
(velocity) and cf> (electric potential) are 'energy­
conjugates': both relate energy changes dE of a 
system to momentum changes dp or charge changes 
dQ, respectively, according to Falk and Ruppel 
(1976). 

dE = v · dp +cf> dQ. 

A correspondence between the scalar O and the 
vector p actually implies a set of three correspon­
dences, namely, between the scalar Q on the one 
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hand and each of the three components of p on the 
other hand (note that momentum conservation is 
valid for each component separately). However, we 
restrict our considerations in this paper, for simplic­
ity, to the flow of only one of the three components 
of momentum. This component can then be treated 
like a scalar quantity (for a fixed choice of coordi­
nates). This not only makes the analogy to electric­
ity theory particularly obvious; it also shows that 
the momentum current for each component of the 
momentum forms a circuit in three dimensions. 

For mechanical processes more complicated than 
those considered here, the simultaneous flow of 
three components of momentum would have to be 
considered. This means keeping track of two more 
momentum flow circuits. If the distribution of 
momentum currents in the momentum transmitting 
medium is desired, the entire momentum current 
density tensor (=negative stress tensor) must be 
taken into account (Herrmann and Schmid 1984, 
Landau and Lifschitz 1959). 

This paper is organised as follows: section 2 deals 
with the necessity of distinguishing between two 
different types of momentum currents. Accord­
ingly, the decomposition of momentum currents is 
discussed in terms of a similar decomposition of 
charge currents in electricity. An 'Ohm's law of 
momentum currents' for mechanical processes with 
friction is then introduced in analogy to the well­
known Ohm's law for charge flow with energy 
dissipation. In section 3, Newton's third law is 
formulated in the momentum current picture and 
the advantages of this formulation are discussed. 
The considerations in sections 2 and 3 facilitate the 
description of energy transport with momentum 
currents in section 4. Section 5 contains conclu­
sions. 

2. Types of current 
Figure 2 shows two possible ways to give a body 
momentum: In the first case, momentum flows 
through a rod to the wagon; in the second case, 
momentum flows with the water from a hose to the 
wagon. Consider a cross-sectional area cut through 
the rod in the first example and through the water 
stream in the second. In the first example, one does 
not traditionally speak of a momentum current 
crossing this area. One rather says that the rod to 
the left of the area exerts a force on the rod to the 
right. In the second example, it would be incorrect 
to say that the water to the left of the area exerts a 
force on the water to the right. 

In the momentum current picture, we speak of a 
momentum current in both of the above cases. In 
the first case, we will call this a conductive momen­
tum current: no momentum density is associated 
with the momentum current density. In the second 
case, we will call this a convective momentum cur­
rent: a non-zero momentum density is associated 
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Fi211J'e 2 Two possible ways to give a body momentum: 
(a), momentum flows through a rod to a wagon; (b ), 

momentum flows with a stream of water to a wagon. 

with the momentum current density. Accordingly, 
forces are identical to conductive momentum cur­
rents. 

Conductive and convective momentum currents 
can be distinguished by their transformation prop­
erties: Convective momentum currents can be 
transformed away by a suitable choice of reference 
frame, conductive momentum currents cannot. This 
is similar to the distinction between conductive and 
convective electric currents. The momentum cur­
rent illustrated in figure 2(a) is similar to an electric 
current flowing in, say, a metal; the momentum 
current illustrated in figure 2(b) is similar to, say, 
the flow of electrons in a vacuum tube. The latter 
electric current can be transformed away, the 
former not. 

The above analogy goes even further. Just as 
there are electric super currents, i.e. electric cur­
rents which flow without energy dissipation, there 
are also momentum super currents, i.e. momentum 
currents which flow without energy dissipation. 
Typical examples of momentum super currents arc 
the conductive momentum currents flowing through 
elastic media (Herrmann and Schmid 1984) or 
through fields. Whereas electric super currents are 
the exception, momentum super currents are the 
rule. Of course, at high enough temperatures, all 
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Fi211J'e 3 (a), In the momentum current picture, a dash 
pot is a momentum resistor. (b ), Two surfaces separated 
by a viscous fluid arc sliding past one another with 
relatic speed ~v. The area of contact between the sur­
faces and the fluid is designated A and the thickness of 
the fluid is d. 

momentum super currents become dissipative, 
namely, when the momentum conducting medium 
begins to flow or to melt. Dissipation is always 
present in a momentum current circuit where, trad­
itionally speaking, frictional or damping effects 
occur during the exertion of a force on a body 
(figures 3(a) and 3(b)). Just as one defines an 
electric resistance R 0 as 

R 0 = ~<f>l lu 

a momentum resistance RP can be defined as 

RP= ~vi lw 

(I) 

(2) 

In equation (I), ~<f> is the potential difference 
across the resistive medium through which the 
electric current / 0 is flowing and R 0 is the as­
sociated resistance to this flow. In equation (2), ~v 
is the magnitude of the velocity difference across 
the resistive medium through which the momentum 
current of magnitude /p is flowing and RP is the 
associated resistance to this flow. 

Just as R 0 can often be expressed in terms of the 
length d, cross-sectional area A and electric con­
ductivity <T of a charge conducting channel 

Ru= (1/<r )(di A) (3) 

the momentum resistance RP can often be exprcs-
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sed in terms of the length d, cross-sectional area A 
and viscosity 'YI of a momentum conducting channel 
(recall figure 3(b)) 

RP= (1/'Y/)(d/A). (4) 

Equation (4) can be seen to follow directly from 
equation (2) with the help of the well-known 
relation IP(= F) = 'Y/(A/d).:iv for the momentum 
current (force) flowing through (acting on) the 
underside of a body sliding along a viscous layer 
(Feynman et al 1964). 

3. Newton's third law 
In the momentum current picture, Newton's first 
law states that the amount of momentum contained 
within a body does not change as long as the net 
flow of momentum into or out of the body is zero; 
Newton's second law simply expresses the con­
tinuity equation for momentum (Herrmann 1979, 
Herrmann and Schmid 1984). Newton's third law, 
in the usual force picture, can be stated as (Purcell 
1973): 

Whenever two bodies interact, the force F 21 that 
body 1 exerts on body 2 is equal and opposite to 
the force F, 2 that body 2 exerts on body I: 

In the momentum current picture, Newton's third 
law reads: 

Whenever a momentum current is flowing be­
tween two bodies, the momentum current IP 
(enter 1), entering body 1 is equal to the momen­
tum current In (leave 2) leaving body 2; 

In( enter 1) = In(Ieave 2). 

The formulation of an analogous law for the flow of 
electric charge between two bodies is so trivial as to 
be left out of most lectures or textbooks on elec­
tricity theory. 

To understand how the momentum current for­
mulation of Newton's Third Law follows from the 
force formulation, consider the latter translated 
literally into the momentum current picture. 
Whenever a momentum current flows between two 
bodies, the momentum current I" (enter 2) entering 
body 2 is equal and opposite to the momentum 
current IP (enter 1) entering body 1: 

Ip (enter 1) =~JP (enter 2). 

This formulation is unnecessarily awkard due to the 
introduction of a negative current. However, a 
negative current entering a body is equivalent to a 
positive current leaving a body. Accordingly, this 
literal translation can be rewritten more clearly in 
the form suggested above. Often the channel 
(which could, for example, be a magnetic field) 
connecting two bodies accumulates no momentum, 
i.e. is taken to be massless. Then Newton's third 
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law states that the rate of momentum flow into the 
channel at one end is equal to the rate of momen­
tum flow out of the channel at the other end. 
Considering that momentum is a conserved quan­
tity (Newton's second law), this is actually a 
triviality. 

4. Energy transport with momentum currents 
In view of the considerations in sections 2 and 3, 
we now return to the correspondence between the 
processes sketched in figures l(a) and 1(b). Just as 
a charge current is flowing in a closed loop in figure 
l(b), a momentum current is flowing in a closed 
loop in figure l(a), namely, from the muscles in the 
man's arms into the rope, through the rope into the 
crate, through the crate and out through the bot­
tom of the crate into the earth, through the earth 
and, finally, back again into the man. In the exam­
ple of figure 1 (b ), there is an electric potential 
difference .:i<f> between the two channels (the wires) 
connecting the energy source (the battery) to the 
energy receiver (the light bulb). The energy source 
in this case maintains .:i<f> at a constant value. In the 
example of figure l(a), there is a velocity difference 
.:iv between the two channels (rope and earth) 
connecting the energy source (the man's muscles) 
to the energy receiver (the underside of the crate). 
The energy source in this case maintains .:iv at a 
constant value. If one of the charge conducting 
channels in figure l(b) is grounded under the con­
vention that <l>eacth = 0, this channel will also be at 
zero potential. In figure l(a) one of the momentum 
conducting channels is already 'grounded'. Under 
the convention that Vuu-th = 0, this channel is at zero 
velocity. 

Figure 4 shows how the momentum flow in the 
two channels can be demonstrated with springs in a 

Figure 4 Sketch of a possible lecture demonstration to 
show the channels through which momentum is flowing 
from the muscles of a man to a crate and back again. 
Taking the direction from left to right to be positive, 
the expanded spring in the rope evidences the flow of 
positive momentum in the negative direction whereas 
the compressed spring between the boards evidences the 
flow of positive momentum in the positive direction. 
The rollers under the boards insulate the momentum 
circuit from the earth. 

~I ~a~--------~(~)~1t11111i~(~)-----:u...-"I 
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Table 1 Summary of the analogy between mechanics and electricity. 

Electricity 

Electric charge Q 
Charge current I 0 
Electric potential <f> 
Charge conductivity a 
Electric resistance R 0 
Charge capacity C 
Electrical inductance L 

Quantities 

Relations 
dQ/dr = 0 for isolated bodies 
dQ/dr+I0 =0 
I 0 (1) = -I0 (2) for the flow 

of charge between two bodies 
R 0 =!J.<f>/l0 

N<f>B=Llo; 
N =number of turns in a coil 
</> 8 = magnetic flux set up in each turn 
P=il<f>I0 
Q =Cil<f> 

lecture hall. A spring lying along the x axis is 
compressed or expanded when positive x momen­
tum is flowing through it in the positive or negative x 
direction, respectively (Herrmann and Schmid 
1984). The rollers under the boards insulate the 
momentum circuit from the earth: rollers and 
wheels are momentum insulators. Just as the flow 
of charge in the current loop in figure 1 (b) is 
simultaneous to the flow of energy from an energy 
source (the battery) to an energy receiver (the light 
bulb), the flow of momentum in the current loop in 
figure 1(a) is simultaneous to the flow of energy 
from an energy source (the man's muscles) to an 
energy receiver (the underside of the crate). In both 
cases, energy is dissipated at the energy receiver. 
The intensity P of the energy current flowing from 
source to receiver, i.e. the transmitted power is 
given by 

for figure l(b) and l(a) respectively. 

(5) 

(6) 

One apparent difference between the situations 
illustrated in figures l(a) and l(b) is that, whereas 
the crate in figure l(a) has net momentum, the 
light bulb in figure l(b) has no net charge. This 
difference, however, can be easily avoided, for ex­
ample, by replacing the light bulb in figure 1 (b) 
with a capacitor and ohmic resistor in parallel. The 
relation 

O=CU (7) 
where C is the charge capacity of the capacitor 
corresponds to the relation 

p=mv. (8) 

Mechanics 

Momentum p,; i = 1, 2, 3 
Moment current I"'; i = 1, 2, 3 
Velocity v,; i = 1, 2, 3 
Viscosity TJ 
Mechanical resistance RP 
Momentum capacity m 
Mechanical inductance 1/k 

(='reciprocal of spring 
constant k ') 

dp/dr = 0 for isolated bodies 
dp/dt +Ip= 0 
IP(l) = -IP(2) for the flow 

of momentum between two bodies 
RP= ilv/ IP 
kx =IP; 
x =displacement from equilibrium 

position of the end of a spring 
P = ilv ·Ip 
p = milv 

This comparison shows that the mass m of a body 
can be understood as the momentum capacity of 
the body. 

5. Conclusions 
The momentum current picture of mechanics has 
several advantages over the traditional picture in so 
far as the former: 

(i) Stresses a local-causes point of view in the 
description of mechanical processes. 

(ii) Corresponds structurally to the traditional 
presentation of electicity (see table 1). As will be 
shown elsewhere, this correspondence can be ex­
tended to include the treatment of processes in 
rotational dynamics, thermodynamics and chemis­
try as well when these are based upon the flow of 
angular momentum, entropy and amount of sub­
stance, respectively. Indeed, the approach to 
physics introduced here is only part of a generalised 
dynamics (Falk 1968, Schmid 1984) valid through­
out all of physics. 

(iii) Is easy to use. In particular, the confusion 
typical of the traditional interpretation of Newton's 
third law is avoided altogether. 
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