

Organische Photovoltaik

Uli Würfel KIT, 23. Februar 2024

Agenda

1. Allgemeines zur Photovoltaik

2. Organische Photovoltaik

- Einführung
- OPV als Energieversorgung f
 ür IoT
- Transparente OPV
- 3. (Transiente) Lumineszenz an organischen Solarzellen

Kumulierte, weltweit installierte PV-Leistung

Die Lernkurve der PV

Efficiency Rules...

Fakten zur PV

- International wurde PV-Strom an Standorten mit hoher Solarstrahlung bereits zu Tiefstpreisen bis 1,12 €ct/kWh (Portugal) und 0,87 €ct/kWh (Saudi-Arabien) angeboten
- Letzte Auktion in Deutschland im Bereich 100 MW: < 6 €ct/kWh Vergütung
- Zum Vergleich: für das geplante Atomkraftwerk "Hinkley C", das im Jahr 2025 in Großbritannien in Betrieb gehen soll, wurde eine Einspeisevergütung von umgerechnet 12 €ct/kWh zuzüglich Inflationsausgleich über die Dauer von 35 Jahren garantiert

Aktuelle Fakten zur Photovoltaik in Deutschland

Aktuelle Fassung abrufbar unter www.pv-fakten.de

Best Research-Cell Efficiencies

Organische Solarzellen Einführung

- Organische Halbleiter werden in Lösung gebracht und können dann durch verschiedene Beschichtungs-/Druck-Technologien aufgebracht werden
- Die Trocknung findet bei niedrigen Temperaturen statt (<130°C) → es können flexible Substrate verwendet werden
- Keine Schwermetalle oder andere kritische Materialien
- Sehr niedriger Energieeinsatz, folglich sehr niedriger CO₂-eq Fußabdruck

Organische Solarzellen Einführung

	Inorganic Semiconductor	Organic Semiconductor
Chemical bond	covalent (2-8eV)	Van der Waals betw. molecules (0.001- 0.01eV)
Dielectric permitivity	11.7 (Si)	34
Binding energy electron-hole pair after optical excitation	< k _B T	>> k _B T (0.4-1eV)
	\rightarrow free charge carriers	\rightarrow excitons
Charge carrier transport	band transport	hopping transport
Charge carrier mobilities / cm ² (Vs) ⁻¹	10 ² - 10 ³	10 ⁻² 10 ⁻⁵
Absorption coefficient / cm ⁻¹	8000 (c-Si@550nm)	1.5x10 ⁵ (P3HT@550nm)
Typical efficiency (max. efficiency)	20-25% (27%)	12-18% (19%)

Organische Solarzellen Einführung

HOMO

Organic Solar Cells – The Bulk-Heterojunction Einführung

Organische Photovoltaik: Entwicklung Rekordwirkungsgrade Einführung

Organische Photovoltaik

Einführung

Es ist schwer, mit c-Si zu konkurrieren → Identifiziere Anwendungen, bei denen die OPV "besser" ist

Organische Photovoltaik für IoT

- Retrofit des Gebäudebestands kann in Deutschland zur Einsparung von ca. 30% Energie führen
- Erfordert 'smartness' → zahlreiche Sensoren
- Organische PV bestens zur Energieversorgung dieser IoT Bauteile geeignet

Organische Photovoltaik für IoT

- Kunstlicht in Innenräumen ist an das menschliche Auge angepasst und weist ein wesentlich schmaleres Spektrum als Sonnenlicht auf
- → Bandlücke im Bereich von 1.7...1.9 eV ist ideal
- c-Si ist nicht gut geeignet auf Grund hoher Thermalisierungsverluste

Solarzellen in Innenräumen generieren nur geringe Energiemengen... Aber: es sind ca. 30% Energieeinsparung möglich durch Retrofit von Gebäudebestand!

Impact of Series and Parallel Resistance

Organische Photovoltaik für IoT

Vergleich verschiedener PV Technologien für IoT

D. Müller, UW et al., ACS Appl. Energy Mater. 2023, 6, 20, 10404

Vergleich verschiedener PV Technologien für IoT

D. Müller, UW et al., ACS Appl. Energy Mater. 2023, 6, 20, 10404

Organische Photovoltaik für IoT

OPV ist sehr gut für Anwendungen unter Kunstlicht geeignet. Die erforderliche Stabilität ist bereits erreicht und erste Produkte sind im Markt.

D. Müller, UW et al., Small 2023, 2305437

Organic Photovoltaics for IoT

D. Müller, UW et al., Small 2023, 2305437

SEHR VIEL PV benötigt: Szenario zur Erreichung des 2°C Ziels

- Attraktiv im Gebäudebereich
- Nützlich in der Landwirtschaft (geschützter Anbau, Anpassung Klimawandel)
- Sehr wahrscheinlich f
 örderlich f
 ür Akzeptanz (Ziel 50 75 TW_p)

Anorganische kristalline Halbleiter: Absorptionskoeffizient steigt zu kürzeren Wellenlängen an

Organische Halbleiter:

Absorption nur in bestimmten spektralen Regionen

ightarrow spektrale Fenster möglich

Shockley-Queisser Limit

Abschätzung realistisches Potenzial

Anforderungen an Elektrodensysteme

Transparente c-Si PV

Transparente Organische PV

L. Pap, UW et al., Solar RRL 2023, 2300561

Transparente Organische PV

100

80

simulated R simulated T simulated A

measured R

measured T - measured A

Transparentes OPV-Modul

Transparente Organische Photovoltaik

Transparenz bei >10% Wirkungsgrad

Organisches PV-Modul mit sehr hoher Spannung

- OPV Hochspannungs-Modul als Energiequelle f
 ür dielektrische Elastomer-Mikroaktuatoren
- 1640 serienverschaltete Zellen auf 3.6 cm x 3.6 cm
- Offene Klemmenspannung > 1600 V

E. Jiang, UW et al. ACS Energy Lett. 2024, 9, 908–910

Organische Photovoltaik – Monolithische Integration mit Organischer Batterie

- Organische Quintupel Solarzelle
- Monolithischer Integration durch 3-Elektroden Aufbau mit organischer Li-Ionen Batterie
- Spannung unter 0.1 Sonne ausreichend, um organische Li-Ionen Batterie zu laden

Organische Photovoltaik – Monolithische Integration mit Organischer Batterie

R. Delgado, UW et al., EES 2023, online

Detection of Luminescence in Solar Cells

... is a very useful characterization technique

- Quantitative
- Non-destructive
- Fast (e.g. c-Si wafer within ~1 s)
- High-resolution
- Non-contact (for PL)
- ...and, most important

$$I_{\text{PL/EL}} \propto \int_{0}^{d} R_{\text{rad}} \, \mathrm{d}x = \int_{0}^{d} k_{\text{rad}} n_{\text{e}} n_{\text{h}} \, \mathrm{d}x = \int_{0}^{d} k_{\text{rad}} n_{\text{i}}^{2} \exp\left[\frac{\Delta E_{\text{F}}}{k_{\text{B}}T}\right] \mathrm{d}x$$

However, for PL of OPV devices, this cannot be applied...

Elektro- and Photolumineszenz in Organischen Solarzellen

Electrolumineszenz: Injektion von (freien) Ladungsträgern

CT Rekombination

Photolumineszenz: Generation von Exzitonen

- Rekombination von Exzitonen
- CT Rekombination

Photo- und Elektrolumineszenz in Organischen Solarzellen

Photo- und Elektrolumineszenz in Organischen Solarzellen

- PL & EL spektral nicht zu unterscheiden
- EL wesentlich schwächer bei gleichen Rekombinationsströmen

Hybridisierung durch Kopplung

 PL & EL sind beide dominiert durch Emission aus LE-Zuständen im Akzeptor

Hofinger et al., *Mater. Adv.* **2021**, *2*, 4291

Photo- und Elektrolumineszenz in Organischen Solarzellen

- PL & EL spektral nicht zu unterscheiden
- EL wesentlich schwächer bei gleichen Rekombinationsströmen
- \rightarrow PL ist stark dominiert durch photogenerierte LE
- Keine direkte Korrelation zwischen PL-Signal and n_{e,h}

Faisst, UW et al. Adv. Opt. Mater. 2023, 2300895

Photo- and Elektrolumineszenz in Organischen Solarzellen

How to disentagle the two contributions to the PL signal?

- Photogenerated LE: $\tau_{\text{LE}} \leq ns$
- Free charge carriers: $\tau_{\text{free}} \approx \mu s$ -range
- \rightarrow use transient PL measurements

Transiente Photolumineszenz in Organischen Solarzellen

$$R_{\rm rad}(t) = k_{\rm rad, LE} n_{\rm LE}(t) + k_{\rm rad, free} n_{\rm free}^2(t)$$

$$\rightarrow \text{ for } t \gg \tau_{\rm LE} : R_{\rm rad}(t) \approx k_{\rm rad, free} n_{\rm free}^2(t)$$

Conclusion

- Organische Photovoltaik (OPV) kann (noch) nicht mit c-Si konkurrieren
- Die OPV bietet jedoch vielversprechendes Potenzial f
 ür gewisse Anwendungen auf Grund spezifischer Materialeigenschaften (Bandl
 ücke, Absorption)
- Als Anwendungsfelder ergeben sich somit hauptsächlich Energieversorgung von IoT Geräten in Innenräumen und solche, bei denen eine hohe visuelle Transparenz gefordert ist
- Lumineszenzmessungen an organischen Solarzellen sind komplizierter als an anderen Solarzellen
- Der Großteil der Photolumineszenz stammt von photogenerierten Exzitonen, dieser Anteil sagt jedoch nichts über den Betriebszustand der Solarzelle aus.
- Zusätzliche Erschwernis ist die Tatsache, dass photogenerierten Exzitonen und freie Ladungsträger schlussendlich über dieselben Zustände emittieren.
- Mittels zeitabhängiger PL-Messungen lassen sich die Signale voneinander trennen

Vielen Dank für Ihre Aufmerksamkeit!

Uli Würfel KIT, 23. Februar 2024 uli.wuerfel@ise.fraunhofer.de