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Abstract The total entropy of an information storage 
system can be decomposed into independent terms, i.e. into 
functions which have no independent variables in common. 
One of these terms represents the information (=entropy) 
in which the user of a computer is interested. This 
decomposition corresponds to a break-up of the entire 
system into non-interacting subsystems and is analogous 
to the decomposition of the total energy of a system into 
independent terms commonly referred to as energy forms. 
In both decompositions, the term usually of interest is many 
orders of magnitude smaller than the rest. 

I. Introduction 
The entropy S of a physical system can be expressed 
(Reif 1965) as a function of the probabilities p(i) of the 
microstates of the system: 

S=-k L p(i) In p(i) (I) 

where k is Boltzmann's constant. The macrostate of 
the system is determined by the distribution i p(i)f of 
the probabilities p(i). 

l, the Shannon measure of the information of a 
system, is given by a relation (Shannon and Weaver 
1949) having the same mathematical structure as (I): 

l =-f L p(i) In p(i). (2) 

Here I is the (amount of information)/symbol 
generated by a source, p(i) is the probability that 
symbol i will be generated and f is a constant of 
proportionality. The usual unit of I is the bit. In these 
units, the constant/ has the value (I/In 2) bit. 

Equation (2) can be applied to a thermodynamic 
system and interpreted as the amount of information 
which an observer would have about the system if he 
were to receive a signal telling him what microstate the 
system was in. For this reason, it is customary to call 
the physical entropy defined by (2) the 'amount of 
missing information' (of the observer) about the 

Zusammenfassung Es wird gezeigt, dal3 die 
Gesamtentropie eines Informationsspeichers in unabhiingige 
Terme zerlegt werden kann, d.h. in Funktionen, die keine 
gemeinsamen unabhiingigen Variablen haben. Einer dieser 
Terme stellt die Information ( = Entropie) dar, welche fiir den 
Benutzer des Computers von Interesse ist. Diese Zerlegung 
entspricht einer Aufspaltung des Systems in Teilsysteme, 
die nicht miteinander wechselwirken. Sie ist analog zu 
der Zerlegung der Gesamtenergie eines Systems in 
Energieformen. In beiden Zerlegungen ist der interessante 
Term um viele Gr613enordnungen kleiner als der Rest. 

microstate of the system (Rothstein 19 5 I, 19 5 2a, b, 
Jaynes 1957). In spite of the ambiguity of the 
terms-entropy and missing information-it has long 
been proven that entropy as defined by ( 1) and 
Shannon's measure of information (2) are physically 
identical (Tribus and Mclrvine 197 I): 

S = (k/f)I. (3) 

The equivalence (3) shows that 

I bit=0.96 x 10- 23 JK- 1 c:--10 23 J K- 1• (4) 

In view of this equivalence, consider now an informa
tion storage device, for example that of a computer. 
The entropy (=information) of this macroscopic 
system is of the order of I J K - 1 which, according to 
(4), equals 10 23 bit. 

However, if we ask a designer or user of the 
computer how much information is contained within 
the computer's memory, we may expect to get an 
answer like 'I Mbit', i.e. 10 17 times smaller than the 
actual value. 

What is the reason for this discrepancy? How can 
the minute amount of information important to the 
user of a computer be distinguished from the very 
much larger rest? It is the purpose of this paper to 
show the answers which thermodynamics provides to 
these questions. In §§ 2 and 3 it will be shown that the 
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total entropy S of an information storage device can 
be decomposed into two parts: 

(5) 

where S 01 , the non-thermal entropy, is the stored 
information and S,, the thermal entropy, is a much 
larger remainder. In § § 4 and 5 it will be shown that 
(5) is analogous to the more familiar decomposition of 
the total energy stored in a system into different 
'energy forms'. 

2. Specification of the state of a 1-bit computer 
storage element 
Consider a physical system which can be brought into 
either one of two possible states for the purpose of 
information storage, say, a magnet which can be 
magnetised along either one of two possible directions. 
The magnetisation m along these directions is either of 
the two values +m0 or -m0 • 

Now assume the system finds itself (with prob
ability I) in a state with m = + m0 • Then the probability 
distribution jp(i, m0 )}, i= I, 2, ... , N of the N 
microstates (i) of the system is fully specified. If the 
system is subsequently brought into a state with m = 
-m0 while holding the values of the temperature and 
all other macroscopic variables fixed, the resulting 
probability distribution l p(i, -m0 )}, i = I, 2, ... , N is 
the same as above. 

Next consider a Shannon information source which 
can generate either one of two symbols labelled by the 
index j = I or j = 2. The probability of generating 
either symbol is designated pm(}). Each time the 
source emits one symbol, the magnetisation of the 
above-mentioned binary storage system is switched 
accordingly. 

For our binary storage system, the storage of a 
value means that the number of its microstates is 
doubled from N to 2N. There are now two classes, 
each with N microstates. For the class j = I, m has the 
value + m0 and for the class j = 2, m has the value 
- m0 • Every microstate belonging to the one class 
corresponds to a microstate of the other and vice 
versa. 

A microstate i belonging to one class differs from 
the corresponding microstate i belonging to the other 
class only by its value of m. Every microstate is 
characterised by two numbers i and j and its 
probability p(i,j) of occurrence can be expressed as a 
product of the independent probabilities p 0(i) and 
pm(}): 

p(i,}) = po(i)pm(}) (6) 
with 

N 

I Po<o=1 (7) 
i=I 

and 

I PmU)=1. (8) 
1~1 
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Inserting (6) into (I), summing over i and }, and 
simplifying the resulting expression using (7) and (8), 
we get: 

N 2 

S=-k L p 0(i) In p 0(i)-k L pm(}) In pm(}). (9) 
i=I 

The first sum on the right-hand side of (9) is the 
entropy which the storage device would have if the 
probability of either possible value of m0 were I. We 
designate this the thermal part of the total entropy 
with the symbol S,. The second sum on the right-hand 
side of (9) is that part of the total entropy in which 
a communication theorist is most interested. We 
designate this non-thermal part of the total entropy by 
the symbol S 01 • Accordingly, 

S(po(i), pm(}))= S,(po(i)) + Sn,(pm(})). (10) 

Equation (IO) represents a decomposition of the total 
entropy of a system into two independent terms: the 
first term depends only upon the p 0(i); the second 
term only upon the pm(}). This corresponds to a 
decomposition of the system into two noninteracting 
subsystems. 

The independence of the p 0(i) from the pm(}) is 
equivalent to the fact that no thermal equilibrium 
exists between the corresponding subsystems. Indeed, 
this fact allowed us to use the subsystem associated 
with the pm(}) as an information storage device in the 
first place. The subsystem characterised by the p 0(i), 
on the other hand, will in general be in thermal 
equilibrium with the environment of the entire system. 
S, is generally a function of the temperature T alone 
whereas S 01 is a function of the average value <m) of 
the magnetic moment 

<m) = pm(i)m0 + pm(2)(-mo) 

=pm(l)mo+(l-pm(l))(-mo) (Ii) 

=(2pm(I)- Omo. 

S 01 =S01 (<m)) because, given <m), pm(I) (and 
consequently pm(2) = I - pm(I)) can be determined 
from the above equation thus specifying the distri
bution corresponding to Sn1. Accordingly, instead of 
(I 0), we can rewrite the total entropy S of the system 
in terms of the 'macroscopic' variables T and < m) as 

S(T, <m))= S,(T) + S 01 (<m)). (12) 

4. The decomposition of the energy of a system 
The manner in which the total entropy of a system is 
broken up into two parts has been copied from the 
way (Falk and Ruppel 1976, Falk et al 1983) a similar 
decomposition is carried out for the energy. Consider 
the energy E of an arbitrary system as a function of its 
independent variables lX; } : 

(13) 
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For certain systems, this function breaks up into a 
series of terms, each depending upon variables not 
belonging to the other terms of the series. 

To see this explicitly, consider a moving capacitor. 
Let the momentum of this capacitor be p, its charge Q, 
its mass M and its capacity C. The the total energy E 
can be written as 

E=E(p, Q)=E0 +£ 1(p)+E2(Q) 

=£0 + p 2/2M + Q2/2C. (14) 

The individual terms of such a decomposition often 
have separate names. In the above case, Eo is called 
the 'rest energy', E 1(p) the 'kinetic energy' and E2(Q) 
the 'electric field energy' of the capacitor. Of course, 
such a decomposition is not always possible. For 
example, consider the expression for the energy of an 
ideal gas as a function of entropy, volume and amount 
of substance. 

5. Comparison of the decomposition of the entropy 
and energy of a system 
Some systems can be broken up in such a way that 
their total entropy decomposes into a relation of the 
form (12) (recall § 3). Such systems are useful for data 
storage. Similarly, some systems can be broken up in 
such a- way that their total energy decomposes into a 
relation of the form (14) analogous to (12) (recall § 4). 
It will be shown in this section that this analogy 
between entropy and energy also includes the relative 
orders of magnitude of the individual terms appearing 
in (12) and ( 14 ), respectively, for typical technical 
systems. 

The value of S, in (12) is of the order of 1 J K - 1 for 
a computer memory. The value of Sn, is typically 
1 Mbit = 10- 17 J K - i, i.e. very much less than the 
value of S,. Thus, as far as one is concerned about the 
total entropy S of such a system, it is irrelevant 
whether one takes the value of S itself or S,. 

The value of £ 0 in (14) is of the order of 10 15 J 
for, say, a capacitor weighing 10 g and having a 
capacitance of 1 µF. If this capacitor is moving at 
1 m s- 1 and is charged up to 100 V, the values of E1 
and £ 2 in (14) are each 0.005 J. Thus, as far as one is 
concerned about the total energy E of such a system, 
it is irrelevant whether one takes the value of E itself 
or Eo. 

The values of Sn, and £ 1 or E2 are much smaller 
than the values of S, and £ 0 , respectively, and are 
even much smaller than the natural fluctuations in time 
of S, and £ 0 • For example, a change in temperature of 
a computer memory by only 0.01 K effects a change 
in the value of S, of the order of 10- 3 J K- 1

, i.e. 14 
orders of magnitude greater than the value of Sn<. In 

the same way, the change in the total energy of an 
accelerating car results more from, say, the wear on its 
tyres (according to !!E = !!mc 2

), than from the gain in 
its kinetic energy. 

We now return to the question raised in the 
introduction: 'How can the minute amount of 
information important to the user of a computer be 
distinguished from the very much larger rest?' This 
question is analogous to the question: 'How can the 
minute amount of kinetic energy important to the 
driver of a car be distinguished from the very much 
larger amount of rest energy of the car?'. The answers 
to these questions follow from equations (12) and (14). 
To determine the value of Sn, or £ 1, one does not 
determine the value of an entropy or an energy itself 
but, rather, only the values of other variables upon 
which only S nt or E 1, respectively, depend: in the 
above case of a computer storage element, only the 
average value of the magnetic moment m and in 
the case of the cai, only the value of the momentum 
p. From these, the values of S nt and E i. respectively, 
are calculated. 

6. Conclusions 
The information important to the user of a computer is 
part of the very much larger physical entropy of an 
information storage system. This 'non-thermal' part of 
the entropy can be determined because its value 
depends upon variables from which the rest of the 
entropy, i.e. the 'thermal' part, is independent. The 
decomposition of the total entropy of a system into 
independent terms, i.e. into respective functions of 
independent variables, corresponds to a break-up of 
the entire system into non-interacting subsystems. This 
decomposition is analogous to the decomposition of 
the total energy of a system into independent terms. In 
both cases, the term usually of interest is many orders 
of magnitude smaller than the rest. 
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